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In China, the most common grain crop is maize (Zea mays). The increasing pressure to
meet the food demands of its growing population has pushed Chinese maize farmers
toward an excessive use of chemical fertilizers, a practice which ultimately leads to
a massive waste of resources and widespread environmental pollution. As a result,
increasing the yield and improving the nitrogen (N) use efficiency of maize has become
a critical issue for agriculture in China. This study, which analyzes the combined data
from a simulation carried out using the Decision Support System for Agrotechnology
Transfer (DSSAT), a field experiment, and a household survey, explored the effectiveness
of several approaches aimed at narrowing the maize yield gap and improving the
N utilization efficiency in the Huang-Huai-Hai Plain (HHHP), the most important area
for the production of summer maize in China. The various approaches we studied
deploy different methods for the integrated management of N fertilizer input and the
planting density. The study produced the following results: (1) For the simulated and
actual maize yields, the root mean square error (RMSE), the normalized root mean
squared errors (NRMSE) and the index of agreement (d) were 1,171 (kg ha−1), 12%
and 0.84, respectively. These results show that the model is viable for the experiment
included in the study; (2) The potential yield was 15.58 t ha−1, and the yields achieved
by the super-high-yield cultivation pattern (SH), the optimized nutrient and density
management pattern (ONM), the simulated farmer’s practice cultivation pattern (FP) and
actual farmer’s practice (AFP) were 11.43, 11.06, 10.33, and 7.95 t ha−1, respectively.
The yield gaps associated with the different yield levels were large; (3) For summer
maize, the high yield and a high N partial factor productivity (NPFP) was found when
applying a planting density of 9 plants m−2 and an N application amount of 246 kg
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ha−1. These results suggest that the maximum yield that can actually be achieved by
optimizing the N application and planting density is less than 73% of the potential yield.
This implies in turn that in order to further narrow the observed yield gaps, other factors,
such as irrigation, sowing dates and pest control need to be considered.

Keywords: DSSAT, nitrogen fertilizer, planting density, yield gap, NPFP

INTRODUCTION

Between 2000 and 2050, the global maize production is expected
to grow by more than 450 million tons in order to meet the
demands posed by population growth and improving living
standards (Hubert et al., 2010). In 2017, China produced 2.59
million tons of maize, which accounted for 22.84% of the global
maize production (FAO, 2018). The HHHP is China’s largest
summer maize growing region: it accounts for 35% of its total
maize planting area and 30% of its total maize production
(National Bureau of Statistics, 2018). Increasing the maize yield
in the HHHP is of great importance to China’s food security, and
indeed that of the world. In the HHHP, the highest maize yield
was 21,030 kg ha−1 (Li and Wang, 2010), whereas the average
maize yield was only 5,881 kg ha−1 (National Bureau of Statistics,
2018), which points to a huge potential for increasing the yield.

Raising the potential crop yield is difficult to achieve in a
short time (Rincent et al., 2014; Li et al., 2017; Zhang H. et al.,
2018; Simkin et al., 2019), and therefore a substantial increase
in current yields can only be achieved by narrowing the yield
gap (Wang et al., 2014). Typically, the yield gap is defined as
the difference between the average yield achieved by farmers in
a given area over a certain period of time and the estimated
reference yield (usually referred to as the potential yield or
the water limit yield) (Maria Carolina et al., 2018; Agus et al.,
2019; Marloes et al., 2019). The potential yield can be defined
and measured in a number of ways, for example through using
crop growth models, by conducting maximum yield trials, or by
measuring the maximum yield achieved by farming households
(Van Ittersum and Rabbinge, 1997; Lobell et al., 2009; Marloes
et al., 2019). Currently, China’s actual maize yield is only 58% of
the average potential yield of 13,875 kg ha−1, which makes for a
yield gap of 42% (Global Yield Gap Atlas, 2019). This yield gap is
the result of farmers not using suitable cultivars and production
techniques. Narrowing the yield gap is a logical and modern
strategy that has been touted as a solution to the world’s need
to increase global food production (Lobell et al., 2009; Liu et al.,
2016; Marloes et al., 2019). Several approaches to narrowing the
yield gap have been studied. Zhang J. et al. (2019) reported that
improving soil properties could reduce the maize yield gap. Cui
et al. (2013) reported that effective N management could narrow
the maize yield gap while reducing greenhouse gas emissions. All
studies agree that quantifying the potential yield and the yield
gap for maize could help to reveal the factors that limit the yield,
and ultimately lead to suggestions for technical management
measures to narrow the existing yield gap (Wang et al., 2014; Liu
et al., 2016; Agus et al., 2019; Marloes et al., 2019).

Current research focuses on how to reduce the yield gap
in a sustainable way. Over the past century, the availability

of a reliable fertilizer supply has enabled farmers to greatly
increase the crop yield per unit land area, and meet the
food demands of a growing population (Foley et al., 2011).
In order to increase their crop yield, some farmers overuse
chemical fertilizers, which has caused an explosive increase of
N fertilizer in China (FAO, 2018). Moreover, a large amount of
resources is wasted, which is not conducive to the sustainable
development of agriculture (Zhang et al., 2015). Therefore,
researchers carried out several studies aimed at assessing the
N nutrition status of crops and improving the N utilization
efficiency in maize (Zhang et al., 2015; Zhang Y. et al., 2018;
Li Z. H. et al., 2019). In one example, the application of N
was carried out in stages or delayed (Guo et al., 2018), in
another organic fertilizer and inorganic fertilizer were used
together (Yang et al., 2019). Other lines of research found that
a suitable planting density is another fundamental factor to be
considered for achieving a high maize yield (Luo et al., 2020).
Additional studies showed that integrating the management
of the N fertilizer input and the planting density can be
an important means to improve crop yield and N utilization
efficiency (Wei et al., 2017). However, the planting densities used
by different maize cultivators vary greatly in different ecological
areas (Solomon et al., 2017), so it is necessary to determine both
the appropriate N management method and the optimal planting
density for each of those areas, notwithstanding the fact that the
agronomic experiments needed to achieve this consume a lot of
time and resources.

Crop growth models are agronomic decision systems
recognized by scientists. By simulating probable outcomes of
crop management strategies, they can be used to rapidly
appraise new crops, products, and practices and qualify or
disqualify them for adoption, so as to save a lot of the
time and labor cost associated with experiments, making them
important tools for agricultural technology research (Van Diepen
et al., 1989; Dzotsi et al., 2010; Liu et al., 2016; Setiyono
et al., 2019; Saddique et al., 2020). The DSSAT model is the
most commonly used model package (Yakoub et al., 2017) to
characterize the growth, development, yield, irrigation and N
uptake of multiple crop species (Boote et al., 2017; Hoogenboom
et al., 2019; Qu et al., 2019; Zhang D. et al., 2019). Examples
of successful DSSAT deployments abound in the literature.
Malik et al. (2019) reported that improved irrigation and N
management practices as suggested by the DSSAT-CERES-maize
model could improve maize yield and N use efficiency under
Mediterranean climate conditions. Kadigi et al. (2020) used
DSSAT to evaluate the economic feasibility of an improved
planting density (used to realize an optimized plant population)
and better N-fertilizer crop management practices for increasing
maize net returns in semi-arid and sub-humid agro-ecological
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zones in the Wami River sub-Basin in Tanzania. Finally, Banger
et al. (2018) used the DSSAT-CERES maize model to analyze
the impact of N management on maize yield in the Midwest
region of the U.S.

Conceiving production methods that balance increased
production with more efficient N use is a major challenge.
Most previous studies in this area have focused on single-
factor agronomic management (Osmond et al., 2015; Yang et al.,
2019), with a few studies combining N fertilization and planting
density. Moreover, some studies only rely on a single experiment
(Guo et al., 2016; Zhang Y. et al., 2018; Luo et al., 2020) or
a single model simulation (Liu et al., 2012; Cheng et al., 2015;
Malik et al., 2019), and fail to investigate the actual production
levels achieved by farmers. In this paper, we combined a
DSSAT model simulation with a field experiment and a peasant
household survey to analyze the effects of integrated agronomic
management on summer maize yield and N fertilizer utilization.
The objectives of the research presented in this paper are (1)
Using DSSAT to calibrate and validate the characteristics of
summer maize in the HHHP of China, (2) Quantifying the yield
gap for several agronomic management mode with different yield
levels, and (3) Determining the optimal fertilizer application and
planting density management practices under environmentally
sustainable conditions.

MATERIALS AND METHODS

Field Experiment
Sites and Experimental Conditions
The experiments were conducted from 2012 to 2016 at
the Wenkou Experimental Station, Shandong Agricultural
University, Taian, Shandong Province, China (35◦58′10 N,
117◦03′30 E and 178 m). The soil at the experimental field
consists of sandy loam (Typic Hapli-udic Argosols); its physical
and chemical properties are shown in Table 1.

Treatments and Experimental Design
All on-farm experiments followed a standardized experimental
protocol. We set up three experimental treatments and defined
the following three corresponding yield levels: SH, defined as the
maximum yield under local climatic conditions with unlimited
supply of nutrients and water; ONM, defined as the yield obtained
after optimizing the fertilization program and planting density;
and FP, the yield achieved by simulating the farmers’ management
practices at the experimental station.

The experiment deployed a randomized block design with
three treatments and four replications (Table 2). Each plot was
180 m2. Plots were separated by 30-cm-wide earthen dams to
allow flood irrigation of each plot. Adequate irrigation was
provided as required by the momentary growth rate of the maize.
The experimental blocks were separated by 1-m walkways. N, P,
and K were provided as urea (containing 46% N), superphosphate
(containing 12% P2O5), and potassium chloride (containing 60%
K2O), respectively. As organic fertilizer, we used chicken manure,
which contained 315 g kg−1 organic carbon (dry basis), 32.3 g
kg−1 P2O5, 30.4 g kg−1 K2O, and had a C/N of 11.3. TA
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TABLE 2 | Nutrient and density management measures at different management levels.

Treatment planting
density (plant

m−2)

Nutrient type Nutrient input
(kg ha−1)

Fertilization period and fertilization ratio (%)

Before
sowing

6-leaf stage 12-leaf stage Anthesis One week
after anthesis

SH 9 N 450 10 20 30 20 20

P2O5 270 100

K2O 450 50 50

Chicken manure 15000 100

ONM 8.25 N 360 10 20 50 20

P2O5 225 100

K2O 405 50 50

FP 6 N 322.5 50 50

P2O5 112.5 48 52

K2O 195 20 80

AFP 6 N 330 ± 105 50 50

P2O5 278 ± 84 100

K2O 275 ± 73 100

FIGURE 1 | Meteorological data and actual and simulated phenological periods of summer maize from 2012 to 2016.

Agronomic Management and Measurements
The experimental fields were managed by collaborating farmers,
under the guidance of the researchers. The maize variety
Zhengdan 958 (Zheng58 × Chang 7-2, ZD958), which is
commonly planted in northern China, served as the experimental
variety. The 5-year sowing and harvesting times are shown
in Figure 1. Pest and weed control followed local high-yield
practices. Physical and chemical data for the soil were obtained
before planting. The phenological stage was accurately recorded:
six plants from each replication were sampled at the following six
growth stages: 9th leaf stage, 12th leaf stage, anthesis stage, milk
stage, dent stage and maturity stage. To measure the biomass, all
samples were heat-treated at 105◦C for 30 min, and then dried
at 70◦C until the weight remained constant, after which they
were weighed. At the same time, the leaf area of the maize was
measured by leaf area meter (LI-3100C, LI-COR) and the leaf
area index (LAI) was calculated. To determine the yield and its
component measurements, all ears from 9 m2 at the center of

the plots were harvested and the number of harvested plants
was counted. For this study, the dry grain yield was used as
the grain yield.

Actual Farmer’s Practice
The AFP yield was determined by a survey of 281 plots
of agricultural land near the experimental site. The survey,
which was carried out in 2016, asked farmers to provide the
following information about their summer maize crop: yield,
maize varieties planted, planting density, and the amount of
fertilizer they applied (Table 2). Generally, the farmers irrigated
their fields once after sowing and once at the 9-leaf stage.

DSSAT Model
Model Description and Fundamental Data Set
DSSAT (version 4.7) (Hoogenboom et al., 2019) has been
tested and applied extensively in China (Liu et al., 2012;
Li et al., 2015; Zhang D. et al., 2019). It can be used
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FIGURE 2 | Comparisons between the measured and simulated values of LAI in three patterns during the summer maize growth seasons during 2012 and 2016.

to simulate the phenology, biomass and yield of maize.
Crop simulation models simulate the growth, development,
and yield of a specific crop as a function of a set of
dynamic parameters characterizing the soil, the crop, and
the atmosphere. The parameters comprise soil data, crop
management data, and meteorological data. For each soil
horizon, the soil data, including a number of physical indicators
(soil texture, permanent wilting point, field capacity, volumetric
water content at saturation and bulk density), and chemical
indicators (soil organic carbon, inorganic N, and pH), were
measured through ground investigations (Table 1). The crop
management data used in the model (for example seeding
time, irrigation parameters, planting density, and fertilizer
input) follow the experimental parameters described in section
“Field Experiment.” The meteorological data, including the
precipitation, solar radiation, and minimum and maximum
air temperature, were acquired from the European Centre for
Medium-Range Weather Forecasts (Figure 1).

Model Parameter Calibration
The DSSAT-Maize model used for our study was calibrated
using crop data for the 3 years from 2012 to 2014. We
used a trial-and-error method to determine which maize crop
parameters optimize the model’s performance (Li et al., 2015).
The maize crop parameters were divided into three subsets:
species-, ecotype-, and cultivar-specific (or genetic coefficients).
The relevant subsets were saved with each DSSAT input file.
For the species-specific parameters we used the DSSAT-Maize
model’s default values for maize. The values for ecotype and
cultivar-specific phenological parameters (Table 3), which are
required for DSSAT-Maize, were obtained by fitting the model
to the observed biomass, leaf area index (LAI), and yield,
and to the dates of emergence, anthesis and maturity for the
relevant experimental maize treatment (see Table 3 for the
parameter description).

Statistical Analysis
Potential Yield, Rain-Fed Yield, Yield Gaps and N
Partial Factor Productivity
According to its definition, the potential yield (YP), which is
the yield of an adapted crop cultivar grown without limiting its
water or nutrients supply, and without subjecting it to pests and
diseases, is only affected by climatic conditions (note that the
model does not include water and N constraints) (Evans and
Fischer, 1999); The attainable yield (AY), which is defined as
80% of the potential yield, is difficult to exceed in regional field
production, and the high water and fertilizer input it requires
results in a reduced resource utilization efficiency (Lobell et al.,
2009); The rain-fed yield is defined as the potential yield of rain-
fed maize (limited only by water input by the model). Using these
definitions along with the SH yield, the ONM yield, the FP yield,
and the AFP yield (that is to say the yields achieved with the
treatments defined in section “Materials and Methods”) several
yield gaps can be defined:

YGT = YP − AFP (1)

YG1 = YP − AY (2)

YG2 = AY − SH (3)

YG3 = SH −ONM (4)

YG4 = ONM − FP (5)

YG5 = FP − AFP (6)

To evaluate whether optimization measures lead to
improvements in N utilization efficiency, we used the NPFP as
an evaluation index:

NPFP = Grain yield/N input (7)
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TABLE 3 | DSSAT-CERES-maize model partial parameters meaning and calibration value of this study.

Parameter type Parameters Parameter description Values

Regulate phenological periods P1 Thermal time from seedling emergence to the end of the juvenile phase (expressed in degree days
above a base temperature of 8◦C) during which the plant is not responsive to changes in
photoperiod.

270

P2 Extent to which development (expressed as days) is delayed for each hour increase in photoperiod
above the longest photoperiod at which development proceeds at a maximum rate (which is
considered to be 12.5 h)

0.45

P5 Thermal time from silking to physiological maturity (expressed in degree days above a base
temperature of 8◦C).

800

Regulate biomass RUE Radiation use efficiency, g plant dry matter/MJ PAR 4.3

Regulate LAI PHINT Phylochron interval; the interval in thermal time (degree days) between successive leaf tip
appearances.

37.5

Regulate yield G2 Maximum possible number of kernels per plant. 800

G3 Kernel filling rate during the linear grain filling stage and under optimum conditions (mg/day). 6.9

Model Performance Evaluation
The following statistical indexes were calculated to evaluate the
performance of the DSSAT-maize model: RMSE, NRMSE, and
d (Willmott, 1982). The calculation made use of the following
equations:

RMSE =

√∑n
i=1 (Si −Oi)

2

n
(8)

NRMSE =

√∑n
i=1 (Si −Oi)

2

n
×

100
O

(9)

d = 1−
∑n

i=1 (Si −Oi)
2∑n

i=1
(∣∣Si−O

∣∣+ ∣∣Oi −O
∣∣)2 (10)

In equations (8–10), Si is the simulated data, Oi is the observed
data, O is the average value of observed data, and n is the number
of pairs of simulated and observed data.

Using the SPSS 13.0 software, an ANOVA analysis was
performed on the differences between SH, ONM, and FP at the
0.05 level. Graphs were generated with the R for 3.0.0 software.

RESULTS

Maize Phenology and Meteorological
Data
From 2012 to 2016, the average time from sowing date to
anthesis was 54.4 days, with a coefficient of variation of 7.4%,
and the time from anthesis to maturity was 53 days, with a
coefficient of variation (CV) of 9.3%. The average solar radiation
during the growth period of summer maize was 2,857.59 MJ
m−2, with a CV of 2.2%; the average effective accumulated
temperature was 1,624.72◦C, with a CV of 2.4%; and the average
rainfall was 291.97 mm, with a CV of 25.1%. The precipitation
varied considerably from year to year, mainly due to the fact
that in 2014 the precipitation was unusually low (Figure 1).

FIGURE 3 | Relationship between simulated and measured LAI of summer
maize in three patterns. The 2012–2014 data were used to calibrate the
model, and the 2015–2016 data were used to validate the model.

In order to guarantee that the maize could develop normally,
the field management for this experiment was adapted to
provide supplemental irrigation at times when the precipitation
was insufficient.

Model Calibration and Validation
The DSSAT-Maize model was calibrated with the experimental
data collected during 2012 and 2014, and validated with the
experimental data collected during 2015 and 2016. The estimated
cultivar coefficients for the Maize cultivar ZD958 are shown in
Table 2. Over the 5 years covered by the simulation, the data
indicate a close agreement between the simulated and observed
values for anthesis, maturity, LAI, biomass and grain yield in
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FIGURE 4 | Comparisons between the measured and simulated values of biomass in three patterns during the summer maize growth seasons during 2012 and
2016.

maize. The model accurately simulated the number of days from
seeding to anthesis and maturity with the RMSE of 2.47 days,
the NRMSE of 1% and the d-value of 0.99 (Figure 1). Fitting
the diagrams for the simulated LAI (Figure 2) and biomass
(Figure 4) values to the measured values shows that the overall
fit was good. The RMSE, NRMSE and d values for the LAI were
0.86, 19% and 0.84 (Figure 3), for the biomass they were 2,489 kg
ha−1, 19% and 0.97 (Figure 5), and for the yield they were
1,171 kg ha−1, 12% and 0.84 (Figure 6), respectively. Overall,
the validation showed that the DSSAT-Maize model could be
deployed successfully to provide yield evaluations and decision
diagnoses for this experimental station.

Yield Potentials and Yield Gaps
The YP, AY, SH, ONM, FP, AFP, and Rain-fed yields were 15.58,
12.46, 11.43, 11.06, 10.33, 7.95, and 8.54 t ha−1, respectively. The
YG1, YG2, YG3, YG4, YG5, and YGT were 3.12, 1.03, 0.37, 0.73,
2.38, and 7.63 t ha−1, respectively. The SH, ONM, FP, AFP, and
Rain-fed yield accounted for 73.39, 71.01, 66.31, 51.03, and 54.8
(%) of the YP, respectively (Figure 7). At the same time, the rain-
fed potential only accounted for 54.8% of the YP, indicating that
irrigation was an indispensable and important measure in the
location under study.

Simulated Yield Response to N Fertilizer
Amount and Planting Density
The N fertilizer input and planting density are important
agronomic measures to improve maize yield (Wei et al., 2017).
The relationship between the N application amount and the grain
yield is logarithmic. For the same planting density, an increase in
N fertilizer input causes the yield to increase gradually, but at the
same time the yield increase rate is seen to decrease gradually. The
relationship between the planting density and the maize yield is
polynomial. For the same N input, an increase in the planting

FIGURE 5 | Relationship between simulated and measured biomass of
summer maize in three patterns. The 2012–2014 data were used to calibrate
the model, and the 2015–2016 data were used to validate the model.

density causes the yield to increase initially, but then decrease
again, where the point at which the yield peaks depends on the
N input (Figure 8). Fitting the yield response to the N fertilizer
application and planting density showed that the optimal N
application amount increases linearly as the planting density
increases, until the latter reaches 6.2 plants m−2, after which the
optimal N application amount remains constant. For a density of
9 plants m−2, the optimal N application amount was 246 kg ha−1

(Figure 9). For each of the three fertilization methods simulated
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FIGURE 6 | Comparisons between the measured and simulated values of yield in three patterns during the summer maize growth seasons during 2012 and 2016.

FIGURE 7 | Summer maize yield at different grain yield levels. YP, yield
potential; AY, attainable yield (80% of YP); SH, super-high-yield treatment;
ONM, optimized nutrient and density management treatment; SFP, Simulated
local farmer’s practice cultivation treatment; AFP, actual farmer’s yield
(Household survey data); Rain-fed yield, potential of rain-fed maize yield (Only
limited by water); YGi, yield gap between different yield levels (i is 1, 2, 3, 4, 5,
and T). The percentage data in the bar chart is the ratio of different yield levels
to the yield potential of summer maize.

by the DSSAT model, the yield response to the N fertilizer
amount and the planting density was fundamentally consistent.
Interannual climate variation mainly affected the upper limit of
the yield and did not significantly affect the yield response to the
N fertilizer amount and the planting density (Figure 8).

NPFP Response to N Fertilizer Amount
and Planting Density
Optimizing the N fertilizer amount and increasing the planting
density were effective methods to improve the N use efficiency

(Zhang D. et al., 2019). The relationship between the N
application amount and the NPFP follows a power function. With
increasing N input, the NPFP for maize decreased gradually at
a decreasing rate. For the same N fertilizer input, an increase
in the planting density caused the NPFP to increase initially,
and then decrease again. Interactions between the N fertilizer
input and the planting density had a significant effect on the
NPFP. Figure 10 shows that for the optimal planting density
of 9 plants m−2 and the optimal N fertilizer input of 247 kg
ha−1, the simulated NPFP was 40.29 kg kg−1, which was 67.24%
higher than the NPFP for AFP, and 25.90% higher than the
NPFP for FP (Figure 11). As simulated by the DSSAT model, the
rules for the NPFP response to N fertilizer and planting density
are fundamentally consistent for all three fertilization methods.
Interannual climate change mainly affected the upper limit of the
NPFP and had little effect on the rules for the NPFP response to
N and planting density (Figure 10).

DISCUSSION

Model Simulation and Application
Crop models have been widely used to simulate and compare
crop yields that are hard to study in the field directly. The
DSSAT model has been proven to be applicable to spring maize
(Liu et al., 2012; Li et al., 2015), but it has been used less
frequently for summer maize growth simulations in China. As
described in “Maize Phenology and Meteorological Data,” despite
some deviations in the process used to simulate the LAI, the
biomass and the yield of maize, the statistical analysis and
evaluation of the data indicated that for this experiment the
model provided a quite reliable simulation (Figures 1–5). This
suggested that the DSSAT model could successfully simulate
the summer maize production potential, which suggests that
we can use it to make agricultural management decisions for
our experimental sites. The DSSAT model has been widely used
to provide an accurate basis for cultivation measures like N
application, planting density and irrigation amount, and it has
been improved constantly over the years (Amouzoua et al., 2019;
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FIGURE 8 | The response of simulated maize yield to nitrogen fertilizer and planting density. The figure above shows the simulated yield Response to different
fertilization methods based on SH pattern (a), ONM pattern (b), and FP Pattern (c) respectively. SH, the ratio of organic fertilizer to nitrogen chemical fertilizer was
1:1, and base fertilizer and topdressing at the following growth stages: 6-leaf stage, 12-leaf stage, anthesis, and 1 week after the anthesis stage with a ratio of
1:2:3:2:2; ONM, basal fertilizer and topdressing at growth stages 6-leaf stage, 12-leaf stage, and 1 week after the anthesis stage with a ratio of 1:2:5:2 by nitrogen
chemical fertilizer; FP, basal fertilizer and fertilizer dressed at the 12-leaf stag at a ratio of 1:1 by nitrogen chemical fertilizer.

FIGURE 9 | The response of optimal nitrogen application to planting density was simulated by DSSAT. The lower-right corner figure is the fitting analysis of the N
application at the planting density was 9 plant m−2, and the optimal N application amount is 246 kg ha−1

Malik and Dechmi, 2019; Saddique et al., 2019). Nevertheless, we
still found some deficiencies in the model when we used it, as
described below.

Figure 6 shows that for 2012 and 2014, the measured
yields were lower than the simulated yield, which could have
been caused by rust diseases in the late growth period of the
maize (Data not shown). Analogous to the studies mentioned
before, the LAI increase and the aging exhibited by the model
are also affected by soil moisture content (Çakir, 2004). For

example, the model subroutine LAIS, which is used to calculate
changes in the LAI, limits the potential rate by taking the
soil water stress (both deficit and saturation), soil water stress
factors, temperature, and growth rate reduction factor into
account (Kraalingen and Van, 1995; Reynolds and Acock, 1997).
The reason why the simulated LAI is low may be that the
test site applies limited irrigation (Figure 3). Applying N
fertilizer according to the rules of plant N requirement is an
effective way to the increase maize yield and N utilization
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FIGURE 10 | The response of simulated maize NPFP to nitrogen fertilizer and planting density. The figure above shows the simulated NPFP Response to different
fertilization methods based on SH pattern (a), ONM pattern (b), and FP Pattern (c) respectively. SH, the ratio of organic fertilizer to nitrogen chemical fertilizer was
1:1, and base fertilizer and topdressing at the following growth stages: 6-leaf stage, 12-leaf stage, anthesis, and 1 week after the anthesis stage with a ratio of
1:2:3:2:2; ONM, basal fertilizer and topdressing at growth stages 6-leaf stage, 12-leaf stage, and 1 week after the anthesis stage with a ratio of 1:2:5:2 by nitrogen
chemical fertilizer; FP, basal fertilizer and fertilizer dressed at the 12-leaf stag at a ratio of 1:1 by nitrogen chemical fertilizer.

FIGURE 11 | Summer maize nitrogen partial factor productivity (NPFP) at
different yield levels.

efficiency (Zhan et al., 2011; Perez, 2015; Osmond et al.,
2015; Zhang et al., 2015). In this study, this fertilization
method was adopted for the SH and ONM treatments,
but the simulation results showed no significant difference
between the yield response to the divided and the concentrated
application of N, meaning they cannot be used to make effective
recommendations for the application time and proportion of N
(Figures 7, 8).

Narrowing Yield Gaps Through
Adaptation of Agricultural Practices
The purpose of this study was to identify and quantify the factors
that restrict maize production in the HHHP and to assess the

effectiveness of various integrated cultivation practices aimed at
narrowing the yield gap caused by agronomic mismanagement.
The results point at several significant opportunities to increase
the maize yields in this area beyond their current levels. The
survey data show that the AFP treatment achieved 51% of
the potential yield and 93% of the rain-fed potential yield
(Figure 7). Other studies have reported yield gaps that were
not consistent with our findings. Liu et al. (2016) reported that
farmers in Northeast China only achieved 36% of the potential
yield of spring maize, while Li S. et al. (2019) believed that
the summer maize yield achieved by farmers in North China
reached 72% of the potential yield. The most likely explanation
for the discrepancies between the findings of those studies and
ours is the fact that the former concern geographical areas
that are quite different from the area we studied. Furthermore,
our study indicated that in areas where irrigation is used to
grow summer maize, the main factor limiting yield increases
is not a lack of water, but the application of a suboptimal
combination of N fertilizer and planting density. Therefore,
an agronomic management model for narrowing the yield gap
should consider the integrated management of the N fertilizer
amount and the planting density as the most effective means to
increase the yield.

The attainable yield is the maximum yield that can be
achieved at a field scale or at a regional scale (Li S. et al.,
2019). Previous studies have shown that even with the best
cultivation management techniques, it is difficult to achieve
a crop yield that exceeds 80% of the biophysical ‘potential
yield,’ even at a field scale (Lobell et al., 2009). Therefore,
we define the attainable yield as 80% of the potential yield.
Referring back to the yield gap definitions used in the statistical
analysis YG1 is mainly affected by uncontrollable factors that
cannot be completely matched, for example uncontrollable
climate events and changes in crop management quality. SH,
which is designed to provide an excessive nutrient supply at
the optimum planting density, aims to achieve the maximum
field-scale yield in the experimental area. YG2 is primarily
limited by management factors other than nutrient input and
planting density, such as sowing date, pests and diseases, or soil
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conditions. According to the simulation analysis, when the N
fertilizer input exceeded 247 kg ha−1 (Figure 9), the effect of N
fertilizer input on the yield increase was no longer significant.
This indicates that the factors with the greatest influence on
YG3 and YG4 are the N fertilizer application mode (application
period) and the planting density. YG5 is the yield gap that is the
most likely to be narrowed. Considering that FP adopts a fertilizer
input and planting density similar to AFP, we can conclude that it
is mainly caused by underutilization of agricultural technologies
(including variety selection, irrigation management, and pest
control). Therefore, any approach to reducing the yield gap
should focus on improving the agrotechnical service provisions
for low-yield farms.

Improving Yield and NPFP by Adopting
Better Agricultural Practices
Optimizing N fertilizer management practices is an important
aspect of reducing production costs and environmental risks. Due
to the diversity of fertilization methods and factors that influence
their effectiveness, the optimal fertilizer application rate for crops
in different cropping systems in different regions is subjected
to large variations. Taking the economic benefits and the N
utilization efficiency into account, a dynamic biogeochemical
model for maize recommended an N application rate of 191 kg
N ha−1 for three states in the Midwest region of the United States
(Sela et al., 2018). Chen et al. (2011) reported that the optimal
N application rate for maize as recommended by the soil crop
management system was 237 kg N ha−1 in China; Zhang Y.
et al. (2018) showed that the optimal N application rate for
maize as suggested by the results of field trials conducted
in the North China Plain was 240 kg N ha−1. Our study
showed that the yield response to the N application amount
is significantly reduced when it exceeds 246 kg N ha−1, and
that continued N application would not only be ineffective
for increasing the yield, but also lead to a reduced NPFP.
This means that there is room for further optimization of
the N management practices deployed in our ONM treatment.
On the other hand, when applying an adaptive N condition,
densification is an effective way to obtain a higher yield and
a higher N utilization efficiency. However, once a density of
12 plants m−2 is reached, further densification is counter-
effective, and decreases the yield (Figures 8, 10). It is worth
noting that, although the light and temperature conditions of
the test site meet the requirements for a planting density of
12 plants m−2, it is problematic to apply a planting density
exceeding 9 plants m−2 due to the impact of high winds (Guo
et al., 2018). The research conducted by Luo et al. (2020)
in Northern China also verified our results. It is true that
when applying a high planting density the upper yield limit is
proportional to the N fertilizer rate. The optimal N application
rate for the used planting density, however, is more or less
constant for high planting densities, which enables farmers to
treat the relationship between N fertilizer input and maize yield
more rationally (Figure 9). In the near future, guiding and
encouraging farmers to improve their fertilizer management and

cultivation techniques in appropriate ways is essential for the
sustainable development of agriculture, not only in China but
around the world.

Our simulation analysis method is based on previous studies
(Banger et al., 2018; Li S. et al., 2019; Malik and Dechmi, 2019;
Malik et al., 2019). We did not adopt a long-term meteorological
simulation; a lack of analyses quantifying the impact of climate
change precludes a successful incorporation into any simulation.
In order to make a better recommendation, we plan to conduct a
multi-point verification of the conclusions from this experiment
in the next round of research, and further analyze the relevant
effects of different N fertilizer management measures (notably
applying N fertilizer in stages, and applying organic and inorganic
fertilizer together).

CONCLUSION

This study found that the DSSAT model can accurately simulate
the effect of cultivating measures on maize, and that the
simulation results for maize phenology, LAI, biomass and yield
accurately match the actual yield results.

The YGT between AFP and YP in the HHHP was 7.63 t ha−1,
which indicates a high potential for yield improvement. The
results showed that the optimization of cultivation management
measures, for example coordinating the N application amount
and the planting density, could effectively increase the AFP yield
by reducing the yield gap to 4.52 t ha−1. Adopting an N fertilizer
rate of 246 kg ha−1 and a planting density of 9 plants m−2 are
effective measure for improving the maize yield and the N use
efficiency of summer maize cultivated in the HHHP.
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