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The yield and quality of fresh lettuce can be determined from the growth rate and
color of individual plants. Manual assessment and phenotyping for hundreds of varieties
of lettuce is very time consuming and labor intensive. In this study, we utilized a
“Sensor-to-Plant” greenhouse phenotyping platform to periodically capture top-view
images of lettuce, and datasets of over 2000 plants from 500 lettuce varieties were
thus captured at eight time points during vegetative growth. Here, we present a novel
object detection–semantic segmentation–phenotyping method based on convolutional
neural networks (CNNs) to conduct non-invasive and high-throughput phenotyping of
the growth and development status of multiple lettuce varieties. Multistage CNN models
for object detection and semantic segmentation were integrated to bridge the gap
between image capture and plant phenotyping. An object detection model was used
to detect and identify each pot from the sequence of images with 99.82% accuracy,
semantic segmentation model was utilized to segment and identify each lettuce plant
with a 97.65% F1 score, and a phenotyping pipeline was utilized to extract a total of
15 static traits (related to geometry and color) of each lettuce plant. Furthermore, the
dynamic traits (growth and accumulation rates) were calculated based on the changing
curves of static traits at eight growth points. The correlation and descriptive ability of
these static and dynamic traits were carefully evaluated for the interpretability of traits
related to digital biomass and quality of lettuce, and the observed accumulation rates
of static straits more accurately reflected the growth status of lettuce plants. Finally,
we validated the application of image-based high-throughput phenotyping through
geometric measurement and color grading for a wide range of lettuce varieties. The
proposed method can be extended to crops such as maize, wheat, and soybean as a
non-invasive means of phenotype evaluation and identification.

Keywords: high throughput phenotyping, lettuce, object detection, semantic segmentation, static trait, dynamic
trait, growth rate
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INTRODUCTION

Lettuce is an economically important vegetable crop widely
cultivated in the world, with the highest outputs in the
United States, Europe, and China (Adhikari et al., 2019). Rich
in vitamins, carotenoids, antioxidants, and other phytonutrients
(Humphries and Khachik, 2003), lettuce is the most consumed
leafy vegetable in salads in Europe and the United States and
also one of the most commonly used vegetables in Chinese
hotpot cuisine. As a leafy vegetable of great economic value,
lettuce can be harvested at maturity or in early development
(Simko et al., 2016). Lettuce leaves are the main organs of
biomass accumulation, and lettuce leaves can be harvested many
times during vegetative growth. Therefore, rapid growth of
lettuce leaves is beneficial to ensuring the production of leaves
with the same shape, color, and taste (Grahn et al., 2015). In
addition, environmental factors have important effects on gene
expression, protein level, chlorophyll content, photosynthesis,
and metabolites of lettuce. Through the appropriate use of
culture substrates in a greenhouse, the environmental differences
among lettuce varieties can be eliminated to a large extent,
simplifying the evaluation of the growth and development status
of lettuce plant and clarifying the relationship between the
phenotype and genotype.

Image capture is a low-cost and efficient way to assess plant
growth status, and industrial cameras have become the basis
of almost all high-throughput phenotyping platforms. Lettuce
breeders have used optical sensors to evaluate the vegetative
growth of lettuce plants and to conduct genetic studies on lettuce
by, for example, identifying and mapping the locus controlling
light green leaf color (qLG4) in lettuce (Simko et al., 2016). In
addition, heat-sensitive and heat-resistant lettuce can also be
screened by measuring the leaf and root morphology, and the
effect on the leaf and root morphology of RILs population can
be quantified to establish a basis for breeding new varieties of
lettuce (Choong et al., 2013). Conditions, such as temperature
or soil salinity, are critical to the growth of lettuce, which is
very sensitive to increases in soil or water salinity (NaCl/CaCl2).
Increased salt concentrations inhibit the growth of lettuce, which
is especially sensitive at the early stage of development (Xu and
Mou, 2015). Studying the dynamic response of lettuce to different
abiotic stresses is an important way to evaluate the resistance, e.g.,
salt tolerance, of a large number of germplasm resources (Zhou
et al., 2018). Existing imaging platforms (e.g., PlantScreenTM,
developed by Photon Systems Instruments) are also used for
dynamic growth analysis of lettuce plants (Sorrentino et al.,
2020), but usually only a few types of lettuce can be processed.
There remains a lack of research quantifying and evaluating the
dynamic growth of large-scale lettuce cultivation using high-
throughput phenotyping platforms.

To continuously, stably, and consistently evaluate the growth
status of a wide range of lettuce varieties, high-throughput
image acquisition is a particularly effective tool. Two modes,
i.e., “Plant to Sensor” (Rajendran et al., 2009) and “Sensor to
Plant” (Kjaer and Ottosen, 2015), are usually adopted to collect
high-throughput data from plants. The former requires complex
mechanical structures to transfer plants to a fixed imaging room

for data acquisition. Its advantage is that plant images can
be captured from different angles; however, the cost of such
platforms is very high, and the related work procedures are more
complex. The latter system only needs to control the movement
of a sensor to specified positions to perform data collection, and
it usually only collects images from the overhead views of plant;
thus, it is relatively simple and efficient. The present work utilized
the “Sensor to Plant” approach to obtaining large quantities of
top-view images in a greenhouse environment. Thousands of
lettuce images can thus be obtained in a short period of time,
and this approach guarantees time-effectiveness for 500 lettuce
varieties. The growth and color status of lettuce canopies and
leaves can be reflected in top-view images, which can therefore
be used as a reliable data source for subsequent phenotypic
analyses of lettuce.

Based on high-throughput image acquisition, efficient and
high-precision image analysis becomes the key to transforming
image data into comprehensive plant traits. For the traits
considered by crop breeders, image-based phenotyping pipelines
are usually customized based on new or improved image
processing methods. In this context, convolutional neural
networks (CNNs) are one of the basic components of image-
based phenotyping methodologies. CNNs originated in the
1980s (Fukushima, 1980) and became areas of intense active
research after Lenet-5 (LeCun et al., 1998) was proposed, which
directly promoted the recovery of neural networks and the rise
of deep learning through the emergence of AlexNet in 2012
(Krizhevsky et al., 2012). Owing to the leading performance
advantages of CNNs in image classification, object detection,
semantics, and instance segmentation, image-based phenotyping
deeply integrated with CNNs has been widely used to extract
and evaluate crop traits for genetics, genomics, breeding, and
agricultural production studies (Lu et al., 2017; Taghavi Namin
et al., 2018; Ubbens et al., 2018; Uzal et al., 2018).

The objective of this work is the establishment of a data
analysis pipeline for high-throughput detection and phenotyping
of multiple lettuce varieties. A high-throughput phenotyping
platform was utilized to periodically acquire top-view images
of lettuce plants. We then built an image analysis pipeline
aimed at assessing lettuce growth, which used integrated object
detection and semantic segmentation models based on CNN,
to extract information from each pot and plant. Finally, we
assessed the static and dynamic traits of multiple lettuce varieties,
and validated this application of image-based high-throughput
phenotyping in geometric measurement and color grading for a
broad range of lettuce varieties.

MATERIALS AND METHODS

Data Acquisition
The experimental data acquisition system was built in the
greenhouse of the Beijing Academy of Agricultural and Forestry
Sciences, utilizing a planar scanning motion mechanism. The
imaging unit was able to move automatically above greenhouse
regions according to a planned route (Figure 1). The imaging
unit was 2.3 m above the greenhouse floor. A mounted industrial
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FIGURE 1 | High-throughput phenotyping platform for greenhouses. The imaging unit is driven along a route with planned according to x and y coordinates, and
top-view images of lettuce plants are captured according to a timer or its position.

camera (Point Gray, Sony ICX808, 1/1.8”, 3.1 m, Global shutter,
18 FPS at 2016 × 2016 pixels) was used to continuously and
systematically obtain top-view images of plants. The time interval
of data collection was set according to the movement speed of
the imaging unit. The total time of a complete data collection
process was 38 min, during which time 2280 images could
be obtained. The greenhouse was equipped with an automated
irrigation system, which could supply water according to the
water status of each plant to ensure the normal growth of plants.
This experiment began in mid-December 2019, when lettuce
seeds were first sown in a square basin (68 mm × 68 mm;
depth, 95 mm) with a 1:1 soil–sand mixture, and seedlings were
transplanted into pots (diameter, 32 cm; height, 34 cm) in the
greenhouse after 30 days.

Into each of 2000 pots, one or two lettuce plants were
transplanted, and one plant was retained after 3 days. Plant data
were collected at 16:00 p.m. every other day. At that time, the
photo-period and photosynthesis rate in the greenhouse was
fairly uniform across all lettuce varieties (Simko et al., 2016).
In this work, image datasets at eight key time points of lettuce
growth were used to evaluate the static and dynamic traits
of lettuce plants.

Data Analysis Pipeline
We designed the data analysis pipeline to automatically process
the image datasets. For the top-view images of lettuce plants at
each time point, data cleaning and calibration were performed
to reduce the data storage and analysis demands. In a single
data collection session, thousands of images could be collected,
but a few images (redundant images) were not included in the
comprehensive images of lettuce cultivation regions. Thus, data
cleaning was performed to remove the redundant images of the
same pot, according to the image acquisition time and location,
prior to the subsequent image analysis. The calibration step
converted the pixel size of the collected images by detecting the
fixed calibration object. The pixel size of the collected image in
this work was 1.067 mm/pixels. In order to ensure the matched

accuracy of the same plant among different growth points, we
used pot detection instead of plant detection. Therefore, after
cleaning, the image sequences were successively processed by
the pot detection model. It is worth noting that each pot might
appear in multiple images at the same time in the image sequence,
but the relative positions of each pot in the adjacent images
were different. The detection results were used to establish the
mapping relationship between pots and the sequence of images
and further used to identify the most appropriate top-view
image of each pot.

Pot detection for many of the images was a highly redundant
operation. We trained an efficient pot detection model based on a
CNN to extract pots from the image sequence, and each pot was
associated with the size and local coordinates of a certain image.
The pot closest to the image center among the images captured
had the least imaging position distortion, and this image could
thus be regarded as the most suitable top-view image of this pot.
Therefore, according to the local position of the pot in the image
and image acquisition location, the spatial position of each pot
could be determined. Since each pot corresponded to a lettuce
plant, we could also determine the spatial position of the lettuce
plant according to its pot position. In this way, the pot could be
matched to a position, a variety, and a plant. By the late stages
of growth, plant leaves would usually grow beyond the perimeter
of the pot, possibly causing interference effects among plants. In
order to uniformly quantify and evaluate the dynamic growth
process of plants over 34 days, we evaluated static and dynamic
traits of lettuce only within the pot region.

We trained a semantic segmentation model to extract the
lettuce plants from pot images, and the segmented results were
then fed into the phenotyping analysis pipeline to calculate the
static traits describing, for example, the geometry and color of
lettuce. Finally, the image datasets collected at different time
points were used to calculate dynamic traits, such as the growth
rate and cumulative growth rate of each static trait (Figure 1).

The above data analysis pipeline was implemented in Python
under the Windows 10 operating system. The computer used
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had the following specifications: Intel(R) CoreTM i7-5930k
CPU@3.50GHz, 128G RAM, two 8GB NVIDIA GeForce GTX-
1080 Ti graphics card, 2TB hard disk. This computer was mainly
used to train CNN models for object detection and semantic
segmentation (within the TensorFlow framework), as well as for
automatic analysis of large quantities of image datasets.

Detection Model
Accurate and efficient pot detection is the key to accurately
locating and extracting lettuce plants and a precondition for
quantifying plant traits. The YOLOv3 algorithm model (Redmon
and Farhadi, 2017) was implemented to perform the end-to-end
detection of pots from the top-view image sequence, as shown
in Figure 2. The network structure was used to train the pot
detection model based on a sufficient number of annotated pot
datasets. This detection model determined the positions of pots
by using regression; thus, the corresponding prediction boxes
of each pot could be obtained by evaluating each image once.
The DarkNet-53 network was used to extract features, and the
residual structure of ResNet (He et al., 2016) was introduced
to control the gradient spread. The network consists of 53
consecutive 3 × 3 and 1 × 1 convolution layers, with the 3 × 3
convolution responsible for increasing the feature graph channel
and the 1 × 1 convolutional layer responsible for compressing
feature representation after the 3 × 3 convolution. Five 3 × 3
convolutional layers with a step length of 2 were used at intervals
to reduce the output feature image to 1/32 the size of the input
image. One important characteristic of this structure is it merges
the multiscale features to obtain more discriminating feature
description. Consequently, it can be independently detected from
three feature graphs with 13 × 13, 26 × 26, and 52 × 52
scales so as to meet the detection needs for objects of different
sizes. The network allocated three anchor boxes for each scale,
corresponding to a total of nine anchor boxes. In this paper, a
k-means clustering algorithm was used to re-cluster all annotated
boxes in the training dataset, and the clustered box list for this
dataset was used as a model training.

The pot detection process first involved the size of collected
images being scaled to 416 × 416 pixels, and this data was then
fed into a pot detection model. The end-to-end detection resulted
in a series of predicted boxes, which contained confidence values

and relative coordinates. Then, object boxes with confidence
values lower than the threshold value (0.9) were removed by non-
maximum suppression (NMS), and each remaining detection
box then corresponded to a predicted pot. Further, we defined
a region of interest (ROI) in each image to judge whether each
predicted box was valid or not, and only those boxes that were
completely contained within the ROI were retained. According
to the relative position and global position of the pot in each
image, the corresponding variety and plant indices of the pot
were attached to the predicted box. Based on the above operation,
we could extract and identify pots from the image sequence
and process them using the semantic segmentation described in
the next section.

Semantic Segmentation
Under greenhouse environments, lettuce planting density is high,
but growth rates differ among varieties. In the later stage of
growth, lettuce leaves gradually grow beyond the perimeters of
their pots and interfere with neighboring plants. From the top-
view, the early growth range of lettuce is confined to within
each pot, and there is no interference among neighboring plants.
However, in the later stages of vegetative growth, most lettuce
varieties will gradually grow beyond the pot area. In this paper,
only plants within the pot regions were semantically segmented.
The pot region images of each variety and each plant were
extracted from the image sequences data used for image analysis.

Figure 3 shows the semantic segmentation of plants and its
post-processing process. We developed a semantic segmentation
model of lettuce by using the U-Net network structure
(Ronneberger et al., 2015). The network adopts the classical
encoding/decoding structure, which mainly includes encoder,
decoder, and jump connection components. Among them, the
encoder, which is mainly composed of 3 × 3 convolution and
2 × 2 maximum pooling layers, is used to extract features from
images at different scales. The activation function is ReLU, and
the feature channel is doubled after each encoding. The decoder
utilizes deconvolution to gradually halve the number of channels
and splice the deconvolution result with the feature graph on
the corresponding encoding path. After decoding, the output
feature graph is restored to the size of the input image. The
jump connection establishes the channel connection between the

FIGURE 2 | Pot detection model and post-processing. Input images were scaled to 416 × 416 pixels and fed into the YOLO v3 model, resulting in a series of
predicted boxes. Semantic filtering was performed to extract the valid boxes and assign the local variety and plant indices. C indicates tensor splicing operation,
N = 3 represents the output detection channels at different scales, ‘pot’ represents the detected pot, ‘C-’ is the variety index, and ‘P-’ represents the plant index of
the individual variety.
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encoder and decoder features, which can reduce the information
loss in feature extraction and improve the accuracy of location
and segmentation.

The semantic segmentation process was as follows: pot images
that were exported from the detection model were adjusted to
288 × 288 pixels and imported into the UNET network. The
model output followed a probability distribution ranging between
0 and 1, and based on this output, we used a fixed value as the
threshold to convert the probability graph into a binary image.
We then detected the maximum connected region in the binary
image and regarded it as the main structure of each lettuce plant
for the subsequent feature extraction.

Feature Extraction
To quantify the dynamic growth processes of lettuce plants
during vegetative growth, we extracted data from each pot image
and segmented plants from the pot images. This provided the
basis for analyzing and evaluating lettuce traits. The top-view
images of lettuce plants contain structure, shape, and color
information of the plant canopy and leaves, which is an intuitive

reflection of growth status and variation. We focused on the
static traits (SI) of lettuce across growth points, as well as the
dynamic traits corresponding to static traits during a period of
growth, including growth rate (GR) and accumulation rate (AC),
as shown in Table 1. In this work, the static traits refer to the
geometric and color indices of lettuce plants at certain time
points, and the growth rates and cumulative traits reflect changes
in the static traits during a particular growth period. Therefore,
static and dynamic traits are closely related to data acquisition
times and time periods. The growth rate describes the change
rate of various static traits within a certain time interval, and the
cumulative traits corresponding to the static traits are the average
daily change rates within a certain time interval, as follows:

{
GRSI =

SIt2−SIt1
t2− t1

ACSI =
∑t2

t1 SI
t2−t1

. (1)

Here, SI represents the static indices in Table 1; t1 and t2
respectively represent the start and end times of data acquisition,

FIGURE 3 | Plant semantic segmentation and post-processing. Input images were scaled to 218 × 218 pixels and fed into a UNET model, resulting in a binary
image. Semantic filtering was performed to check the valid regions for subsequent feature extraction.

TABLE 1 | Lettuce features extracted from top-view images.

Static Index
(SI)

Growth rate
index (GR)

Accumulated
curve Index

(AC)

Description Unit or value
range

Geometric Descriptors PA GRPA ACPA Projected area cm2

PP GRPP ACPP Projected perimeter cm

CA GRCA ACCA Convex hull area cm2

CP GRCP ACCP Convex hull perimeter cm

AXL GRAXL ACAXL Long axis length of OBB
(OBB, the oriented
bounding box)

cm

AXS GRAXS ACAXS Short axis length of OBB cm

PAR GRPAR ACPAR PA/CCA (CCA,
Circumscribed area)

/

CAR GRCAR ACCAR PA/CA /

Color Descriptors R GRR ACR Mean red [0,255]

G GRG ACG Mean Green [0,255]

B GRB ACB Mean Blue [0,255]

H GRH ACH Mean Hue [0,255]

S GRS ACS Mean Saturation [0,255]

V GRV ACV Mean Value [0,255]

ExG GRExG ACExG Normalize 2G-R-B
(Woebbecke et al., 1995)

[0,1]
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respectively, where the unit is day; GRSI and ACSI represent the
growth rate and cumulative traits of static traits (SI), respectively.

RESULTS

Training the Detection Model
To obtain a high-accuracy detection model, we collected different
types of images from several imaging devices to establish pot
annotation datasets. These images were captured by industrial
cameras, digital cameras (Canon77D), and the Kinect2 sensor,
which yielded image of 2016 × 2016, 6000 × 4000, and
1920 × 1080 pixels, respectively. A total of 236 images covered
different lighting conditions and imaging heights. Multiple types
and sizes of images are helpful to improve the robustness and
adaptability of detection models. It should be noted that these
images were mainly collected within 30 days after initial lettuce
cultivation. We only focused on a single category of object (i.e.,
pots) in the images, so we thus developed a simple interactive
box-selection tool to extract pots from each image and then
stored data from each pot in the a corresponding TXT file as
five parameters, i.e., category, relative coordinates (i.e., x, y), and
size (i.e., width, height). As a result, a total of 7,204 pots of
different sizes were labeled manually from these images. Then,
the source images and their annotation results were rotated at the
same time to expand the number of images three-fold. Finally,
2/3 of images were randomly selected to construct the training
dataset, and the remaining images were used as the test dataset.
In order to reduce the risk of over-fitting, image operations, such
as random scaling and clipping, image exposure, and saturation,
were used when the model was loaded into the training model
(Barth et al., 2019). A weight model (darknet53) obtained from
ImageNet data was used to initialize model training. The basic
parameters were set as follows: batch size was 64; the optimizer

was Adam; the initial learning rate was 0.001, which was reduced
to 0.1 times that of the previous learning rate at 5000 and 8000
iterations, respectively. After 10,000 iterations of model training,
the model training loss curve shown in Figure 4A was generated.
Through the training and testing, the mean average precision of
the average accuracy (mAP@0.50) of this model reached 99.82%,
and the recognition accuracy, recall rate, and average intersection
over union (IOU) were 96.8, 90.64, and 87.13%, respectively.
Figure 4B shows the detection and post-processing results of
the images with sizes of 2016 × 2016, and the model detection
efficiency reached 0.2 s. The pot diameters detected from the same
image were not completely consistent, which is mainly related to
the position distortion and annotation tolerance for pots in the
training set. The average diameter and pixel size of the pots had
an error of less than 3%.

Training Semantic Segmentation Model
To train a high-robustness semantic segmentation model, we
collected 5913 pot images from different growth points and
lettuce varieties and established a pot dataset. We developed
an interactive contour-editing tool to ensure that the lettuce (if
any) in the pot image would be accurately extracted, and we
then stored these contours in the corresponding mask image.
Thus, pot images and their corresponding mask images together
comprised an image dataset for semantic segmentation. Further,
this dataset was divided into training, verification, and test
datasets, containing 3548, 1183, and 1182, images respectively.
The parameter configuration of the semantic segmentation
model was as follows: the activation function was SIGMOID;
batch size was 12, to maximize GPU storage; epochs numbered
100; the optimizer was Adam; the learning rate (LR) was set as
5× 10−5. The loss function of the model combined DICE and
Binary Focal Loss (Lin et al., 2020), and IOU was used to evaluate

FIGURE 4 | Training detection model. (A) Loss curve. (B) Detected pots and their sizes in the input image.
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the segmentation performance. The Inceptionresnetv2 network
(Szegedy et al., 2017) was used to extract features.

Image augmentation techniques, such as random flipping,
rotation, scaling, perspective, blurring, sharpening, contrast, and
brightness adjustment, were also used to generate the dataset
(Buslaev et al., 2020) to improve the data generalization. The
model was trained 100 times, and the IOU score and loss curves
of the model are shown in Figures 5A,B. The loss rate, IOU
score, and F1 score of the model on the training set are shown in
Table 2. The loss rate was about 3%, the average accuracy (IOU,
mAP) was over 95%, and the average F1 score (the harmonic
average of precision and recall) was over 97%. The test dataset
included 1,182 images of different lettuce varieties at different
growth points, with a total processing time of about 76 s, or
approximately 64 ms per plant. Three types of original images at

different growth points (S1, S2, and S3), labeled images (GT), and
prediction images (PR) were utilized to evaluate the segmentation
accuracy, as shown in Figure 5C. The visual comparison between
the artificial annotation and the model prediction images shows
that the main plant structures could be extracted, and the main
differences occurred owing to the presence of slender stems, leaf
edges, and internal pores.

Evaluating Static Traits
Different lettuce varieties have different geometric and color
traits. In this paper, 2036 images of pots (including 36 pots from
other experiments) were obtained on the same day to analyze the
correlation between 15 geometry and color traits of lettuce. The
correlation coefficients between phenotypic traits of lettuces are
shown in Table 3, with most traits showing extremely significant

FIGURE 5 | Evaluation results of the semantic segmentation model. (A) IOU score, (B) Loss curve, (C) Segmentation results of lettuce plants in the test dataset at
different growth points (S1, S2, and S3 respectively correspond to three growth points; GT refers to the manual annotation image in the test dataset; PR refers to
prediction results of semantic segmentation).
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TABLE 2 | Performance of semantic segmentation model on training, verification,
and test datasets.

Dataset type Number Loss Average IOU Average F1

Training set 3548 0.0269 0.9610 0.9800

Validation set 1183 0.0304 0.9557 0.9768

Test set 1182 0.0311 0.9549 0.9765

positive correlations between each other (P < 0.01), but the
correlation coefficients between geometric and color traits were
less than 0.5, indicating that the geometric and color traits of
lettuce differed in how they described the growth and appearance
of lettuce. In addition, there were some traits that were highly
correlated, indicating that the descriptive properties of these
traits were very similar and only reflected slight differences.
Among them, the correlation coefficients between the six traits
characterized by length (cm) and area (cm2) (i.e., PA, PP, CA,
CP, AXL, and AXS) exceeded 0.72 (among these, the correlation
coefficients between CA and CP reached 0.971). From the
perspective of feature engineering, these traits indeed revealed the
complex geometrical properties from different perspectives and
may partially reflect the morphological and structural differences
among lettuce varieties. The correlation coefficients between the
three channels of RGB image were more than 0.88, and the
correlation coefficient between the V-value representing image
brightness and the RGB channel was also more than 0.89,
indicating that these color indexes might be affected by light
intensity. The H channel representing hue showed a significant
negative correlation with other color traits to different degrees,
which might indicate that value increases of other color channels
could lead to decreased hue values within a certain range. ExG
is a common color index used to characterize green plants. The
effect of green (G) was enhanced by combining RGB channels,
and the correlation coefficient with brightness (V) was slightly
reduced to 0.85.

Further, hierarchical cluster analysis was conducted on
the static traits of lettuce plants. The within-groups linkage
cluster method was used to calculate the squared Euclidean
distance of static traits measured from the 2036 lettuce images.
When the Euclidean distance was 7, static traits could be
divided into five categories, as shown in Figure 6. Therein,
two color traits, i.e., S and H, were clustered into two
individual categories, while the other five color traits were
closely related and clustered into one category. For geometric
traits, PAR and CAR were dimensionless values representing
area proportions of lettuce plants. Other geometric traits with
physical dimensions could be classified into the same class. Once
the Euclidean distance was 19, all traits were clustered into
two categories, but the meaning of each category is not clear
or explanatory. Thus, we subsequently performed a principal
component analysis (PCA).

Static traits of lettuce plants were standardized and then used
for principal component analysis. Eigenvalues greater than 1
were used as a standard for extraction of principal components,
and the results are shown in Table 4. The eigenvalues of the
first three principal components were greater than 2.22, and
the cumulative contribution rate was 84.099%. This indicates
the three principal components adequately reflect the basic
features of 15 traits. The cumulative contribution rate of the
first six principal components reached 96.837%, indicating that
the six principal components sufficiently represent all static
traits. The contribution rate of the first principal component
was the largest, at 38.168%. All the feature vectors representing
the length and area were positive and above 0.81, indicating
that the geometric structure was still the most direct apparent
representation of lettuce, that is, the projected area and size
of lettuce plants could best reflect the growth patterns of
lettuce plants. The contribution rate of the second principal
component was 31.076%, and color traits dominated large
feature vector values, among which R, G, V, and ExG feature
vectors were all positive and higher than 0.79, indicating

TABLE 3 | Correlation coefficients between static traits of lettuce.

PA PP CA CP AXL AXS PAR CAR R G B H S V ExG

PA 1

PP 0.743** 1

CA 0.897** 0.918** 1

CP 0.857** 0.920** 0.971** 1

AXL 0.760** 0.844** 0.873** 0.930** 1

AXS 0.841** 0.855** 0.925** 0.913** 0.724** 1

PAR 0.337** −0.159** 0.004 −0.093** −0.227** 0.096** 1

CAR 0.229** −0.348** −0.169** −0.213** −0.220** −0.140** 0.849** 1

R 0.095** 0.032 0.054* 0.072** 0.068** 0.061** 0.114** 0.154** 1

G 0.206** 0.097** 0.142** 0.165** 0.150** 0.154** 0.171** 0.212** 0.965** 1

B 0.103** 0.124** 0.112** 0.146** 0.160** 0.107** −0.006 0.031 0.884** 0.888** 1

H 0.217** 0.234** 0.230** 0.276** 0.259** 0.258** 0.042 0.035 −0.425** −0.229** −0.125** 1

S 0.246** −0.006 0.099** 0.108** 0.055* 0.148** 0.407** 0.445** 0.344** 0.402** −0.023 −0.145** 1

V 0.199** 0.095** 0.139** 0.162** 0.147** 0.150** 0.165** 0.205** 0.972** 0.999** 0.891** −0.251** 0.397** 1

ExG 0.082** −0.003 0.019 0.022 0.011 0.032 0.141** 0.155** 0.855** 0.855** 0.755** −0.334** 0.273** 0.853** 1

**Correlation is significant at the 0.01 level (two-tailed); *Correlation is significant at the 0.05 level (two-tailed).
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FIGURE 6 | Hierarchical cluster analysis of static traits in lettuce.

TABLE 4 | Principal component analysis of lettuce traits.

Phenotypic traits Component

1 2 3 4 5 6

PA 0.840 −0.281 0.382 −0.013 −0.169 −0.094

PP 0.821 −0.462 −0.149 −0.052 −0.043 0.092

CA 0.885 −0.430 0.040 −0.066 −0.087 0.025

CP 0.895 −0.428 −0.029 −0.038 0.025 −0.044

AXL 0.818 −0.406 −0.125 −0.017 0.092 −0.348

AXS 0.844 −0.387 0.107 −0.041 −0.068 0.286

PAR 0.075 0.270 0.886 0.118 −0.258 0.163

CAR −0.033 0.377 0.861 0.156 −0.100 −0.248

R 0.479 0.850 −0.171 −0.050 −0.015 −0.016

G 0.568 0.803 −0.080 0.076 0.103 0.004

B 0.499 0.695 −0.334 0.350 −0.096 −0.039

H 0.115 −0.469 0.191 0.736 0.422 0.085

S 0.269 0.341 0.541 −0.475 0.537 0.047

V 0.565 0.807 −0.091 0.061 0.089 −0.001

ExG 0.409 0.796 −0.137 0.014 −0.045 0.111

Eigenvalue 5.725 4.661 2.228 0.951 0.625 0.334

Variance contribution rate (%) 38.168 31.076 14.855 6.340 4.168 2.229

Cumulative contribution rate (%) 38.168 69.244 84.099 90.439 94.607 96.837

Extraction Method: principal component analysis. a. 6 components extracted.
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that color most differentiated the lettuce plants according
to their traits.

Evaluating Dynamic Traits
The growth rate and change in color of lettuce directly reflects the
growth and appearance of each plant, which is important in the
evaluation and identification of lettuce and of great significance to
both breeding and production efforts. In this paper, eight image
datasets were collected at 4–5 day intervals during the vegetative
growth period (34 days). Based on the image sequence of lettuce

plants at each growth point, 15 static characteristics of each plant
of each variety were extracted. Then, the variation curves of these
static traits (over days) were synthesized in accordance with the
time order. Three kinds of lettuce plants with different growth
rates and different colors were used to evaluate the growth and
accumulation rates of lettuce plants.

Figure 7 shows the top-view image sequence of three lettuce
varieties, and the changing curves of the 15 static traits in a 34-day
period. We used growth and accumulation rates to quantify these
curves. Tables 5, 6 list the dynamic traits of three lettuce varieties

FIGURE 7 | Top-view image sequence and dynamic traits of three lettuce varieties. For the three varieties, 15 static traits were collected from each plant, with
corresponding line charts showing the changes in these traits over a 34-day period, and dynamic traits (GR-, AC-) were used to quantify these changes.
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TABLE 5 | Geometry-related dynamic traits of lettuce plants.

PA (cm2) PP (cm) CA (cm2) CP (cm) PAR CAR AXL (cm) AXS (cm)

GR- AC- GR- AC- GR- AC- GR- AC- GR- AC- GR- AC- GR- AC- GR- AC-

L1048 22.63 310.02 2.33 88.32 22.70 356.13 2.30 62.45 0.02 0.62 0.01 0.81 0.69 20.29 22.63 310.02

L454 21.85 452.27 1.67 114.91 21.13 523.03 1.90 80.78 0.02 0.65 0.01 0.79 0.57 25.74 21.85 452.27

N648 19.26 388.88 1.93 110.60 19.94 471.48 1.81 76.82 0.02 0.61 0.01 0.77 0.46 23.84 19.26 388.88

Ranks 18 29 15.67 26.67 18.33 30 15.33 23.33 2.33 8.67 1.33 11.67 10.33 19.33 18 29

TABLE 6 | Color-related dynamic traits of lettuce plants.

R G B H S V ExG

GR- AC- GR- AC- GR- AC- GR- AC- GR- AC- GR- AC- GR- AC-

L1048 0.65 81 0.88 84 0.18 51 0.12 32 1.08 100 0.87 85 0.03 0.07

L454 0.33 66 0.57 89 0.12 54 −0.03 49 0.81 99 0.56 89 0.02 0.17

N648 0.80 90 1.22 112 0.32 58 0.05 42 0.74 121 1.22 112 0.03 0.56

Ranks 9 23.67 12 25.33 5.33 22 3.33 21 12.67 27.67 11 26.33 3.33 5.67

according to geometry and color, respectively. Non-parametric
tests were performed on the three lettuce samples to evaluate the
sample differences. The mean ranks of the geometric traits of
varieties L1048, L454, and N648 significantly differed and were
2.06, 2.38, and 1.56, respectively (P = 0.046, χ2 = 6.143). The
mean ranks of the color trait also significantly differed and were
1.82, 1.50, and 2.68, respectively (P = 0.005, χ2 = 10.582). The
chi-square coefficient of the color traits was larger than that of
the geometric traits, indicating that color was more differentiated
than geometry among the lettuce varieties. Non-parametric tests
were also conducted on the geometric and color traits to evaluate
the trait differences. The mean ranks obtained are also shown in
Tables 5, 6, which show that the ranks of the accumulation rates
of lettuce were greater than those of the growth rates, that is,
the accumulation rate of lettuce was more strongly differentiated,
with ACPP rank being the most differentiated.

The projected area (PA) represents the coverage or spreading
area of the lettuce from the top-view, and it is the most commonly
used trait to characterize digital biomass. The growth rates of
L1048, L454, and N648 varieties were observed to gradually
increase, but the accumulation rates differed in the way they
changed. In the lettuce seedling stage, the growth rate of L1048
was slow, but accelerated after 17 days, reaching the maximum
GRPA at 34 days, and because of the lag in its accelerated
growth time, its ACPA was lowest among the three varieties.
Similar trends were also found among geometry-related traits,
including PP, CA, CP, AXL, and AXS. Moreover, the dynamic PP
and CP that described the contour of the lettuce provide richer
information, not only reflecting differences in the projected area
of the lettuce, but also representing the complexity of lettuce
boundaries (i.e., leaf margins) to some extent. On the whole,
all the growth rates related to area and size for L2018 were the
highest, while its accumulation rate was the lowest, which might
indicate that growth rate was sensitive to the initial state, while
the accumulation rate was not. This pattern revealed that the
time point at which the varieties started accelerated growth, was
negatively associated with the accumulation rate. For L454, the
rapid growth of lettuce leaves in the pot region maximized the

accumulation rate of all traits related to area and size, indicating
that the accumulation rate more accurately reflected the growth
status of plants in each pot region. Generally, PAR and CAR
described the degree to which the plant canopy filled the pot
region, and they gradually increased with time.

The color-related dynamic traits of three lettuce varieties are
listed in Table 6. The cumulative rate of color change reflected the
average color characteristics of the plants throughout the growth
period, but the R, G, and B channels of the plants need to be
combined to reflect their true colors. For the lettuce varieties
L1048 and L454, which have no obvious visual differences, their
ACG, ACB, ACS, and ACV values were quite close, indicating that
the color differences in G, B, S, and V channels were slight. ACH
better described the difference between green and non-green
plants. For the dark green L454 and light green N648 varieties,
ACG and ACR became effective green difference descriptors. In
the comparison of the three colors of lettuce, ACExG always
exhibited a strong color differentiation, so the introduction
of more color or vegetation indices, such as NGRDI (Hunt
et al., 2005), RGRI (Gamon and Surfus, 1999), NDVI (Rouse
et al., 1974), DVI (Jordan, 1969), etc., might enhance the color
representation of lettuce varieties with different and rich colors.

Verification of Lettuce Traits
The in situ measurement and evaluation of lettuce traits is
labor-intensive and highly subjective, especially for geometric
and color trait measurement. More importantly, a large number
of traits with variable characteristics are difficult to measure
manually. In this work, a series of geometric and color traits
of lettuce were extracted from top-view images. To verify
the measurement accuracy of the phenotype platform, 497
lettuce plants were collected for an individual trial for artificial
geometrical measurement and color grading. The canopy width
(CW) of lettuce was defined as the longest distance of leaf
expansion, which was selected as the manual measurement index
owing to its simplicity and consistency. Moreover, the main color
of lettuce plants in this particular experiment green, though some
purple and red-purple coloration also occurred. Limited by the
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human eye’s color resolution, we roughly divided the colors of
lettuce into light green, dark green, and purple categories.

Based on collected lettuce images, we interactively measured
the canopy width of each lettuce plant from the pot image, as
shown in Figure 8A. Correlation analysis between canopy width
and all static traits of lettuce showed correlation coefficients
between CW and color traits of less than 0.18 (Figure 8B).
For geometric traits, CW was negatively correlated with PAR
(−0.41) and CAR (−0.38), but there were positive correlation
coefficients with the other geometric traits (more than 0.72).
The two highest correlation coefficients were those for CW
with CP and AXL (both about 0.94). As the definition and
measurement of CW are highly consistent with AXL, we
calculated the coefficient of determination (R2) between CW
and AXL, as shown in Figure 8C. Both manual in situ and
interactive measurements depend on the experience of the
experimenter, thus leading to subjective results. Comparatively
speaking, image-based phenotyping can provide more objective,
stable, and consistent geometric measurements. Additionally,
many important geometric traits, such as projected area (CA) and
canopy contour, are almost impossible to measure manually.

Lettuce color, which is regulated by multiple loci, shows
dynamic variation during lettuce growth and development,
which makes its genetic analysis extremely complex (Su et al.,
2020). The accurate quantification and classification of lettuce
color is important in studying the genetic and molecular
mechanism of leaf color and its components (i.e., anthocyanins)
for lettuce breeders. In general, lettuce color can only be roughly
classified by visual observation, such as into light green, dark
green, red, and other color types. Thus, it is hard to accurately
describe and quantify color variation for many lettuce varieties.
In this work, the color of 497 lettuce varieties was investigated
and graded manually into three categories: light green (0), dark
green (1), and purple (2). For all lettuce samples, an artificial
color grading index was used as the category, and color traits
of lettuce were used to generate the feature vector. Then, the
k-nearest neighbors (kNN) algorithm was utilized to calculate the
average classification accuracy, which indicated the consistency
between the color traits extracted from the image and artificial
color grading indices. For the seven color traits (Table 1), we
constructed 10 different feature vector combinations for kNN

training, which were R, G, B, H, S, V, ExG, (R,G,B), (H,S,V),
and color traits (comprising seven traits). In each kNN train
process, lettuce samples were first divided into four groups,
and each group was further divided into training and test sets.
The kNN model was trained based on each feature vector
combination, and the average classification accuracy of the kNN
classifier was calculated based on four-fold cross-validation.
Finally, the average classification accuracy of 10 kNN models
were collected and the results are shown in Figure 9A. Among
the 10 feature vector combinations, the combination of H, S,
and V reached the highest classification accuracy of 86.78%, and
color traits (a combination of the seven color traits) had a slightly
lower classification accuracy of 85.18%. For feature vectors that
only contained one color trait, G had the highest classification
accuracy of 85.57%, and S had the lowest classification accuracy
of 65.52%. Notably, the classification accuracy of H was only
70.75%. The above results indicate that the color traits have a
high consistency with artificial color grading indices, and the
classification error of kNN is likely owing to the subjectivity and
uncertainty of artificial color grading.

We further calculated the value range of each color trait for all
lettuce varieties and then sorted the lettuce varieties according
to each trait value to obtain a color grading chart (CGC) for
the assessed lettuce varieties. CGC defines a vertical color bar
(VCB) that indicates color trait variation of the sorted lettuce
varieties; thus, each height position in a VCB represents the
corresponding lettuce variety and its trait value. Figures 9B,C
show the corresponding color grading charts (CGCs) based on G
and H respectively. We divided each VCB into five equal height
intervals and marked the representative lettuce varieties and trait
values at each interval point. The value ranges of different color
traits were quite different, e.g., the value range of G was from
49.62 to 147.63, which was significantly greater than that of
H from 24.36 to 52.61. Based on the CGC of G and H, the
images of representative lettuces with different color grading
indices are shown in Figure 9D. Although lettuce varieties were
differentiated according to color grading based on G and H, the
continuous trend in lettuce color was visually obvious. Artificial
color grading indices (light green, dark green, and red) could
also be visually observed between certain small intervals in
CVB, but color identification in other intervals was ambiguous

FIGURE 8 | Canopy width (CW) as assessed by interactive measurement and correlation analysis with static traits of lettuce plants. (A) CW as assessed by
interactive measurement. (B) Correlation between canopy width and static traits of lettuce. (C) Linear fit of canopy width and long axis length (AXL).
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FIGURE 9 | Color grading of lettuce varieties. (A) The average classification accuracy of 10 kinds of feature vector combinations based on the kNN algorithm.
(B) Color grading chart of lettuce varieties based on the color trait G. (C) Color grading chart of lettuce varieties based on the color trait H. (D) Sorted lettuce
varieties with different color grades quantified by G and H, respectively.

for many lettuce varieties. Image-based color grading provided
a more consistent and reliable basis for color quantification,
and the CGC graphs were helpful for identify trait differences
among all varieties.

Compared with manual investigation, morphological
measurement and color grading based on the present
phenotyping platform improved the efficiency and accuracy
of the phenotype investigation for large-scale lettuce cultivation.
More importantly, this method can be used to automatically
measure multiple time points of lettuce cultivation, so as to assess
dynamic variation among all kinds of traits. Thus, this research
lays a foundation for identifying and mapping genes related to
geometry and color from lettuce germplasms.

DISCUSSION

In this plant high-throughput phenotyping study, stable and
high-frame-rate image acquisition by industrial cameras was
the most efficient and economical method for phenotyping and
analysis. To describe the dynamic changes in traits for large
numbers of plants during the growth period, thousands of images
collected in batches need to be processed; thus, automated
and efficient image processing and trait extraction is a great
challenge. In this research, a high-throughput greenhouse-based
phenotyping platform was used to collect top-view images during

the vegetative growth period for hundreds of lettuce varieties,
and an image analysis method was developed to automate the
extraction of static and dynamic traits of these lettuce varieties.

We designed multistage CNN models to perform object
detection and semantic segmentation of lettuce plants and
then made a pipeline to process the image sequence into
plant phenotypes. This scheme could improve the robustness
and flexibility of lettuce phenotyping systems. An efficient pot
detection model was trained to locate plants from the image
sequence, with a detection accuracy reaching 99.8% and a
measurement error of pot size of less than 3%. The pots detected
from the image sequence were matched to the corresponding
plants. A high-precision semantic segmentation model was also
used to analyze the growth sequence of each lettuce plant, which
accurately segmented lettuce of different varieties throughout
their vegetative growth stages. The F1 scores in the training,
verification, and test sets were each over 97%. The high detection
and segmentation accuracy may be related to the relatively simple
greenhouse setting and the relatively low background noise in the
annotated dataset.

Data collected at eight time points were used to investigate
dynamic traits, including the growth and accumulation rates
of lettuce varieties. Mean rank of the accumulation rate was
higher than one of the corresponding growth rate and thus more
appropriately represented trends in dynamic variation of various
static traits. Notably, the present study only calculated the various
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traits of lettuce plants within the perimeter of each pot, and
because of overlap among adjacent lettuce plants at later growth
stages, it was difficult to completely separate each individual
lettuce from the later top-view images. Therefore, we limited
the “phenotyping region” to the area within each pot for two
reasons. First, the pot region provided a standard threshold for
assessing the time at which lettuce plants grew to the boundaries
of pots. Thus, the data before this growth point could be used to
quantify growth rates of lettuce plants, while the data collected
after this growth point could still be used to quantify other
dynamic traits (such as color changes etc.) over longer growth
time periods. Second, the fixed pot region is helpful in evaluating
dynamic growth of lettuce plants under the same criteria, and
it reduces ambiguities in the automated phenotyping analysis
pipeline. From the perspective of methodology, the “phenotyping
region” can also be redefined according to the specific purposes
of applications. To enable more accurate monitoring of lettuce
growth, it is better to reduce the flowerpot density to eliminate
interactions between adjacent plants. However, this inevitably
decreases the detection flux and efficiency.

A large number of traits can be extracted from plant images,
and various novel indicators can also be determined from
different dimensions. However, the interpretability of traits still
needs to be explored in depth, specifically in terms of how
these traits describe the detailed static and dynamic features
of plants. In this work, we quantified the static and dynamic
traits (i.e., growth and accumulation) from top-view images
of lettuce plants. To eliminate overlap between adjacent plants
at the later stage of vegetative growth of lettuce and unify
the standards for dynamic phenotyping and quantification,
the growth status of lettuce was continuously and stably
detected and evaluated only within the circular regions of
pots. Fifteen static traits were used to describe the geometry
and color status of each lettuce at specific growth points.
The correlation, cluster, and principal component analyses of
the 2036 lettuce plants showed that the geometry and color
traits of lettuce differed, and their correlation coefficients
with each other were less than 0.5. Meanwhile, within the
same types of traits, there were some pairs of traits with
extremely high correlation coefficients. It is necessary to
combine these similar traits to describe much less obvious
features of plants.

To verify the reliability of this phenotyping platform, we
evaluated the geometric and color traits of 497 lettuce varieties,
respectively. Canopy width (CW) of lettuce plants was chosen
as a geometric indicator for manual human measurements,
and correlation analysis results showed a significant correlation
between CW and PA, PP, CA, CP, AXL, and AXS traits. The
coefficient of determination (R2) between CW and AXL was
0.88. In addition, we performed artificial color grading and
classified all lettuce varieties into three categories: light green,
dark green, and red. The kNN algorithm was used to calculate
the average classification accuracy, and the feature vector
combination of H, S, and V reached the highest classification
accuracy of 86.78%. Further, the color grading charts (CGC)
of lettuce varieties demonstrated more stable and consistent
color quantification and classification abilities. The above results
demonstrate the reliability of the phenotyping platform in

measuring geometric traits and grading color differences for
large-scale lettuce cultivation.

Image-based high-throughput phenotyping can be more
objective and reliable, especially for continuous traits, and these
static and dynamic traits provide a basis for further refining
the design of trait indicators of lettuce based on images, and
more geometric and color traits could be designed from different
perspectives to improve the ability of the system for phenotyping
plants. Moreover, the presented method also has reference values
for other optical imaging technologies, such as multispectral and
thermal infrared imaging. Multiple sensors can be integrated
to investigate lettuce traits across more dimensions, especially
for physiological and water stress traits of lettuce plants. These
technologies have substantial potential to discover new traits that
breeders cannot assess via traditional methods, and the resulting
static and dynamic traits could be employed in genome-wide
association studies (GWAS) of these lettuce varieties.

CONCLUSION

In this paper we proposed an automated phenotyping pipeline
for the non-destructive, high-throughput detection and
phenotyping of lettuce varieties in a greenhouse environment.
We developed multistage CNN models for pot detection
and plant segmentation. The pot detection and semantic
segmentation models achieved satisfactory analysis results in
terms of efficiency and accuracy, which was used to integrate
image sequence capture with plant phenotyping in a single
pipeline. We have investigated the static and dynamic traits of
lettuce plants and interpreted the relationship between static and
dynamic traits, using both geometry- and color-related traits.
These traits were useful descriptors of the digital biomass and
quantity of these lettuce varieties. To the best of our knowledge,
this is the first work to study the accumulation rates of static
straits, which more accurately reflect the dynamic growth of
plants. Finally, we evaluated and validated the application
of high-throughput phenotyping platforms in geometry
measurement and color grading of large-scale lettuce cultivation.
The proposed method is not only suitable for vegetables in
greenhouses, but could also be extended to crops such as maize,
wheat, and soybean.
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