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Resource Center, Department of Plant Pathology, Kansas State University, Manhattan, KS, United States

Genomic breeding technologies offer new opportunities for grain yield (GY) improvement
in common wheat. In this study, we have evaluated the potential of genomic selection (GS)
in breeding for GY in wheat by modeling a large dataset of 48,562 GY observations from
the International Maize and Wheat Improvement Center (CIMMYT), including 36 yield trials
evaluated between 2012 and 2019 in Obregón, Sonora, Mexico. Our key objective was to
determine the value that GS can add to the current three-stage yield testing strategy at
CIMMYT, and we draw inferences from predictive modeling of GY using 420 different
populations, environments, cycles, and model combinations. First, we evaluated the
potential of genomic predictions for minimizing the number of replications and lines tested
within a site and year and obtained mean prediction accuracies (PAs) of 0.56, 0.5, and
0.42 in Stages 1, 2, and 3 of yield testing, respectively. However, these PAs were similar to
the mean pedigree-based PAs indicating that genomic relationships added no value to
pedigree relationships in the yield testing stages, characterized by small family-sizes.
Second, we evaluated genomic predictions for minimizing GY testing across stages/years
in Obregón and observed mean PAs of 0.41, 0.31, and 0.37, respectively when GY in the
full irrigation bed planting (FI BP), drought stress (DS), and late-sown heat stress
environments were predicted across years using genotype × environment (G × E)
interaction models. Third, we evaluated genomic predictions for minimizing the number
of yield testing environments and observed that in Stage 2, the FI BP, full irrigation flat
planting and early-sown heat stress environments (mean PA of 0.37 ± 0.12) and the
reduced irrigation and DS environments (mean PA of 0.45 ± 0.07) had moderate
predictabilities among them. However, in both predictions across years and
environments, the PAs were inconsistent across years and the G × E models had no
advantage over the baseline model with environment and line effects. Overall, our results
provide excellent insights into the predictability of a quantitative trait like GY and will have
important implications on the future design of GS for GY in wheat breeding
programs globally.
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INTRODUCTION

Global wheat yields are becoming increasingly vulnerable to the
threats posed by changing climates, unpredictable temperatures,
reduced precipitation, and adverse agro-climatic events (Trethowan
et al., 2002; Trnka et al., 2014; Tack et al., 2015; Zampieri et al., 2017;
Hatfield and Dold, 2018). Recognizing the exacerbating effects of
climate change on food security (Wheeler and von Braun, 2013) and
the tremendous variabilities in yield affecting abiotic and biotic
stresses in farmer’s fields over years, the Global Wheat Program at
the International Maize and Wheat Improvement Center
(CIMMYT) prioritizes breeding for high-yielding climate-resilient
wheat lines that have stable grain yield (GY) across a range of
environmental conditions (Braun et al., 1992). All the advanced
wheat breeding lines at CIMMYT are subjected to extensive three-
stage or three-year multi-environment GY testing in a set of
managed selection-environments (SEs, optimum, heat and
drought stressed environments) at CIMMYT’s primary yield
testing site, the Norman E. Borlaug Experimental Research
Station, Ciudad Obregón, Sonora, Mexico (27°29′N, 109°56′W).
These multi-environment trials facilitate stability assessment of the
lines and also help minimize the adverse effects of genotype ×
environment (G × E) interactions on the progress made from
selection (Cooper et al., 1995). However, given the expensive and
time-consuming nature of the multi-environment trials, there is a
clear need to integrate genomic technologies that can accelerate
breeding for GY in wheat.

Genomic selection (GS), a genomics-based selection strategy
in which the genomic-estimated breeding values obtained from
genome-wide molecular markers are used for the selection of
individuals (Meuwissen et al., 2001) has gained burgeoning
interest in recent years and is advocated as an approach that
can dramatically accelerate genetic gains and change the role of
phenotyping in breeding (Heffner et al., 2009; Voss-Fels et al.,
2019). While GS for GY in wheat has been evaluated in several
studies (Zhao et al., 2013; Charmet et al., 2014; Juliana et al.,
2018b; Juliana et al., 2018a; Juliana et al., 2019; Lozada et al.,
2019) and models incorporating G × E effects have been reported
to increase GY prediction accuracies (PAs) (Crossa et al., 2006;
Burgueño et al., 2012; Heslot et al., 2013; Jarquıń et al., 2014;
Pérez-Rodrıǵuez et al., 2017), a comprehensive evaluation of GY
predictions in different stages of yield testing, comparison of
genomic PAs with baseline PAs to understand the value of using
GS, and a quantitative genetic assessment of GY that can provide
insights into genomic PAs are lacking. Hence, we designed this
study to determine the value that GS can add to the current
three-stage yield testing strategy at CIMMYT, evaluate several
GS implementation scenarios for GY that are of importance to
wheat breeding programs globally and also explore the prospects
of using GS to minimize the number of lines, years, and
environments tested by borrowing information from relatives,
correlated years and sites.

A large number of GY evaluation datasets at CIMMYT were
leveraged for predictive modeling of 48,562 GY observations
from 36 yield trials grown between 2012 and 2019 in Obregón,
and the key objectives of this study were to (i) evaluate the
potential of genomic predictions for minimizing the number of
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replications and lines tested within a site and year for GY and
compare genomic PAs to baseline PAs from the pedigree
predictions to understand the relative advantage of genomic
relationships over pedigree relationships, (ii) evaluate genomic
prediction for GY in full-sib families, understand the relationship
between the differences in GY among the full-sibs and the genomic
relationships among full-sibs and test the hypothesis if closely
related full-sibs had small differences in GY and vice versa, (iii)
evaluate genomic predictions for minimizing GY testing across
stages/years in Obregón using a model with the year, genomic and
genotype × year interaction effects (G × Emodel, where ‘E’ refers to
the year) and compare it to a baseline model with only the
environment/year and line effects (EL model, where ‘E’ refers to
the year), (iv) evaluate genomic predictions for minimizing GY
testing in the simulated environments of Obregón (the optimally
irrigated, heat and drought stressed environments) using the G × E
model and compare the PAs to the PAs from an EL model (‘E’ in
both the models refers to the simulated environments), and (v)
understand GY predictabilities in relation to quantitative genetic
parameters like GY variance components, heritabilities, and
phenotypic and genetic correlations across environments.
MATERIALS AND METHODS

Populations, Phenotyping Environments
and Best Linear Unbiased Estimates for
Grain Yield
We used the following three stages of wheat yield trials from
CIMMYT that were evaluated for GY (harvested grain weight
calculated on a plot-basis) at Ciudad Obregón as follows:

1) Stage 1 of yield testing or preliminary yield trials: These trials
comprised >6,400 in each cycle, that were developed using the
selected bulk breeding scheme and were selected visually in
earlier generations for agronomic type, phenology, leaf rust, stem
rust, stripe rust, fertility, tillering capacity, grain size, and grain
health. These lines were evaluated for GY during four crop cycles
from 2012–2013 to 2015–2016. Yield potential testing was done
in the full irrigation bed planting environment (S1 FI BP), where
the lines were grown in two replications on raised beds in an
alpha-lattice design during the optimum planting time (third
week of November–first week of December) and irrigated
optimally with a total of 500 mm water in five irrigations.

2) Stage 2 of yield testing or elite yield trials: These trials
comprised lines that were selected from Stage 1 trials for high
GY, acceptable agronomic type, heading and maturity, good
resistance to rusts, and acceptable to good end-use quality.
About 1,092 lines in each cycle were sown in an alpha-lattice
design in trials each comprising 28 lines and two high-yielding
check varieties in six blocks, during four crop cycles from 2013–
2014 to 2016–2017. Yield testing was done in three replications
under six managed environments in Obregón that included:

(i) Full irrigation Bed planting (S2 FI BP)—The lines were
planted on raised beds during the optimum time in an
optimally irrigated environment that received a total of
about 500 mm of water in five irrigations.
September 2020 | Volume 11 | Article 564183
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(i) Full irrigation Flat planting (S2 FI FP)—The lines were
planted in flat seed beds during the optimum time in an
optimally irrigated environment that received a total of about
500 mm of water in five irrigations.

(i) Reduced irrigation Bed planting (S2 RI)—The lines were
planted in raised beds during the optimum time in a reduced
irrigation environment that received a total of about 250 mm
of water in two irrigations.

(i) Drought stress Flat planting (S2 DS)—The lines were
planted in flat seed beds during the optimum time and grown
with a total of about 180 mm of water provided through drip
irrigation.

(i) Early sown heat stress Bed planting (S2 ESHS)—The lines
were planted in raised beds during mid-October (about 30
days before the optimum planting time) in an optimally
irrigated environment that received a total of about 500
mm of water in five irrigations and evaluated for GY under
high-temperature stress during the juvenile growth stage.

(i) Late sown heat stress Bed planting (S2 LSHS)—The lines
were planted in raised beds during the last week of February
(about 90 days after the optimum planting time) in an
optimally irrigated environment that received about 500
mm of water in five irrigations and evaluated for GY under
high-temperature stress during the heading and grain-filling
stages.

3) Stage 3 of yield testing or advanced elite yield trials: These
trials comprised lines that were selected from the Stage 2 trials
for high GY in different environments, agronomic traits, good
resistance to rusts, and other foliar diseases and end-use
quality. The trial design was similar to that in stage 2 of
yield testing, and about 280 lines in each cycle were evaluated
in three replications during four crop cycles from 2014–2015
to 2017–2018 in Obregón, under three managed environments
that have been described previously: full irrigation bed planting
(S3 FI BP), drought stress flat planting (S3 DS), and the late
sown heat stress bed planting (S3 LSHS) environments.

The best linear unbiased estimates (BLUEs) for GY in each of
the populations, sites, and years were calculated using the
ASREML statistical package (Gilmour, 1997), using the
following mixed model:

yijkl = m + gi + tj + rk jð Þ + bl jkð Þ + eijkl (1)

where yijkl is the observed GY, m is the overall mean, gi is the fixed
effect of the entry, tj is the random effect of the trial that was
independent and identically distributed (IID) (tj eN   (0,  s 2

t )), rk
(j) is the random effect of the replicate within the trial with IID
(rk(j) eN   (0,  s 2

r )), bl(jk) is the random effect of the incomplete
block within the trial and the replicate with IID (bm(jk) eN   (0,  
s 2
b ))and eijkl is the residual with IID (eijkl e  N   (0,  s 2

e )). Huber’s
robust fit outliers method (Huber and Ronchetti, 2009) was used
to remove all outlier values that were more than ‘K’ spreads (K =
4 was used) from the center using the ‘JMP’ statistical software
(www.jmp.com). The phenotyping data for all the lines is
provided in Supplementary Table 1.
Frontiers in Plant Science | www.frontiersin.org 3
Genotyping
The lines used in this study were genotyped using genotyping-
by-sequencing (GBS) described in Poland et al. (2012a). The
TASSEL (Trait Analysis by aSSociation Evolution and Linkage)
version 5 GBS pipeline (Glaubitz et al., 2014) was used to call
marker polymorphisms, aligned to the reference genome (RefSeq
v1.0) assembly of the bread wheat variety Chinese Spring
(IWGSC, 2018). A total of 6,075,743 GBS tags were aligned to
RefSeq v1.0, with an overall alignment rate of 63.98%. A minor
allele frequency of 0.01 was used for single nucleotide
polymorphisms discovery, and the resulting tags were filtered
as described in Juliana et al. (2019), resulting in 78,662 single
nucleotide polymorphisms that passed at least one of these filters.
These markers were further filtered in each of the populations for
missing data less than 60%, minor allele frequency greater than
0.05, and heterozygosity less than 10%, and the lines in each
population were also filtered for less than 50% missing data. The
final number of lines and markers for the different populations
and crop cycles after filtering is given in Table 1. Marker
imputation was done using the LD-kNNi genotype imputation
method (Money et al., 2015) in TASSEL v5 (Bradbury et al.,
2007). The genotyping data for all the 23,526 lines is available in
https://doi.org/10.6084/m9.figshare.12350000.v1.
Statistical Analysis of the Grain Yield Data
The GY BLUEs within each stage, environment, cycle, and
breeding population were used to calculate the coefficient of
variation, interquartile range, mean, median, range, standard
deviation, standard error of the mean and variance.
Genomic Prediction for Grain Yield in a
Subset of Lines Within the Same
Site and Year
For genomic prediction of GY in a subset of lines within the same
site and year, we used 36 datasets comprising different
TABLE 1 | The yield testing stages, cycles, number of lines in each cycle with
non-missing data, and the number of filtered markers that were used for
predictions.

Yield testing stage Number of lines Number of markers

Stage 1
2012–2013 947 lines 6,071 markers
2013–2014 6,408 lines 8,416 markers
2014–2015 7,987 lines 11,982 markers
2015–2016 8,182 lines 11,518 markers
Stage 2
2013–2014 947 lines 6,071 markers
2014–2015 1,012 lines 5,963 markers
2015–2016 1,052 lines 8,402 markers
2016–2017 1,040 lines 8,312 markers
Stage 3
2014–2015 269 lines 6,180 markers
2015–2016 263 lines 5,399 markers
2016–2017 272 lines 6,356 markers
2017–2018 264 lines 5,768 markers
September 2020 | Volum
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populations evaluated in different cycles and divided the
number of lines in each population into ‘k’-folds for k-fold
cross-validations (CV). Cross-validations were performed for
the different populations, as follows: (i) Stage 1 of yield testing
—5,126 to 6,546 lines (fourfolds sampled in 10 independent
repetitions) were used as training sets to predict the remaining
1,282 to 1,636 lines (fifthfold); (ii) Stage 2 of yield testing—758
to 842 lines (fourfolds sampled in 20 independent repetitions)
were used as training sets to predict the remaining 189 to 210
lines (fifthfold); (iii) Stage 3 of yield testing—10 to 218 lines
(fourfolds sampled in 20 independent repetitions) were used as
training sets to predict the remaining 53 to 54 lines (fifthfold).
Genomic predictions were done using the genomic-best linear
unbiased prediction model (Habier et al., 2013) that was fitted
using the ‘R’ package BGLR (Pérez and de los Campos, 2014)
and represented as:

y = m1 + Zgu + e (2)

where y represents the GY BLUEs, m is the mean, u represents the
additive genetic effects, and e is the error term. The joint
distribution of the vector of additive genetic effects u was
assumed to be multivariate normal MN   (0,  Gs 2

g )where G =
ZZ'/p is the genomic relationship matrix calculated using
markers (VanRaden, 2008), Z is the centered and standardized
marker matrix, p is the number of markers and s 2

g is the genetic
variance component and the joint distribution of the error (e)
was assumed to beMN  (0, Is 2

e ) (I is the identity matrix and s 2
e is

the residual variance).
To determine the advantage of using genomic relationships

over pedigree-based relationships for predicting GY, we
substituted the genomic relationship matrix with the pedigree
relationship matrix calculated from the coefficient of parentage.
The PAs from these models and all the models used henceforth
were calculated as the Pearson’s correlations between the
estimated breeding values and the GY BLUEs. We also
obtained the full-sib family sizes in all the populations and
analyzed the GY range, marker based-relationships and the
two-fold cross-validation genomic PAs for 10 big full-sib
families comprising 40 to 65 full-sibs. The GY differences
and the genomic relationships between the full-sibs were
also analyzed.

The relationships between GY predictabilities and the narrow-
sense heritabilities were obtained from the Pearson’s correlations
between them, where the narrow-sense heritabilities for GY within
each population, site, and year were calculated on a line-mean
basis across the replicates using the formula:

h2 =  
s 2
g

s 2
g +   s 2

e
nreps

(3)

where s 2
g is the genetic variance calculated using markers, s 2

e is
the error variance, and nreps is the number of replications. The
average information-restricted maximum likelihood algorithm
(Gilmour et al., 1995) implemented in the ‘R’ package
‘heritability’ (Kruijer et al., 2015) was used to estimate the
genetic and residual variances.
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Genomic Prediction for Minimizing Grain
Yield Testing in Stages/Years Within the
Selection Site
To determine if GS can be used for minimizing stage(s)/year(s)
of GY testing, we used 1,092 lines that were common across
Stages 1 and 2 of yield testing and 280 lines that were common
across all the three stages of yield testing, resulting in 43
population-stage combinations. The G × E model used was
fitted using the BGLR package in ‘R’, and can be represented as:

y = m1 + Zyby + Zgu1 + u2 + e (4)

where y represent the GY BLUEs; m is the general mean; Zy is an
incidence matrix for the stage/year, by is the random effect of the
year assumed to be multivariate normal by eMN(0,  s 2

y I); Zg is
an incidence matrix that connects the lines with the GY
phenotypes; u1 represents the random effect of the lines; u1 is
the G × E interaction, that is assumed to be multivariate normal
u2 eMN(0,s 2

gy(ZgGZ
0
g) (ZyZ

0
y)) where # denotes the Hadamard

product (cell-by-cell) of the two matrices in parentheses (Jarquıń
et al., 2014) and e represents the residuals that are also assumed
to be multivariate normal and distributed as e eMN(0,s 2

e I).The
baseline EL model that includes only the main effects of the
environment/year and the lines can be represented as:

y = m1 +  Zyby + Zlb l +  e (5)

Where y represent the GY BLUEs, m is the general mean, Zy, by
and e represent the same as in Equation 4, Zl is an incidence
matrix for the lines and bl represent the random effect of the lines
such that it is multivariate normal b l eMN(0,  s 2

l I) where s 2
l

represents the variance of the lines.
We also obtained the genetic (s 2

g ), year (s 2
y ), genotype x year

(s2
gy) and error variance (s 2

e ) components from the G × E model
(4) and used them to estimate the narrow-sense heritabilities of
GY across stages/years of yield testing in the different
environments using the formula below:

h2 =  
s 2
g

s 2
g +  

s 2
y

nyears +  
s 2
gy

ngenotypes*nyears
+   s 2

e
ngenotypes*nyears*nreplications

6)

where nyears is the number of years, ngenotypes is the number of
lines, and nreplications is the number of replications. Pearson’s
correlations and the genetic correlations between the different
stages of yield testing were also estimated. We used the ‘R’
package EMMREML (Akdemir and Okeke, 2015) to obtain the
genetic correlations from the genetic covariances across the
different stages of yield testing, using the formula (Falconer,
1960),

rA  =
COVXY
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
varXvarY

p (7)

where rA is the genetic correlation between the two stages, covXY is
the covariance for GY in stages X and Y and varX and varX are the
variances for GY in stages X and Y. The "emmremlMultivariate"
function in EMMREML solves a multivariate Gaussian mixed
September 2020 | Volume 11 | Article 564183
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model that has a known covariance structure and considers the
additive genetic (co)variance matrix of GY in different stages,
calculated using markers. We also determined the correlations
between the PAs from the G × E model and the phenotypic and
genetic correlations in addition to the p-values for the significance
of the correlations using a two-tailed t-test

Genomic Prediction for Minimizing Grain
Yield Testing in Selection Environments
Within a Year
To determine if GS can be used for minimizing GY testing in the
managed environments of Obregón within a year, we used the
1,092 lines that were evaluated in six managed Stage 2
environments and 280 lines that were evaluated in three
managed Stage 3 environments. The PAs for predicting all
other environments from one environment were obtained
using the modified G × E model (4) and compared to the
modified baseline EL model (5), where the year effects in the
models were replaced by the environmental effects for 126
population-environment combinations. The Pearson ’s
correlations and the genetic correlations (equation 7) between
GY BLUEs in these environments were also obtained and
compared to the PAs from the G × E model.
RESULTS

Grain Yield Data and Statistical Analysis
Across all datasets, GY was distributed normally (Figure 1) and
statistical analysis (Supplementary Table 2) indicated that in the
S1 FI BP environment, the 2015–2016 cycle had the highest
mean GY (7.03 ± 0.61 t/ha) followed by cycle 2013–2014 (6.6 ±
0.66 t/ha). Among all the stage 2 yield testing environments, the
highest mean GY across cycles was observed in the S2 FI BP
environment (6.3 ± 0.65 t/ha), followed by the S2 FI FP
environment (6.28 ± 0.53 t/ha) and the S2 ESHS environment
(6.28 ± 0.19 t/ha). The lowest mean GY was observed in the S2
DS environment (2.6 ± 1 t/ha), followed by the S2 LSHS
environment (2.9 ± 0.8 t/ha) and the S2 RI environment (4.08 ±
0.72 t/ha).

In the S2 FI BP and S2 FI FP environments, the highest mean
GY were observed in the 2015–2016 cycle (7.15 ± 0.37 t/ha and
7 ± 0.47 t/ha, respectively). In the S2 ESHS and S2 LSHS
environments, the highest mean GY were observed in the
2013–2014 cycle (6.47 ± 0.6 t/ha) and in the 2014–2015 cycle
(3.8 ± 0.53 t/ha), respectively. In the S2 RI and S2 DS
environments, we observed the highest mean GY in the 2016–
2017 cycle (4.8 ± 0.38 and 3.9 ± 0.3 t/ha, respectively).

Among all the stage 3 yield testing environments, the highest
mean GY across cycles was observed in the S3 FI BP
environment (7 ± 0.9 t/ha), followed by the S3 LSHS
environment (3.4 ± 1.1 t/ha) and the S3 DS environment
(3.3 ± 0.6 t/ha). In the S3 FI BP, S3 LSHS and the S3 DS
environments, the highest mean GY were in the 2017–2018 cycle
(7.7 ± 0.4 t/ha), 2015–2016 cycle (4.8 ± 0.35 t/ha), and the 2016–
2017 cycles (3.9 ± 0.3 t/ha), respectively.
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Genomic Prediction for Grain Yield in a
Subset of Lines Within the Same
Site and Year
Comparison of Genomic and Pedigree Prediction
Accuracies
The GY PAs in a subset of lines within the same site and year
using genomic and pedigree relationships were obtained
(Figure 2). In S1 of yield testing at Obregón, where 1,282 to
1,636 lines were predicted from training sets of 5,126 to 6,546
lines across three cycles, the mean genomic and pedigree-based
PAs were 0.56 ± 0.04 and 0.54 ± 0.05, respectively. The S1 FI BP
2013–2014 cycle had the highest genomic and pedigree PAs (0.6
and 0.58, respectively) and the differences between the genomic
and pedigree PAs in the different cycles ranged from 0.01
to 0.05.

In S2 of yield testing, where 189 to 210 lines were predicted
from training sets of 758 to 842 lines, the mean genomic and
pedigree PAs across the six environments were 0.5 ± 0.06 and
0.49 ± 0.06, respectively. The mean genomic PA across cycles was
highest in the S2 LSHS environment (0.54), followed by the S2
DS (0.5), S2 FI BP (0.5), S2 RI (0.5), S2 ESHS (0.47), and S2 FI FP
(0.47) environments. Similarly, the mean pedigree PA was
highest in the S2 LSHS environment (0.51), followed by the S2
DS (0.5), S2 RI (0.4), S2 FI BP (0.48), S2 ESHS (0.48), and S2 FI
FP (0.47) environments.

In the S2 LSHS, S2 FI BP, and S2 DS environments, the
highest genomic PAs were observed in the 2013–2014 cycle
(0.58), 2014–2015 cycle (0.59), and the 2015–2016 cycle (0.58),
respectively. In the S2 ESHS, S2 FI FP, and S2 RI environments,
the highest genomic PAs were observed in the 2016–2017 cycle
and were 0.54, 0.59 and 0.57, respectively. Across all the 22 S2
datasets, the genomic PAs were similar to the pedigree PAs or
provided increases ranging between 0.01 and 0.07 in 15 datasets
and were 0.01 to 0.13 lower than the pedigree PAs in the
remaining seven datasets.

In S3, where 53 to 54 lines were predicted from training sets of
210 to 218 lines, the mean genomic and pedigree PAs across the
three environments were 0.42 ± 0.06 and 0.4 ± 0.03, respectively,
with the highest mean PAs in the S3 FI BP environment. The
mean genomic and pedigree PAs across cycles were highest in
the S3 FI BP (0.44 and 0.42, respectively) environment, followed
by the S3 LSHS (0.43 and 0.4, respectively) and S3 DS
(0.39) environments.

The highest genomic PAs in the S3 DS, S3 FI BP, and S3 LSHS
environments were observed in the 2016–2017 cycle (0.44),
2017–2018 cycle (0.52), and in the 2015–2016 cycle (0.5),
respectively. Across all the 11 S3 datasets, the genomic PAs
were similar to the pedigree PAs or provided increases ranging
between 0.01 and 0.11 in eight datasets and were 0.02 to 0.05
lower than the pedigree PAs in the remaining three datasets.

Overall, across all the stages and environments of yield
testing, we observed that the genomic PAs across all the
datasets were similar to the baseline pedigree Pas, and the p-
value for the test of significance of the differences between them
(0.07) was not significant at the 0.001 level. However, when the
pairwise genomic relationships between lines in a panel (S2 16–
September 2020 | Volume 11 | Article 564183
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igation bed planting (S1 F1 BP), Stage 2 full irrigation bed planting (S2 FI BP), Stage 2 full
stress (S2 ESHS), Stage 2 late-sown heat stress (S2 LSHS), Stage 3 full irrigation bed
12–2013 to 2018–2019 cycles.
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FIGURE 1 | Grain yield distributions for the lines evaluated in the selection-environments of Obregón including Stage 1 full irr
irrigation flat planting (S2 FI FP), Stage 2 reduced irrigation (S2 RI), Stage 2 drought stress (S2 DS), Stage 2 early-sown heat
planting (S3 FI BP), Stage 3 drought stress (S3 DS) and Stage 3 late-sown heat stress (S3 LSHS) environment, during the 20
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17) were plotted against their pedigree relationships, we observed
several discrepancies between the relationships (high genomic
and low pedigree relationships and vice versa) despite a high
correlation (0.64) (Figure 3), indicating that the genomic and
pedigree relationships are dissimilar in many lines.

Genomic Prediction Accuracies in Full-Sib Families
To explore why genomic relationships had no advantage over
pedigree relationships, the full-sib family sizes in the populations
were analyzed. The largest full-sib family sizes in S1, S2, and S3 of
yield testing were 65, 44, and 11, respectively (Figure 4).
Furthermore, to understand the genomic and phenotypic
variation among the full-sib progenies, the genomic relationships,
GY range and PAs in the biggest full-sib families with 40 to 64 full-
sibs and good genotyping data were analyzed (Supplementary
Table 3). The twofold CV genomic PAs ranged between 0.05 and
0.52, and GY differences ranged between 1.55 t/ha and 2.58 t/ha in
the full-sib families. The DANPHE #1*2/CHYAK//MUTUS*2/
HARIL #1 family with 41 full-sibs was the least predicted (mean
PA of 0.05) and the SAUAL/MUTUS/4/KACHU #1//WBLL1*2/
KUKUNA/3/BRBT1*2/KIRITATI family with 45 full-sibs was the
best predicted (mean PA of 0.52).

Furthermore, we compared GY differences between the full-
sibs with their genomic relationships and observed that the
Frontiers in Plant Science | www.frontiersin.org 7
relationships between full-sibs had no linear relationships with
the GY differences between full-sibs in the different families (Figure
5). The full-sibs with relationships between 0.1 and 0.4 had a high
range in their GY differences. We also observed a clear deviation
from the expected relationship of 0.5 between full-sibs indicating
that the markers captured the Mendelian sampling variation
among full-sibs (Figures 6, 7). While a large number of full-sibs
in all the families had relationships between 0.2 and 0.4, several full-
sibs had low relationships with each other in the different families,
indicating that all full-sibs were not highly related.

Relationship Between Genomic Prediction
Accuracies and Heritabilities
To understand the effect of GY heritabilities on the PAs, the
narrow-sense line-mean heritabilities and their relationships
with the PAs were analyzed (Supplementary Table 4). While
the mean heritabilities in the different environments and years
ranged between 0.63 and 0.89, the highest mean heritability
across years was observed in the S2 LSHS environment (0.89),
followed by the S2 DS environment (0.87) and the S2 ESHS
environment (0.83). Across all the datasets, the PAs had a low
correlation of 0.24 with the heritabilities, the PAs were always
lower than the heritabilities, and the differences between them
ranged from 0.04 to 0.50.
FIGURE 2 | Genomic and pedigree-based prediction accuracies for grain yield within years and sites in the selection-environments of Obregón: Stage 1 Full
irrigation bed planting environment (S1 F1 BP), Stage 2 Full irrigation bed planting (S2 FI BP), Stage 2 Full irrigation flat planting (S2 FI FP), Stage 2 Reduced irrigation
bed planting (S2 RI), Stage 2 Drought stress flat planting (S2 DS), Stage 2 Early-sown heat stress bed planting, (S2 ESHS), Stage 2 Late-sown heat stress bed
planting (S2 LSHS), Stage 3 Full irrigation bed planting (S3 FI BP), Stage 3 Drought stress flat planting (S3 DS), and Stage 3 Late-sown heat stress bed planting (S3
LSHS). The accuracies were obtained from fivefold cross-validations across different cycles as follows: (i) S1 of yield testing at Obregón—1,282 to 1,636 lines were
predicted from training sets of 5,126 to 6,546 lines (2013–2014 to 2015–2016 cycles); (ii) S2 of yield testing at Obregón—189 to 210 lines were predicted from
training sets of 758 to 842 lines (2013–2014 to 2016–2017 cycles); (iii) Stage 3 of yield testing at Obregón—53 to 54 lines were predicted from training sets of 210
to 218 lines (2014–2015 to 2017–2018 cycles). There were no significant differences between genomic and pedigree-based prediction accuracies.
September 2020 | Volume 11 | Article 564183
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Genomic Prediction for Minimizing Grain
Yield Testing in Stages/Years Within the
Selection Site
The potential of GS for minimizing GY testing across stages/years in
the SEs of Obregón was assessed using lines that were evaluated in
more than one stage, across four cohorts that represented a set of
Frontiers in Plant Science | www.frontiersin.org 8
lines evaluated in different stages or cycles (Figure 6,
Supplementary Table 5). Genomic predictions from the S1 FI BP
environment to the six environments of S2 using the G × E model
resulted in mean PAs ranging between 0.08 and 0.39 across the four
cycles. The Stage 2 environments that were best predicted from the
S1 FI BP environment and had high mean PAs included the S2 FI
FIGURE 3 | Scatter plot of rescaled (between 0 and 1) genomic relationships and pedigree relationships for 1,015 lines in the Stage 2 2016–2017 panel, fitted with
a linear regression line. The correlation between the genomic and pedigree relationships was high (0.64), but several discrepancies i.e. high genomic and low
pedigree relationships and vice versa were observed.
FIGURE 4 | Full-sib family sizes and the number of full-sib families in Stage 1 Yield trials (2013–2014 to 2015–2016 cycles), Stage 2 Yield trials (2013–2014 to
2016–2017 cycles), and Stage 3 Yield trials (2014–2015 to 2017–2018 cycles).
September 2020 | Volume 11 | Article 564183
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BP (0.39), S2 ESHS (0.38), and S2 FI FP (0.30) environments. We
also observed that the S1 FI BP environment had low predictive
abilities for the following environments as observed by the mean
PAs: S2 DS (0.08), S2 LSHS (0.17), and S2 RI (0.21).

When the three environments in S3 were predicted from the
S1 FI BP environment, the mean PAs ranged between 0.01 and
0.39, and when they were predicted from the same environments
in S2, the mean PAs were higher and ranged between 0.31 and
0.51. The S1 FI BP environment had the highest mean PA (0.39)
for the S3 FI BP environment and the lowest mean PA (0.01) for
the S3 DS environment. Considering the mean PAs of the Stage 3
environments from their corresponding Stage 2 environments,
the S3 FI BP environment was the best predicted (0.51), followed
by the S3 LSHS environment (0.36) and the S3 DS environment
(0.31). Overall, across all the datasets, the highest mean PA was
observed when S3 FI BP was predicted from S2 FI BP. On
comparing the PAs from the G × E model to the baseline EL
model, we observed no significant differences, and the p-value for
the test of significance of the differences between them (0.01) was
not significant at the 0.001 level (Supplementary Table 5).

We also determined the phenotypic and genetic correlations
between different stages of yield testing and observed that the
PAs from the G × E model were similar to the phenotypic
correlations (p-value for the test of significance of the differences
between them was 0.02) compared to the genetic correlations
(Figure 8). However, the genetic correlations had strong
correlations with the phenotypic correlations (0.91) and were
on average 0.18 higher than the phenotypic correlations. We also
observed significant correlations between the environments in
Frontiers in Plant Science | www.frontiersin.org 9
different stages of yield testing (at a p-value threshold of 0.001),
except between the S1 FI BP environment and the S3 DS and S3
LSHS environments (Supplementary Table 5).

To understand why the G × E model had no advantage over
the baseline EL model, we partitioned the phenotypic variance
into the genetic, year, genotype × year and error variance
components (Table 2). While the G × E variances were only
0.4 to 1.2 times the genetic variances across all the stages, the year
variances were 3.2 to 11.3 times the genetic variances, making
them the largest contributors to the variation occurring across
years of testing. Furthermore, narrow-sense heritabilities across
stages/years were estimated from the variance components, and
they ranged from 0.11 to 0.68.
Genomic Prediction for Minimizing Grain
Yield Testing in Selection Environments
Within a Year
To determine if GS can be used for minimizing GY testing in the
managed SEs of Obregón, the PAs across 126 SE pairs in different
cycles were obtained using the G × E model and compared to a
baseline EL model (Figure 9, Supplementary Table 6). Overall,
we observed a negligible mean increase (0.02 ± 0.05) using the G ×
E model over the baseline EL model, but there were significant
differences between the pairwise PAs (p-value for the test of
significance of the differences between them was 0.001).

Considering only the G × E PAs within the Stage 2 environments:
the S2 DS environment had the highest mean PA for the S2 RI
environment (0.46 ± 0.07), the S2 ESHS environment had the
FIGURE 5 | Scatter plots showing the differences in grain yield between the full-sibs and the scaled correlations between the full-sibs estimated from their genetic
covariances in 10 full-sib families. The number of full-sibs in each of these families (N) and the twofold cross-validation genomic prediction accuracies (PAs) are
shown. The relationships between the full-sibs did not have a linear relationship with the grain yield differences between the full-sibs i.e. closely related full-sibs did
not have small differences in grain yield and vice-versa. The full-sibs with relationships between 0.1 and 0.4 had a high range in their grain yield differences.
September 2020 | Volume 11 | Article 564183
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G//KACHU*2/3/KFA/2*KACHU (Cross ID 590394).
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FIGURE 6 | Genomic relationship matrix scaled between 0 and 1 and clustering of 64 full-sibs from the cross, TACUPETOF2001/BRAMBLIN
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G/3/WBLL1*2/BRAMBLING*2/4/KACHU/KINDE (Cross ID 590762).
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FIGURE 7 | Genomic relationship matrix scaled between 0 and 1 and clustering of 55 full-sibs from the cross, MUTUS//WBLL1*2/BRAMBLIN
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FIGURE 8 | Genetic and phenotypic correlations across stages of yield testing in Obregón and prediction accuracies from the ba
genomic and genotype × environment (G × E) interaction effects. About 1,092 lines were common across Stages 1 and 2, and 28
set of lines that were evaluated during three crop cycles: Cohort 1 represents lines evaluated during 2012–2013 (Stage 1), 2013–2
evaluated during 2013–2014 (Stage 1), 2014–2015 (Stage 2), and 2015–2016 (Stage 3) cycles; Cohort 3 represents lines evaluate
cycles; and Cohort 4 represents lines evaluated during 2015–2016 (Stage 1), 2016–2017 (Stage 2), and 2017–2018 (Stage 3) cyc
the prediction accuracies from the baseline model and the G × E model across the stages.
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highest mean PA for the S2 FI BP (0.43 ± 0.05) and the S2 FI FP
(0.37 ± 0.1) environments, the S2 FI BP environment had the highest
mean PA for the S2 ESHS (0.43 ± 0.07) and the S2 FI FP (0.36 ± 0.17)
environments, the S2 FI FP environment had the highest mean PA
for the S2 FI BP (0.36 ± 0.21) and the S2 ESHS (0.32 ± 0.08)
environments, the S2 LSHS environment had the highest mean PA
for the S2 FI BP (0.26 ± 0.1) and the S2 RI BP (0.26 ± 0.05)
environments and the S2 RI environment had the highest mean PA
for the S2 DS (0.45 ± 0.08) environment. Overall, the Stage 2
environment-pairs, RI and DS and FI BP, FI FP and ESHS were
best predicted from each other.Within the Stage 3 environments, the
mean PAs from the G × Emodel across the three environments were
low (ranged from 0.06 to 0.23) and the best predicted Stage 3
environment pair was S3 FI BP and S3 LSHS.

We also analyzed the phenotypic and genetic correlations
between the different environments (Supplementary Table 6) and
observed that they had a strong relationship with each other
(correlation of 0.91) and also with the PAs from the G × E model
(correlation of 0.95 and 0.89, respectively). While the phenotypic
correlations between the different environments ranged from −0.26
to 0.63, the genetic correlations ranged from −0.55 to 0.89 and were
on average 0.10 ± 0.13 higher than the phenotypic correlations.
Considering the p-values for the significance of both phenotypic and
genetic correlations, most environments were significantly correlated
with another in at least two years (at a p-value threshold of 0.001),
except for the S3 LSHS and S3 DS environments. We also observed
that the phenotypic correlations between environments explained
90.8% variation in the PAs from the G × E model and had a highly
Frontiers in Plant Science | www.frontiersin.org 13
significant association with them (p-value of 3.1E-66), while the
genetic correlations explained only 79.1% of the variation in PAs and
were also significant (p-value of 6.2E-44).
DISCUSSION

In this study, we draw inferences from predictive modeling of GY
using 420 different populations, environments, cycles, and model
combinations that will have major implications on the
implementation of GS for GY in wheat breeding programs. We
evaluated the potential of genomic predictions for minimizing
the number of replications and lines tested within a site and year
and obtained mean PAs of 0.56, 0.5 and 0.42 in Stages 1, 2, and 3
of yield testing respectively, with slight decreases in PAs in the
advanced yield trial nurseries that were characterized by fewer
and highly selected lines with a narrow GY range. These PAs are
within the range or slightly higher than those obtained in
previous CV studies for wheat GY: 0.32 (Poland et al., 2012b),
0.22 (Heffner et al., 2011), 0.46–0.63 (Howard et al., 2019), 0.37–
0.51 (Juliana et al., 2018b), and 0.44–0.57 (Juliana et al., 2018a).

We also observed that the mean pedigree PAs in Stages 1, 2,
and 3 (0.54, 0.49, and 0.4, respectively) were similar to the
genomic PAs, clearly indicating that genomic predictions offer
no advantage over pedigree predictions for minimizing the
number of replications and lines tested within a site and year
in all the three yield testing stages at CIMMYT despite
speculations of a high gain from GS in the preliminary yield
TABLE 2 | Marker-based estimates of genetic (s2g), year (s2
y), genotype × year (s2g × y) and error (s2

e) variance components, variance ratios, and narrow-sense
heritabilities across stages of yield testing in Obregón.

Variance components,
variance ratios, and
heritabilities

Cohort Full irrigation Bed
planting Stage 1 and

Stage 2

Full irrigation Bed
planting Stage 1 and

Stage 3

Full irrigation Bed
planting Stage 2 and

Stage 3

Late sown heat
stress Stage 2 and

Stage 3

Drought stress
Stage 2 and Stage 3

s2g 1 0.11 0.12 0.11 0.11 0.02
s2y 1.30 2.05 0.30 0.56 0.26
s2g × y 0.08 0.16 0.05 0.05 0.06
s2e 0.18 0.22 0.15 0.09 0.06
s2g: s2y: s2

g × y: s2e 1:11.7:0.7:1.6 1:16.4:1.3:1.8 1:2.8:0.5:1.4 1:4.9:0.5:0.8 1:10.7:2.6:2.3
h2 0.15 0.11 0.41 0.29 0.16
s2g 2 0.12 0.05 0.07 0.06 –

s2y 0.82 0.10 0.72 0.20 –

s2g × y 0.05 0.03 0.05 0.06 –

s2e 0.08 0.07 0.05 0.06 –

s2g: s2y: s2
g × y: s2e 1:6.6:0.4:0.7 1:1.9:0.6:1.4 1:9.8:0.6:0.7 1:3.2:0.9:1 –

h2 0.23 0.51 0.17 0.38 –

s2g 3 0.06 0.08 0.10 – 0.08
s2y 0.32 0.17 0.09 – 1.27
s2g × y 0.03 0.02 0.02 – 0.05
s2e 0.06 0.06 0.05 – 0.06
s2g: s2y: s2

g × y: s2e 1:5.6:0.4:1.1 1:2.2:0.3:0.8 1:0.9:0.2:0.5 – 1:16.6:0.6:0.8
h2 0.26 0.47 0.68 – 0.11
s2g 4 0.07 0.08 0.15 0.10 0.07
s2y 0.42 0.08 0.32 0.14 0.46
s2g × y 0.04 0.02 0.02 0.06 0.04
s2e 0.08 0.06 0.05 0.09 0.05
s2g: s2y: s2

g × y: s2e 1:6.2:0.6:1.1 1:1:0.2:0.7 1:2.1:0.2:0.3 1:1.4:0.7:0.9 1:6.6:0.5:0.7
h2 0.24 0.66 0.49 0.58 0.23
Mean h2 All 0.22 ± 0.05 0.44 ± 0.23 0.44 ± 0.21 0.42 ± 0.15 0.17 ± 0.06
Mean s2

g: s2
y: s2g × y: s2

e 1:7.5:0.5:1.1 1:5.4:0.6:1.2 1:3.9:0.4:0.7 1:3.2:0.7:0.9 1:11.3:1.2:1.3
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FIGURE 9 | Prediction accuracies across the Stage 2 yield testing environments from the baseline model with environment an
environment (G × E) interaction effects (G × E model) for about 1,092 lines in four cycles. There were no significant differences
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trial stage (Endelman et al., 2014; Gaynor et al., 2017). The
similarity in PAs from genomic and pedigree relationships can
be attributed to the small full-sib family sizes in the yield testing
stages, and several previous studies have reported comparable
PAs using genomic and pedigree relationships, and only marginal
increases in PAs using genomic relationships in advanced
breeding lines (Crossa et al., 2010; Juliana et al., 2017; Juliana
et al., 2018b; Howard et al., 2019). However, we have also reported
only a moderate correlation of 0.64 between the genomic and
pedigree relationships and a deviation from the expected
relationship of 0.5 between the full-sibs, indicating that there are
differences between the genomic and pedigree relationships, part
of which can be attributed to pedigree and genotyping errors and
the markers not capturing rare allelic differences between lines.
While some studies have reported a marginal increase in PAs
using combined genomic and pedigree relationships (Crossa et al.,
2010; Juliana et al., 2017; Juliana et al., 2018b; Howard et al., 2019),
the low value added by genomic relationships in this study
suggests that wheat breeding programs with a well-maintained
pedigree and family structures like that of CIMMYT in the yield
testing stages can just use the available inexpensive pedigree
relationship based predictions to minimize the lines in these
stages. In addition, breeding programs that have a large number
of replications and PAs comparable to the within environment
heritabilities can substitute some of the replications with pedigree-
based predictions.

We also report the genomic relationships and GY differences
between 11,084 full-sib pairs from ten full-sib families and their
GY predictabilities that provide excellent insights into the
Mendelian sampling variation and predictabilities in full-sib
families. We demonstrate interesting cases where the markers
predicted the Mendelian sampling variation between the full-sibs
well, but the relationships between the full-sibs were low (even
after the full-sibs had undergone several cycles of selection and
had some degree of phenotypic similarities) and resulted in low
to moderate PAs (0.05 to 0.52). While the narrow GY variation
in these full-sibs due to selection and small training populations
could have also resulted in low predictabilities, the following
question warrants further research: What is the optimum family-
size and GY range that will give genomic relationships advantage
over the pedigree relationships in the yield testing stages and
would it benefit breeding programs to increase family-sizes in
these generations at the cost of genetic diversity?

While yield trial nurseries can be restructured to have large
family sizes and harness the potential of GS, it should be noted
that breeders generally select progenies from multiple crosses in
advanced generations to maintain genetic diversity instead of co-
selecting full-sibs, which might not favor large family sizes. In
addition, not all crosses result in large families with good
individuals, due to selection for multiple traits including disease
resistance, phenology, plant height etc. in earlier generations. Hence,
an alternative strategy could be to explore the value of GS for GY in
early-generations where large family sizes are expected to provide
genomic relationships advantage over pedigree relationships.
However, this needs careful consideration of the following
questions: (i) Will there be cost-benefits and increased genetic
Frontiers in Plant Science | www.frontiersin.org 15
gains by implementing GS in early-generations, considering the
huge cost of genotyping and the need to develop infrastructure for
genotyping thousands of early-generation progenies? (ii) What is
the reliability and stability of early-generation GY predictions in
populations, given that the heritability of GY in these generations is
low and the progenies are segregating?

We explored the possibility of using genomic predictions with
the G × E model to minimize years of GY testing and observed
inconsistent PAs across years with a considerable range when the
following similar environments were predicted across years: S2
FI BP from S1 FI BP—0.33 to 0.51, S3 FI BP from S1 FI BP—0.19
to 0.56, S3 FI BP from S2 FI BP—0.37 to 0.62, S3 DS from S2 DS
—−0.01 to 0.49 and S3 LSHS from S2 LSHS—0.27 to 0.42. In
addition, we observed no advantage of the G × E model over the
baseline EL model for the scenarios analyzed despite several
studies reporting some increase in PAs by modeling G × E in
other scenarios (Burgueño et al., 2012; Heslot et al., 2013; Lopez-
Cruz et al., 2015; Cuevas et al., 2016; Jarquıń et al., 2017). This
can be attributed to the large year variance components and the
small G × E variance components in the datasets analyzed in this
study, clearly indicating that G × E models are not always useful
and GY prediction in different years is challenging due to an
amalgam of fluctuating factors like edaphic, nutrient, climatic,
biotic stresses and management conditions of environments that
are not known or predictable beforehand (Allard and Bradshaw,
1964; Goodchild and Boyd, 1975; Hill, 1975; Bell and Fischer,
1994; Dawson et al., 2013; Storlie and Charmet, 2013). In
addition, the low to moderate phenotypic correlations observed
between GY evaluated in different years (0.41, 0.37, and 0.31,
respectively in the FI BP, DS and LSHS environments) indicate
the dissimilar natural environment of Obregón in different years.
While this is conducive for assessing the temporal stability of
lines and rigorous testing under diverse environments probably
drives the successful wide adaptation and yield stability of
CIMMYT lines in different geographical regions, it is also an
unideal scenario for implementing GS that relies on the similarity
between environments for good predictions. However, these results
are specific to CIMMYT’s yield testing in Obregón, and further
studies on across-year GY prediction in other locations are needed.

We also evaluated the use of genomic predictions for
minimizing the number of environments evaluated in Stages 2
and 3 and observed very low PAs across the Stage 3 environments
(average of 0.14 ± 0.14 and ranged from −0.13 to 0.39), indicating
that the three Stage 3 environments were different and cannot be
minimized using genomic predictions. In Stage 2, the FI BP, FI FP
and ESHS environments had a moderate predictability among
them (mean PA of 0.37 ± 0.12), as well as the RI and DS
environments (mean PA of 0.45 ± 0.07). However, across years,
we observed inconsistencies and a large range in the PAs of the FI
BP, FI FP, and ESHS environments (0.16 to 0.63) and a moderate
range in the PAs of the RI and DS environments (0.34 to 0.54),
indicating that the predictabilities of these environments are not
constant across years to reliably use genomic predictions and
minimize phenotyping in one or more of them. We also
observed that the G × E model provided no advantage over the
baseline EL model in predicting across environments within a
September 2020 | Volume 11 | Article 564183
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year, similar to the scenario of predictions across years, suggesting
that the effect of the G × E interactions across environments are
not as large as the effects of the environments themselves to
provide a significant boost in PAs.

Overall, our results indicate that using genomic predictions
and G × E models to minimize years and environments of yield
testing is not an ideal solution to improving the GY and climate-
resilience of wheat as genomic predictions entirely rely on the
evaluated GY for training models and predictions in a different
environment requires mandatory evaluation of some related
genotypes in that environment. Furthermore, the risks
associated with minimal yield testing, and substitution of multi-
environment testing with inconsistent genomic predictions
should be recognized as the unstable lines that result from these
will be fraught with risks to farmer’s livelihoods and food security.
Since the goal of plant breeding is to develop varieties that are
well-buffered to withstand unpredictable environment
fluctuations (Allard and Bradshaw, 1964), and stability is the
key component in farmer’s adoption decisions (Barah et al., 1981;
Singh et al., 2007), multi-environment testing (Fox et al., 1985) is
indispensable for sustaining wheat productivity in accordance
with the safety-first approach (Eskridge, 1990). In addition, most
smallholder farmers in developing countries grow wheat on less
than 2 ha, where the best risk-mitigating measure is to develop
varieties that can cope with major year-to-year environmental
changes, and breeding for such lines with climate-resilience and
wide-adaptability requires replicated evaluation over time and
space (Hurd, 1969; Ghaderi et al., 1980).

In conclusion, our results provide excellent insights into the
predictability of a quantitative trait like GY. The prediction
scenarios and the results presented in this study will enable
wheat breeding programs to determine the appropriate stages for
evaluating GS, understand the complexities in predicting GY,
understand the value of using GS and thereby have important
implications on the future design of GY evaluation and prediction
strategies. While this study does not discount the application of
genomics for GY in wheat, it highlights the well-known complexity
of the trait and continued efforts are needed for, (i) understanding
the genetic basis of GY and stability in different environments and
lines, (ii) exploring the value of GS for predicting and recycling
parents earlier in the cycle to reduce the cycle time, (iii) predicting
the GY potential of crosses and (iv) determining the value of sparse
testing, where population sizes can be increased and lines can be
tested in fewer sites and environments.
Frontiers in Plant Science | www.frontiersin.org 16
DATA AVAILABILITY STATEMENT

The genotyping data for 23, 526 lines used in this study has been
uploaded to Figshare and is available in: https://doi.org/10.6084/
m9.figshare.12350000.v1.
AUTHOR CONTRIBUTIONS

PJ planned the study, performed the analyses, and drafted the
manuscript. RS, H-JB, JP, and JH-E supervised the work and
designed the experiments. LC-H, VG, and SM generated the
phenotyping data. SS called the marker polymorphisms.
FUNDING

This research was supported by the Delivering Genetic Gain in
Wheat (DGGW) project (funded by the Bill and Melinda Gates
Foundation and the United Kingdom Department for
International Development (DFID) and managed by Cornell
University) under the terms of Contract No. OPP1133199 and
Feed the Future project through the U.S. Agency for
International Development (USAID), under the terms of
Contract No. AID-OAA-A-13-00051. The opinions expressed
herein are those of the authors and do not necessarily reflect the
views of the USAID.
ACKNOWLEDGMENTS

We would like to extend our sincere gratitude to ShuangyeWu at
Kansas State University and Dr. Susanne Dreisigacker for
genotyping support and field technicians for their support in
generating the phenotyping data.
SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found online
at: https://www.frontiersin.org/articles/10.3389/fpls.2020.
564183/full#supplementary-material
REFERENCES

Akdemir, D., and Okeke, U. G. (2015). EMMREML: Fitting Mixed Models with
Known Covariance Structures, R package version 3.1.

Allard, R. W., and Bradshaw, A. D. (1964). Implications of Genotype-
Environmental Interactions in Applied Plant Breeding. Crop Sci. 4, 503.
doi: 10.2135/cropsci1964.0011183x000400050021x

Barah, B. C., Binswanger, H. P., Rana, B. S., and Rao, N. G. P. (1981). The use of
risk aversion in plant breeding; concept and application. Euphytica 30, 451–
458. doi: 10.1007/BF00034010

Bell, M. A., and Fischer, R. A. (1994). Using yield prediction models to assess yield
gains: a case study for wheat. F. Crop Res. 36, 161–166. doi: 10.1016/0378-4290
(94)90064-7
Bradbury, P. J., Zhang, Z., Kroon, D. E., Casstevens, T.M., Ramdoss, Y., and Buckler, E. S.
(2007). TASSEL: Software for association mapping of complex traits in diverse
samples. Bioinformatics 23, 2633–2635. doi: 10.1093/bioinformatics/btm308

Braun, H.-J., Pfeiffer, W. H., and Pollmer, W. G. (1992). Environments for
Selecting Widely Adapted Spring Wheat. Crop Sci. 32, 1420. doi: 10.2135/
cropsci1992.0011183x003200060022x

Burgueño, J., de los Campos, G., Weigel, K., and Crossa, J. (2012). Genomic
prediction of breeding values when modeling genotype × environment
interaction using pedigree and dense molecular markers. Crop Sci. 52, 707–
719. doi: 10.2135/cropsci2011.06.0299

Charmet, G., Storlie, E., Oury, F. X., Laurent, V., Beghin, D., Chevarin, L., et al.
(2014). Genome-wide prediction of three important traits in bread wheat.Mol.
Breed. 34 (4), 1843–1852. doi: 10.1007/s11032-014-0143-y
September 2020 | Volume 11 | Article 564183

https://doi.org/10.6084/m9.figshare.12350000.v1
https://doi.org/10.6084/m9.figshare.12350000.v1
https://www.frontiersin.org/articles/10.3389/fpls.2020.564183/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fpls.2020.564183/full#supplementary-material
https://doi.org/10.2135/cropsci1964.0011183x000400050021x
https://doi.org/10.1007/BF00034010
https://doi.org/10.1016/0378-4290(94)90064-7
https://doi.org/10.1016/0378-4290(94)90064-7
https://doi.org/10.1093/bioinformatics/btm308
https://doi.org/10.2135/cropsci1992.0011183x003200060022x
https://doi.org/10.2135/cropsci1992.0011183x003200060022x
https://doi.org/10.2135/cropsci2011.06.0299
https://doi.org/10.1007/s11032-014-0143-y
https://www.frontiersin.org/journals/plant-science
http://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles


Juliana et al. Genomic Selection for Grain Yield
Cooper, M., Woodruff, D. R., Eisemann, R. L., Brennan, P. S., and DeLacy, I. H.
(1995). A selection strategy to accommodate genotype-by-environment
interaction for grain yield of wheat: managed-environments for selection
among genotypes. Theor. Appl. Genet. 90, 492–502. doi: 10.1007/BF00221995

Crossa, J., Burgueno, J., Cornelius, P. L., McLaren, G., Trethowan, R., and
Krishnamachari, A. (2006). Modeling genotype x environment interaction
using additive genetic covariances of relatives for predicting breeding values of
wheat genotypes. Crop Sci. 46, 1722–1733. doi: 10.2135/cropsci2005.11-0427
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et al. (2014). Adverse weather conditions for European wheat production will
become more frequent with climate change. Nat. Clim. Change 4, 637–643.
doi: 10.1038/nclimate2242

VanRaden, P. M. (2008). Efficient Methods to Compute Genomic Predictions.
J. Dairy Sci. 91, 4414–4423. doi: 10.3168/jds.2007-0980

Voss-Fels, K. P., Cooper, M., and Hayes, B. J. (2019). Accelerating crop genetic
gains with genomic selection. Theor. Appl. Genet. 132 (3), 669–686.
doi: 10.1007/s00122-018-3270-8

Wheeler, T., and von Braun, J. (2013). Climate change impacts on global food
security. Science 341, 508–513. doi: 10.1126/science.1239402
Frontiers in Plant Science | www.frontiersin.org 18
Zampieri, M., Ceglar, A., Dentener, F., and Toreti, A. (2017). Wheat yield loss
attributable to heat waves, drought and water excess at the global, national and
subnational scales. Environ. Res. Lett. 12, 064008. doi: 10.1088/1748-9326/aa723b

Zhao, Y., Zeng, J., Fernando, R., and Reif, J. C. (2013). Genomic Prediction of Hybrid
Wheat Performance. Crop Sci. 53, 802–810. doi: 10.2135/cropsci2012.08.0463

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Copyright © 2020 Juliana, Singh, Braun, Huerta-Espino, Crespo-Herrera, Govindan,
Mondal, Poland and Shrestha. This is an open-access article distributed under the
terms of the Creative Commons Attribution License (CC BY). The use, distribution or
reproduction in other forums is permitted, provided the original author(s) and the
copyright owner(s) are credited and that the original publication in this journal is
cited, in accordance with accepted academic practice. No use, distribution or
reproduction is permitted which does not comply with these terms.
September 2020 | Volume 11 | Article 564183

https://doi.org/10.1073/pnas.1415181112
https://doi.org/10.1073/pnas.1415181112
https://doi.org/10.2135/cropsci2002.1441
https://doi.org/10.1038/nclimate2242
https://doi.org/10.3168/jds.2007-0980
https://doi.org/10.1007/s00122-018-3270-8
https://doi.org/10.1126/science.1239402
https://doi.org/10.1088/1748-9326/aa723b
https://doi.org/10.2135/cropsci2012.08.0463
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/plant-science
http://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles

	Genomic Selection for Grain Yield in the CIMMYT Wheat Breeding Program—Status and Perspectives
	Introduction
	Materials and Methods
	Populations, Phenotyping Environments and Best Linear Unbiased Estimates for Grain Yield
	Genotyping
	Statistical Analysis of the Grain Yield Data
	Genomic Prediction for Grain Yield in a Subset of Lines Within the Same Site and Year
	Genomic Prediction for Minimizing Grain Yield Testing in Stages/Years Within the Selection Site
	Genomic Prediction for Minimizing Grain Yield Testing in Selection Environments Within a Year

	Results
	Grain Yield Data and Statistical Analysis
	Genomic Prediction for Grain Yield in a Subset of Lines Within the Same Site and Year
	Comparison of Genomic and Pedigree Prediction Accuracies
	Genomic Prediction Accuracies in Full-Sib Families
	Relationship Between Genomic Prediction Accuracies and Heritabilities

	Genomic Prediction for Minimizing Grain Yield Testing in Stages/Years Within the Selection Site
	Genomic Prediction for Minimizing Grain Yield Testing in Selection Environments Within a Year

	Discussion
	Data Availability Statement
	Author Contributions
	Funding
	Acknowledgments
	Supplementary Material
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /PageByPage
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages false
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 1
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness false
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /ENU (T&F settings for black and white printer PDFs 20081208)
  >>
  /ExportLayers /ExportVisibleLayers
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /BleedOffset [
        0
        0
        0
        0
      ]
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /ClipComplexRegions true
        /ConvertStrokesToOutlines false
        /ConvertTextToOutlines false
        /GradientResolution 300
        /LineArtTextResolution 1200
        /PresetName ([High Resolution])
        /PresetSelector /HighResolution
        /RasterVectorBalance 1
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks true
      /IncludeHyperlinks true
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MarksOffset 6
      /MarksWeight 0.250000
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


