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Crop wild relatives of sweetpotato [Ipomoea series Batatas (Choisy) D. F. Austin] are a
group of species with potential for use in crop improvement programs seeking to breed for
drought tolerance. Stress memory in this group could enhance these species’
physiological response to drought, though no studies have yet been conducted in this
area. In this pot experiment, drought tolerance, determined using secondary traits, was
tested in 59 sweetpotato crop wild relative accessions using potential short-term memory
induction. For this purpose, accessions were subjected to two treatments, i) non-priming:
full irrigation (up to field capacity, 0.32 w/w) from transplanting to harvest and ii) priming:
full irrigation from transplanting to flowering onset (FO) followed by a priming process from
FO to harvest. The priming process consisted of three water restriction periods of
increasing length (8, 11, and 14 days) followed each by a recovery period of 14 days
with full irrigation. Potential stress memory induction was calculated for each accession
based on ecophysiological indicators such as senescence, foliar area, leaf-minus-air
temperature, and leaf 13C discrimination. Based on total biomass production, resilience
and production capacity were calculated per accession to evaluate drought tolerance.
Increase in foliar area, efficient leaf thermoregulation, improvement of leaf photosynthetic
performance, and delayed senescence were identified in 23.7, 28.8, 50.8, and 81.4% of
the total number of accessions, respectively. It was observed that under a severe drought
scenario, a resilient response included more long-lived green leaf area while a productive
response was related to optimized leaf thermoregulation and gas exchange. Our
preliminary results suggest that I. triloba and I. trifida have the potential to improve
sweetpotato resilience in dry environments and should be included in introgression
breeding programs of this crop. Furthermore, I. splendor-sylvae, I. ramosissima, I.
tiliacea, and wild I. batatas were the most productive species studied but given the
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genetic barriers to interspecific hybridization between these species and sweetpotato, we
suggest that further genetic and metabolic studies be conducted on them. Finally, this
study proposes a promising method for improving drought tolerance based on potential
stress-memory induction, which is applicable both for wild species and crops.
Keywords: senescence delay, foliar area, leaf temperature, 13C discrimination, drought stress memory,
Batatas complex
INTRODUCTION

In 2018, sweetpotato [Ipomoea batatas (L.) Lam.] was the root
crop with the second highest global production after cassava
[Manihot esculenta Crantz] (FAO, 2020). Sweetpotato is highly
nutritious and outperforms most carbohydrate-based foods in
terms of vitamins, minerals, dietary fiber, and total protein,
making it a priority in crop-based strategies to enhance global
food and nutrition security (Woolfe, 1992; Motsa et al., 2015).
Sweetpotato is also known for its ability to grow in drought-
prone soils with low external input (fertilizer and pesticide)
requirements, while thanks to a short growing cycle, it is also
recognized as an excellent crop for post-crisis (hurricane,
flooding, refugee settlement, etc.) situations (Bradbury and
Holloway, 1987; Mwanga and Ssemakula, 2011; Mekonnen
et al., 2015). However, a range of biotic and abiotic stress
factors such as viruses, weevils, and severe drought, are
inhibiting farmers’ ability to achieve sweetpotato’s full yield
potential (Valverde et al., 2007; Mwanga and Ssemakula, 2011;
Agili and Nyende, 2012; Kivuva et al., 2015). Moreover, climate
change’s negative effect on sweetpotato productivity is of rising
concern in regions affected by increasing global temperatures,
such as tropical and subtropical areas of Sub-Saharan Africa
(Low et al., 2009; Schulze, 2011; Knox et al., 2012). Resilient
sweetpotato varieties could play an extremely important food
and nutrition security role in the developing world, one that will
increase in importance as the availability of good cropping areas
becomes more limited.

Series Batatas [Ipomoea series Batatas (Choisy) D. F. Austin]
is a subdivision within Ipomoea, the largest genus in the morning
glory (Convolvulaceae) family. This group includes the
cultivated hexaploid sweetpotato [I. batatas (L.) Lam.], wild
tetraploid I. batatas (L.) Lam. (Ozias-Akins and Jarret, 1994),
and 15 closely related wild species (Austin, 1978; McDonald and
Austin, 1990; Austin et al., 1993; Wood et al., 2015; Wood et al.,
2020). The wild species include Ipomoea trifida (H.B.K.) G. Don,
Ipomoea cordatotriloba Dennstedt, Ipomoea cynanchifolia
Meisn., Ipomoea grandifolia (Dammer) O’Donell, Ipomoea
lacunosa L., Ipomoea leucantha Jacquin, Ipomoea littoralis
Blume, Ipomoea ramosissima (Poir.) Choisy, Ipomoea splendor-
sylvae House, Ipomoea tabascana McDonald and Austin,
Ipomoea tenuissima Choisy, Ipomoea tiliacea (Willd.) Choisy
in D. C., Ipomoea triloba L., Ipomoea lactifera J.R.I. Wood and
Scotland, and Ipomoea australis (O’Donell) J.R.I. Wood & P.
Muñoz. Since sweetpotato crop wild relatives (SP-CWR) are well
adapted to diverse, even extreme environmental conditions
(Iwanaga, 1988; Guarino and Lobell, 2011), they are considered
.org 2
a prominent genetic resource to improve both biotic and abiotic
stress tolerance in cultivated crops (Iwanaga, 1988; Komaki,
2004; Nimmakayala et al., 2011). However, Khoury et al.
(2015) pointed out that the full potential offered by SP-CWR,
especially in terms of drought tolerance, is far from being
fully exploited.

From a physiological point of view, drought tolerance
encompasses all mechanisms that enable plants to avoid or
tolerate dehydration, such as maintenance of cell turgor and
water uptake, and reduction of water loss, among others (Fischer
and Maurer, 1978; Turner, 1986; Turner, 1997). In sweetpotato,
several physiological traits have been used for screening drought
tolerant genotypes such as chlorophyll concentration (Mbinda
et al., 2018; Mbinda et al., 2019), canopy cover (Laurie et al.,
2014), leaf temperature (Laurie et al., 2014; Rukundo et al., 2017;
Low et al., 2020), and 13C discrimination (Low et al., 2020). The
latter has been reported as one of the most accurate criteria for
selecting drought tolerant genotypes (Tuberosa, 2012; Low et al.,
2020) since it is a good indicator of stomatal conductance
(Condon et al., 2004), water use efficiency (Turner, 1997), and
photosynthetic performance (Jefferies and Mackerron, 1997;
Dawson et al., 2002).

Previous studies in other plants such as Arabidopsis thaliana
(Ling et al., 2018; Serrano et al., 2019), potato (Watkinson et al.,
2006; Ramıŕez et al., 2015a), cassava (Cayón et al., 1997), wheat
(Ahmed et al., 2016), and grasses (Walter et al., 2011) have
shown that a previous exposure to stress in early development
stages “prepares” the plant for a subsequent exposure to the same
stress. This behavior, known as stress memory, is achieved
through accumulation of transcription factor or signaling
proteins and epigenetic changes, which are later translated into
an enhanced physiological response (Bruce et al., 2007). In this
study, we tested potential short-term memory occurrence, which
involves tolerant responses within the plant life cycle to previous
stress periods (Conrath et al., 2006; Bruce et al., 2007), as
opposed to transgenerational memory, in which the tolerant
response is inherited by the next plant generation (Han and
Wagner, 2014). Wild species are considered to be possible
sources of useful genes/alleles related to stress tolerance as they
have evolved under natural selection to survive consecutives
periods of climate extremes (Sharma et al., 2013). In the present
study, we focused on the previously described physiological traits
to determine potential stress memory induction in SP-CWR.

Farmers have traditionally selected drought tolerant
genotypes by choosing those genotypes that maintained high
yield under drought stress conditions. However, this selection
strategy may penalize resilience or production stability, as shown
September 2020 | Volume 11 | Article 567507
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by Blum (1996), who found that some genotypes with high
tolerance presented low yield performance in the absence of
stress conditions. Fernandez (1992) classified plants into four
groups based on yield performance in stress and non-stress
conditions: Group A (accessions expressing uniform superiority
in both stress and non-stress conditions), Group B (accessions
presenting good performance only under potential conditions and
not under stress conditions), Group C (accessions expressing a
relatively higher performance only under stress), and Group D
(accessions with poor performance in both environments).
Recently, Thiry et al. (2016) proposed a yield-based definition of
drought tolerance in terms of resilience and productivity of crops
useful to facilitate the classification of genotypes for breeding
programs. These authors stated that the resilience capacity index
(RCI) expresses the yield decrease of genotypes under stress
within a population, compared with yield potential conditions,
whereas the production capacity index (PCI) expresses the mean
production of genotypes under both stressed and non-stressed
conditions within a population. Moreover, a genotype could be
classified in any of Fernandez’s (1992) Groups with those
genotypes scoring the highest values being the most drought
tolerant ones. Using combined indices such as resilience and
productivity simultaneously in sweetpotato breeding programs
would reduce costs and save time.

The aim of this study was i) to determine potential short-term
memory induction in SP-CWR and its manifestation in
ecophysiological traits like senescence, foliar area, leaf-minus-
air temperature, and leaf 13C discrimination and ii) to identify
the memory-induced physiological mechanisms associated with
the development of drought tolerance (in terms of resilience and
productivity) in SP-CWR in order to identify new sources for
breeding towards improved drought tolerance in sweetpotato.
MATERIAL AND METHODS

Experimental Conditions and Management
A pot experiment was conducted under greenhouse conditions
from July 13th to December 18th, 2018 at the experimental station
of the International Potato Center (CIP) in San Ramón, Junıń,
Peru (11° 7’ 39.3” S, 75°21’ 23.4” W, 850 m a.s.l.). The station is
located in the mountainous Amazon area of central Peru. The
region is characterized by a rainy, warm, and very humid climate
(SENAMHI, 2020) with an average annual maximum temperature,
average annual solar radiation and annual precipitation of 30.8 ±
0.46°C, 34.2 ± 1.51 MJ m-2 day-1, and 1,294 mm, respectively (data
from 2019, CIP–San Ramón weather station). Pots were distributed
in two neighboring screenhouses covered with an anti-aphid mesh
with an opening size of 0.26 × 0.82 mm. The screenhouses were
also covered with a translucid plastic and a black mesh (hole size of
2 × 2mm) to prevent high radiation stress and provide shelter from
rain. During the study period, the average relative humidity, and
maximum and minimum temperatures were 81.2 ± 0.96%, 32.7 ±
0.47°C, and 19.8 ± 0.21°C respectively. The average solar radiation
andmaximum vapor pressure deficit were 18.5 ± 0.94MJ m-2 day-1

and 2.7 ± 0.13 kPa (Supplementary Table S1). These variables
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were measured every 5 min. Temperature, relative humidity
(S-THB-M008 model), and solar radiation (S-LIB-M003 model)
sensors were recorded with a HOBO U30 datalogger (Onset
Computer Corporation, Bourne, MA, USA).

On July 13th eight seeds per accession were scarified
individually and placed on moist filter paper in petri dishes.
After germination seedlings were planted in peat pellets (Jiffy
Products Ltd., Canada) for 15 days to promote root
development. Subsequently, plantlets were transferred to pots
(6.4 L) filled with 6.5 kg of a 2:1 mixture of sand and peat-based
substrate (PRO-MIX, Premier Tech Horticulture, Canada). All
pots were randomized regularly i.e. the positions of individual
plants within the greenhouses were changed to avoid a
significant effect of pot positions on the measured traits. In
each screenhouse two HOBO U30 datalogger were placed at
different positions (one near the central isle and another near the
outside screen wall) to monitor temperature and humidity gradients.

Each pot received seven fertilizer applications scheduled every
2 weeks using 0.51 g N, 0.78 g P2O5, and 0.60 g, K2O (Peters
Professional ICL Ltd., Israel). To control thrips and whitefly,
folding traps with pheromones were installed and insecticides
(Ocaren, active ingredient: profenofos and fipronil, Interoc S.A.,
Peru and Vertimec, active ingredient: abamectina; Farmex S.A.,
Peru) were applied at a dose rate of 1 mL L-1 when necessary.
Since the wild species included in this study are twiners, a wire-
made spiral welded to three vertical rods was placed in each pot
to support the plants, in order to facilitate vertical growth and the
expansion of foliar area.
Plant Material
Fifty-nine accessions belonging to the Ipomoea series Batatas
(Choisy) D. F. Austin, the closest wild relatives of sweetpotato,
were selected from the SP-CWR collection of CIP’s genebank
(Table 1). The plant material included four accessions of
cultivated hexaploid I. batatas (L.) Lam. (hereinafter
“sweetpotato”) namely “Beauregard,” “Tanzania,” and two
accessions deriving from crosses between the two varieties:
“B×T” (Wu et al., 2018). Also, two accessions of wild
tetraploid (4x) I. batatas (L.) Lam. (Ozias-Akins and Jarret,
1994) and 53 accessions encompassing 10 species of the series
Batatas were included. The wild relative species assessed in this
study were: I. australis (O’Donell) J.R.I. Wood & P. Muñoz (5),
I. cordatotriloba Dennstedt (1), I. cynanchifolia Meisn. (3), I.
grandifolia (Dammer) O’Donell (5), I. leucantha Jacquin (2), I.
ramosissima (Poir.) Choisy (8), I. splendor-sylvae House (3),
I. tiliacea (Willd.) Choisy (2), I. trifida (H.B.K.) G. Don (16),
and I. triloba L. (8) (Khoury et al., 2015; Wood et al., 2020). The
basic chromosome number of all accessions in this study is x =
15. While most SP-CWRs of our taxon sample are diploid
(2n = 2x = 30), four accessions are tetraploid (2n = 4x = 60) and
the cultivated sweetpotato accessions are hexaploid
(2n = 6x = 90) (G. Rossel, CIP, pers. comm.) (Table 1). The
taxon sample of the wild species focused on Central and South
American species and considered geographic distribution range
and morphological variation between accessions of the
same species.
September 2020 | Volume 11 | Article 567507
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TABLE 1 | Sweetpotato crop wild relatives [Ipomoea series Batatas (Choisy) D. F. Austin] accessions from CIP’s genebank used in this study, with chromosome
number and ploidy (basic chromosome number: x=15), country of origin and biological status for each of them.

Accession
number

Species Chromosome
number

and ploidy

DOI Origin Biological
status

Groups

CIP 460360 I. australis 2n = 2x = 30† 10.18730/82SY PRY W B
CIP 460296 I. australis 2n = 2x = 30† 10.18730/80T4 ARG W B
CIP 460345 I. australis 2n = 2x = 30† 10.18730/82AF PRY W D
CIP 460585 I. australis 2n = 2x = 30† 10.18730/89GQ ARG W D
CIP 460164 I. australis 2n = 2x = 30† 10.18730/7Y5Y PRY W D
CIP 430434 I. batatas 2n = 4x = 60† 10.18730/852X JAP W B
CIP 460577 I. batatas 2n = 4x = 60† 10.18730/898F ECU TC B
CIP 440132 I. batatas “Beauregard” 2n = 6x = 90* 10.18730/65R1 USA AC B
CIP 440166 I. batatas “Tanzania” 2n = 6x = 90* 10.18730/66NY UGA TC B
CIP 105269.232 I. batatas “B×T” 2n = 6x = 90* 10.18730/SK7J$ PER Br B
CIP 113641.086 I. batatas “B×T” 2n = 6x = 90* 10.18730/SK7K= PER Br D
CIP 460077 I. cordatotriloba 2n = 2x = 30† 10.18730/7W75 MEX W B
CIP 460149 I. cynanchifolia 2n = 2x = 30† 10.18730/7XTK BRA W B
CIP 460556 I. cynanchifolia 2n = 2x = 30† 10.18730/88M* BRA W D
CIP 460555 I. cynanchifolia 2n = 2x = 30† 10.18730/88KZ BRA W D
CIP 460610 I. grandifolia 2n = 2x = 30† 10.18730/89QY BRA W B
CIP 460201 I. grandifolia 2n = 2x = 30† 10.18730/7YZK ARG W D
CIP 460583 I. grandifolia 2n = 2x = 30† 10.18730/89EN URU W D
CIP 460452 I. grandifolia 2n = 2x = 30† 10.18730/85MA ARG W D
CIP 460337 I. grandifolia 2n = 2x = 30† 10.18730/8238 PRY W D
CIP 460619 I. leucantha 2n = 2x = 30† 10.18730/89T~ COL W B
CIP 460204 I. leucantha 2n = 2x = 30† 10.18730/7Z2P ARG W D
CIP 460028 I. ramosissima 2n = 2x = 30† 10.18730/7V58 ECU W B
CIP 460032 I. ramosissima 2n = 2x = 30† 10.18730/7V9C BOL W B
CIP 460566 I. ramosissima 2n = 2x = 30† 10.18730/88Y5 PER W B
CIP 460567 I. ramosissima 2n = 2x = 30† 10.18730/88Z6 PER W B
CIP 460005 I. ramosissima 2n = 2x = 30† 10.18730/7THS PER W B
CIP 460047 I. ramosissima 2n = 2x = 30† 10.18730/7VNR PER W B
CIP 460722 I. ramosissima 2n = 2x = 30† 10.18730/8B0$ ARG W B
CIP 460036 I. ramosissima 2n = 2x = 30† 10.18730/7VCF BOL W D
CIP 460131 I. splendor-sylvae 2n = 2x = 30† 10.18730/7XE7 MEX W B
CIP 460373 I. splendor-sylvae 2n = 2x = 30† 10.18730/8355 NIC W B
CIP 460383 I. splendor-sylvae 2n = 2x = 30† 10.18730/83FF NIC W B
CIP 460528 I. tiliacea 2n = 4x = 60† 10.18730/87V7 CUB W B
CIP 460531 I. tiliacea 2n = 4x = 60† 10.18730/87YA CUB W B
CIP 460663 I. trifida 2n = 2x = 30† 10.18730/8A9B MEX W C
CIP 113735.283 I. trifida 2n = 2x = 30† 10.18730/SK7P1 PER Br C
CIP 107665.9 I. trifida 2n = 2x = 30* 10.18730/SK7MU PER W C
CIP 460026 I. trifida 2n = 2x = 30† 10.18730/7V36 COL W D
CIP 460430 I. trifida 2n = 2x = 30† 10.18730/84YS CUB W D
CIP 460377 I. trifida 2n = 2x = 30† 10.18730/8399 NIC W D
CIP 460745 I. trifida 2n = 2x = 30† 10.18730/8BDA GUA W D
CIP 460429 I. trifida 2n = 2x = 30† 10.18730/84XR NIC W D
CIP 460096 I. trifida 2n = 2x = 30† 10.18730/7WKH VEN W D
CIP 460195 I. trifida 2n = 2x = 30† 10.18730/7YSD VEN W D
CIP 460022 I. trifida 2n = 2x = 30† 10.18730/7V03 COL W D
CIP 113735.258 I. trifida 2n = 2x = 30* 10.18730/SK7N0 PER Br D
CIP 113735.302 I. trifida 2n = 2x = 30* 10.18730/SK7Q2 PER Br D
CIP 113735.329 I. trifida 2n = 2x = 30* 10.18730/SK7R3 PER Br D
CIP 107665.19 I. trifida 2n = 2x = 30* 10.18730/SK7H~ PER W D
CIP 460021 I. trifida 2n = 2x = 30† 10.18730/7TZ2 VEN W D
CIP 460309 I. triloba 2n = 2x = 30† 10.18730/817H PRY W B
CIP 460116 I. triloba 2n = 2x = 30† 10.18730/7X5= COL W C
CIP 460560 I. triloba 2n = 2x = 30† 10.18730/88RU PER W D
CIP 460052 I. triloba 2n = 2x = 30† 10.18730/7VSW VEN W D
CIP 460093 I. triloba 2n = 2x = 30† 10.18730/7WJG DOM W D
CIP 460517 I. triloba 2n = 2x = 30† 10.18730/87H$ ECU W D
CIP 460784 I. triloba 2n = 2x = 30† 10.18730/8C1Y JAM W D
CIP 460078 I. triloba 2n = 2x = 30† 10.18730/7W86 MEX W D
Frontiers in Plant Science |
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Groups were defined based on clustering analysis (see Figure 4). Groups B, C and D represent clusters I, II and III, respectively.
W, wild; TC, traditional cultivar/landrace; AC, advanced or improved cultivar; Br, breeding line. †(G. Rossel, CIP, pers. comm.). *Wu et al. (2018).
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Drought Priming Process
Eight individual plants per accession were distributed at random
in both greenhouses. Four individual plants per accession (i.e.
four replications) were randomly assigned to the two
experimental treatments. Previous stress memory studies by
Liu and Charng (2012); Ling et al. (2018) and Serrano et al.
(2019) were used to guide the experimental design of this study.
Treatments consisted of a series of water restriction periods of
increasing length (priming), versus full irrigation (non-priming).
After transplantation of seedlings into pots, all pots were watered
until field capacity (0.32 w/w) three times per week, following the
protocol of Rolando et al. (2015), until harvest. Non-primed
plants received full irrigation during the entire experimental
cycle while plants undergoing the water restriction treatment
were watered until flowering onset (FO) (Figure 1). Priming was
initiated when 50% of samples conforming an accession started
to exhibit flower buds (defined as FO occurrence) (Thiry et al.,
2016). Two different starting dates were established for early-
flowering (20 accessions) and late-flowering (18 accessions) or
non-flowering (21 accessions) accessions (Supplementary Table
S2). Three priming events, or water restriction periods, were
carried out with 8, 11, and 14 days of total water restriction. Each
of these water restricted periods was followed by a recovery
period of 14 days in which plants were irrigated until field
capacity (Figure 1). Therefore, the priming process consisted
of three water restriction periods: the first one started at FO
whereas the second and third priming events were initiated at 68
and 94 days after transplanting (DAT) for early as well as 94 and
122 DAT for late and non-flowering accessions, respectively.

Drought stress responses were measured at the end of the first
water restriction period to corroborate if 8 days was a sufficiently
long period to induce a significant drought stress. For this
purpose, maximum stomatal conductance at saturated light
(gs_max) was measured (sensu Medrano et al., 2002) in one
young and sun-exposed leaf of eight plants of 19 randomly
selected accessions using a portable photosynthesis system (LI-
6400TX, LI-COR, Nebraska, USA). Measurements were carried
out during early morning hours from 6:00 to 10:00 h local time.
The following micro-environmental parameters were recorded:
Frontiers in Plant Science | www.frontiersin.org 5
photosynthetic active radiation = 1,200 µmol m-2 s-1, CO2

concentration = 400 ppm, and atmospheric humidity = 50%.

Ecophysiological Measurements to
Determine Potential Short-Term Memory
Occurrence
Chlorophyll concentration (ChlSPAD) of all accessions was
measured using a portable chlorophyll meter (SPAD-502 Plus,
Konica Minolta Inc., Osaka, Japan) on 17 occasions during the
study period. An average of four readings from four young and
sun-exposed leaves were taken per plant. Senescence (S) was
estimated on each plant as the slope generated by fitting ChlSPAD
(from maximum leaf greenness to harvest) vs. time on a linear
function (Li et al., 2019). Assuming that an extended senescence
delay (high S) is associated with a higher probability of fixing
more carbon during the lifespan, short-term memory proxy’s
(STM) effect on S (STMS) was calculated as follows:

STMS = Spr − Snpr (1)

Where Spr and Snpr are S average values for primed and non-
primed plants, respectively. Regular assessments of foliar area
(FA) were carried out on both primed and non-primed plants
before and after each water restriction and recovery period by
taking visible images (using a Nikon model D7000 camera,
Nikon Corp., Japan) of each plant. Images were acquired
following CIP procedures (PSE-CIP, 2013) and processed with
Image Canopy software (Barreda et al., 2017) that allows the
calculation of foliar area through an image segmentation
technique separating healthy green vegetation from other
components within a picture. To test the effect of STM on FA
(STMFA) the following equation was calculated:

STMFA =
FAmax _ pr

FAmax _ npr
(2)

Where FAmax_pr and FAmax_npr are FA average maximum
value of the temporal assessments corresponding to primed and
non-primed plants, respectively. Leaf temperature was measured
radiometrically from 14:00 to 15:00 h following the protocols of
FIGURE 1 | Timeline representation for the watering treatments per accession: non-primed plants (no water restriction) and primed plants (water restriction periods).
Gray and white blocks mean substrate watering with full irrigation or no irrigation, respectively. Duration of every period during the priming process is indicated in
days within the blocks. The priming process started after flowering onset (FO).
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Idso et al. (1981) and Rinza et al. (2019). Measurements were
taken using an infrared thermometer (DT-882 model, CEM,
China) during 14 measurement events throughout the study
period. Air temperature was registered with four data loggers
(HOBO U23 Pro v2 Temperature/Relative Humidity, Onset
Computer Corporation, Bourne, MA, USA), two of which were
located inside each greenhouse at canopy level. The difference
between leaf and air temperature (dT) was calculated using
average leaf temperature and average air temperature
registered at the same time when leaf temperature was
measured. STM effect on dT (STMdT) was calculated as follows:

STMdT =
dTmin _ pr

dTmin _ npr
(3)

Where dTmin_pr and dT min_npr are the average minimum dT
over time reached by primed and non-primed plants of an
accession. Finally, two composed leave samples per accession
and treatment were collected at the end of each recovery period.
Six assessments in total were carried out from FO until harvest at
66, 93, and 121 DAT for early flowering accessions and at 94,
121, and 148 DAT for late- or non-flowering accessions. Each
composed sample consisted of 20 leaves—five young leaves per
plant—which were oven dried at 60°C for 48 h (BLUE M Model
POM-166EY, BLUE M Electronic Company, IL, USA). Dried
leaves were milled with a ball miller (MBIX-100 model, MRC,
Israel) and packed in tin capsules (Ramıŕez et al., 2015b).
Capsules were sent to the Stable Isotope Facility at the
University of Davis, USA, for carbon isotope composition
(d13C) analysis using a PDZ Europa ANCA-GSL elemental
analyzer coupled to PDZ Europa 20-20 isotope ratio mass
spectrometer (Sercon Ltd., Cheshire, UK). Leaf 13C
discrimination (D) was calculated as described by Farquhar
et al. (1989):

D ‰ð Þ = da − dp
1 + dp

 !
� 1000 (4)

Where dp is d13C of the sample and da is the d13C of the
atmospheric CO2, -8‰. STM effect on D (STMD) was estimated
as follows:

STMD =
Dmax _ pr

Dmax _ npr
(5)

Where Dmax_pr and Dmax_npr are the maximum D over time for
primed and non-primed plants within an accession, respectively.
The STM occurrence was defined when primed plants’ response
exceeded that of non-primed plants, i.e. when the STM value was
higher than zero (STM>0) in the case of S in Equation 1, and
higher than one (STM>1) in the case of FA, dT and D in
Equation 2, 3, and 5, respectively. For all accessions, the
priming process started at the same physiological stage
(following recommendations from Thiry et al., 2016) so that all
the ecophysiological indicators (S, Amax, dTmin, and Dmax) used
to determine potential STM occurrence were comparable
between accessions regardless of the starting date of the
priming process.
Frontiers in Plant Science | www.frontiersin.org 6
Drought Tolerance Indices and Statistical
Analysis
At the end of the priming process, total biomass was harvested
and subsequently oven dried at 60°C for 48 h to calculate the dry
weight of total biomass of primed (Ypr) and non-primed (Ynpr)
plants. In this study, total biomass comprises above and below
ground biomass and is generally expressed on a dry matter (DM)
basis. The stress susceptibility index (SSI) (Fischer and Maurer,
1978) and the geometric mean productivity index (GMP)
(Fernandez, 1992) were calculated as follows:

SSI =
1 − (Ypr=Ynpr)

1 − (Ypr=Ynpr)
(6)

GMP =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ypr � Ynpr

q
(7)

Where Ypr and Ynpr are the average total biomass (DM)
production of the primed and non-primed plants, respectively,
and Ypr and Ynpr are the overall average total biomass (DM)
production of the primed and non-primed plants, respectively.
SSI and GMP of a genotype were estimated as the resilience
capacity index (RCI) and the production capacity index (PCI)
following the score values method described by Thiry et al.
(2016) (Supplementary Appendix A). For of both score indices
(RCI and PCI), a score value of 1 means high susceptibility
whereas a score of 10 represents high drought tolerance.

A repeated measures analysis of variance (rmANOVA) was
run to evaluate the effects of the treatments (between subjects
factor) and time (within subjects factor) on assessed
ecophysiological variables (SPAD, FA and dT, except for D,
due to its composed samples). A one-way ANOVA was used
to assess differences (at p < 0.05) among accessions in total dry
weight (Y). A t-student test was used to identify significant
differences between treatments for every physiological
evaluation of SPAD, FA, dT, D, and Y. A Pearson correlation
analysis was performed to evaluate the relationship between
STM traits and both RCI and PCI. A principal component
analysis (PCA) was run to analyze the accessions ordination
through the association of STM trait effects and RCI, as well as
PCI. Finally, a cluster analysis following the Ward’s method was
computed using the R package “FactoMineR” (Lê et al., 2008) to
classify all accessions into any of the four Groups of plants
described by Fernandez (1992). All above described tests were
performed with RStudio software (R Core Team, 2019).
RESULTS

Short-Term Memory Occurrence
ChlSPAD, FA, dT, and D values ranged between 10.3–51.4 SPAD
units, 0.0–1,537.3 cm2, −12.2 – 4.1°C, and 20.4–25.3‰,
respectively. Effects of the water treatment for ChlSPAD, FA,
and dT were significant (p < 0.05) for 33.9, 81.4, and 81.4% of
the total accessions and the effect of time was significant in all
accessions for ChlSPAD, FA, and dT. The percentage of accessions
with a significant (p < 0.05) interaction between watering
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treatments and time for ChlSPAD, FA, and dT were 93.2, 98.3, and
78.0%, respectively (Supplementary Table S3). At the end of the
first water restriction period, at 53 DAT, primed plants had
78.6% less average gs_max than non-primed plants (0.02 ± 0.03
and 0.10 ± 0.04 mol H2O m-2 s-1 for primed and non-primed
plants, respectively) of the 19 assessed accessions. Moreover, 16
accessions (81.3%) presented primed plants with average gs_max

below 0.05 mol H2O m-2 s-1 (Supplementary Table S4). STM
occurrence was detected in 23.7, 28.8, 50.8, and 81.4% of the total
number of accessions for FA, dT, D, and S, respectively (Figure
2). For STMS, I. leucantha presented the highest value (0.48 for
CIP 460204) and I. trifida had the widest range (−0.09 – 0.35)
(Figure 3A) while for STMFA, I. ramosissima presented the
highest value (1.5 for CIP 460032) as well as the widest range
(0.76–1.5) (Figure 3B). I. australis showed both the highest
STMdT value (1.26 for CIP 460296) and the widest STMdT
Frontiers in Plant Science | www.frontiersin.org 7
range (0.66–1.26) (Figure 3C) whereas I. batatas had the
highest STMD value (1.04 for CIP 430434) and I. trifida the
widest STMD range (0.93–1.03) (Figure 3D). The raw data and
RGB images of each plant are available online (Guerrero-Zurita
et al., 2020).

Drought Tolerance, Resilience, and
Productivity Under Drought and Their
Relationship With Short-Term Memory
Occurrence
SSI and GMP values ranged between −0.83 – 1.74 and 7.56–78.1,
respectively (Supplementary Table S5). High coefficients of
determination between the original values for SSI and GMP
and their RCI and PCI score indices were obtained (R2 = 0.970
for SSI vs. RCI and R2 = 0.974 for GMP vs. PCI) indicating that
score indices can be used as a surrogate of their original index
A

B

D

C

FIGURE 2 | Short-term memory (STM) values per accession for senescence (STMS) (A), foliar area (STMFA) (B), leaf-minus-air temperature (STMdT) (C) and leaf 13C
discrimination (STMD) (D). Red dashed line indicates STM occurrence.
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value. The highest RCI were found in CIP 460116 (8.0), CIP
107665.9 (7.5), and CIP 460663 (7.0) while I. triloba had the
highest range of values (3.5–8.0) followed by I. trifida (2.0–7.5)
and I. grandifolia (1.75–5.25). Regarding PCI, the highest values
were found in CIP 440166 (9.75), CIP 460131 (6.0), and CIP
440132 (5.75) while sweetpotato cultivars presented the highest
range of scores (2.75–9.75) followed by I. splendor-sylvae
(4.25–6) and I. ramosissima (2.5–5.75). Moreover, I.
cynanchifolia, I. australis, I. grandifolia, I. trifida, and I. triloba
had higher RCI than PCI, whereas I. leucantha, I. ramosissima, I.
cordatotriloba, I. tiliacea, wild I. batatas, I. splendor-sylvae, and
the sweetpotato cultivars had higher PCI than RCI.

STMdT showed a significant positive and negative correlation
with PCI (r = 0.52) and RCI (r = −0.30), respectively, whereas
STMFA was the trait with the highest positive correlation with
RCI (r = 0.38) (Table 2). The first three components of the PCA
represented 72.7% of the total variance (Table 3). The first
component was mainly explained by STMS and RCI with a
negative effect and STMdT and PCI with a positive effect. STMFA

showed a higher weight in the second principal component. The
third principal component was mainly explained by STMdT with
positive effect (Table 3).

Clustering analysis grouped the accessions into three clusters:
I, II, and III (Figure 4). Cluster I, II, and III contained 24, 4, and
31 accessions, respectively (Table 1). When analyzing the
average response per variable obtained in each group, cluster I
A B

DC

FIGURE 3 | Boxplot of short-term memory (STM) values per crop wild relatives (CWR) species and sweetpotato cultivars (orange boxplots) for senescence (STMS)
(A), foliar area (STMFA) (B), leaf-minus-air temperature (STMdT) (C) and leaf 13C discrimination (STMD) (D). Red dashed line indicates the STM occurrence. In each
specie’s boxplot, black line represents the median value. Boxplot contains the variation between 25 and 75% and gray circles are the outlier values.
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TABLE 2 | Pearson correlation coefficients matrix among short-term memory
(STM) traits and drought tolerant indices.

STMS STMFA STMdT STMdT RCI

STMFA 0.22

STMdT -0.26∗ -0.01
STMD 0.01 0.20 0.20
RCI 0.21 0.38∗∗ -0.30∗ -0.14
PCI -0.25 0.13 0.52∗∗ 0.19 -0.27∗
Septembe
r 2020 | Volum
e 11 | Article 5
RCI, resilience capacity index; PCI, production capacity index. See STM traits
abbreviations in Figure 2. ∗∗p < 0.01, ∗p < 0.05.
TABLE 3 | Extracted components from Principal Component Analysis based on
the ordination of short-term memory (STM) traits, drought tolerance resilience
(RCI), and productivity (PCI).

Variable PC 1 PC 2 PC 3

STMS -0.55 0.30 0.46
STMFA -0.21 0.85 -0.22
STMdT 0.77 0.21 -0.14
STMD 0.33 0.54 0.61
RCI -0.66 0.37 -0.45
PCI 0.73 0.34 -0.25
Eigen-value 2.03 1.42 0.91
TCV (%) 31.86 57.47 72.72
TCV, total cumulative variance; PC, principal component. See STM traits abbreviations in
Figure 2.
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had the highest average for STMdT, STMΔ, PCI, and Ynpr (1.03 ±
0.1, 1.01 ± 0.0, 4.39 ± 1.7, and 49.1 ± 16.4 g, respectively) whereas
cluster II was highest for STMS, STMFA, and RCI (0.23 ± 0.1,
1.34 ± 0.1, and 7.0 ± 1.1, respectively) (Table 4). Accessions
belonging to cluster III displayed the lowest average response for
Frontiers in Plant Science | www.frontiersin.org 9
all traits (Table 4). Cluster I contained the highest percentage of
accessions with STMΔ occurrence (70.8%) followed by cluster II
(50%) and cluster III (35.5%) (Figure 5).
DISCUSSION

Priming Induction Was Expressed Mainly
in Senescence Delay and Photosynthetic
Performance Traits
The highest ChlSPAD values (51.4, 50.5, and 49.4 SPAD units for
accessions CIP 440166, CIP 430434, and CIP 460528, respectively)
observed in this study were higher than previously recorded in
root and tuber crops such as sweetpotato (~42.0 SPAD units;
Mbinda et al., 2018; Mbinda et al., 2019), cassava (47 SPAD units;
Ogaddee and Girdthai, 2019), and potato (49 SPAD units;
Rolando et al., 2015 and ~45 SPAD units; Ramıŕez et al., 2014).
Also, the lower dTmin average value obtained here (−12.2 ± 0.7°C,
for primed CIP 460531), was much lower than minimum dT
values reported in potato (about −6°C; Stark et al., 1991) or alfalfa
(approximately −10°C; Idso et al., 1981) under no-stress
FIGURE 4 | Clustering analysis and 2D ordination of sweetpotato cultivars and its CWR species based on Principal Component Analysis for component loadings
(STM traits, PCI and RCI). Clusters I, II and III correspond to Fernandez's (1992) Groups B, C, and D, respectively.
TABLE 4 | Average value ± standard error of STM traits, drought tolerance
indices and total biomass production for each cluster (I, II and III) from Principal
Component Analysis.

Cluster

Variable I II III

STMS 0.03 ± 0.01 0.23 ± 0.1 0.11 ± 0.1
STMFA 0.96 ± 0.2 1.34 ± 0.1 0.87 ± 0.1
STMdT 1.03 ± 0.1 0.63 ± 0.1 0.78 ± 0.1
STMD 1.01 ± 0.0 1.00 ± 0.0 0.99 ± 0.0
RCI 3.17 ± 1.0 7.0 ± 1.1 3.77 ± 1.0
PCI 4.39 ± 1.7 1.81 ± 0.6 2.04 ± 0.9
Ynpr (g) 49.1 ± 16.4 17.6 ± 4.8 24.5 ± 9.3
Ypr (g) 25.9 ± 9.4 16.6 ± 2.6 14.4 ± 5.0
Ynpr, total biomass production of non-primed treatment; Ypr, total biomass production of
primed treatment. See STM traits, RCI, and PCI abbreviations in Figure 2.
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conditions. Given that the minimum value was achieved by
primed plants in the recovery period of the third water
restriction period, these results suggest an optimization in
stomatal behavior as a result of the priming process. The
highest Dmax average value (25.3‰ for primed CIP 460583)
obtained in this study in the third water restriction period, was
higher than previously reported for sweetpotato (21.7 ‰, Zhang
et al., 2015 and 23.6‰, Ramıŕez et al., 2017) or potato (23‰,
Ramıŕez et al., 2015b).

Studies of stress memory response in A. thaliana (Ling et al.,
2018; Serrano et al., 2019) found an improvement in heat-stress
tolerance after a second priming event. The ecophysiological
indicators (S, FAmax, dTmin, and Dmax) assessed in our study
indicated an improvement in primed plants after the first water
restriction period. Delayed senescence was the most important
trait increasing after water restriction events in 81.4% of the
genotypes (Figure 2A). Delayed senescence is the result of a
stress-response mechanism characterized by slower chlorophyll
degradation over time, in comparison to unstressed genotypes
(Thomas and Howarth, 2000; Rivero et al., 2007; Abdelrahman
et al., 2017). In both potato (Rolando et al., 2015) and sweet
potato (Smit, 1997; Bararyenya et al., 2020), delayed senescence
has been attributed to outstanding yield, since it extends the
period of time in which the plant can fix carbon. On the other
hand, primed plants from 23.7% of the total number of
accessions (Figure 2B) increased their foliar area (i.e. higher
aerial biomass than non-primed plants) after the first water
restriction period. These findings are corroborated by previous
studies in which higher green leaf area was observed during
Frontiers in Plant Science | www.frontiersin.org 10
recovery from early season drought in tolerant genotypes (Rivero
et al., 2007; Puangbut et al., 2009; Lewthwaite and Triggs, 2012).
Foliar area—a trait prioritized in breeding programs (Lenis et al.,
2006; De Souza et al., 2017)—has been correlated to light
interception and use efficiencies (Legg et al., 1979; Zhu et al.,
2008; De Souza et al., 2017).

Another important trait to be considered in breeding
programs that seek to improve drought tolerance is canopy
temperature (Obidiegwu et al., 2015). The ability of plants to
cool their leaves via stomata while at the same time saving water
has been correlated with drought tolerance (Blum and Arkin,
1984; Blum, 2005; Hirayama et al., 2006; Ramıŕez et al., 2015b).
The leaf-minus-air temperature (dT) has thus been used as an
index of plant water status (Takai et al., 2010; Tuberosa, 2012;
Iseki et al., 2018) or as an indirect method of indicating stomatal
conductance (Jackson et al., 1977; Hatfield, 1983; Rinza et al.,
2019). Previous studies have demonstrated that genotypes with
the lowest dT values (here dTmin) had the highest transpiration
and photosynthetic rates (Hirayama et al., 2006; Takai et al.,
2010; Rukundo et al., 2017). These results are corroborated by
our findings, in which primed plants from 17 accessions (Figure
2C) presented lower dT values in the second or third recovery
period than those obtained by their respective non-primed plants
throughout their lifespan. Our results suggest that a potential
short-term memory induced cooling mechanism in primed
plants enabled them to decrease leaf temperatures in response
to hot and dry environments.

On the other hand, 13C discrimination integrates the
photosynthetic performance throughout the period of leaf
tissue synthetization (Jefferies and Mackerron, 1997; Dawson
et al., 2002). According to literature, this trait is expected to
decrease in drought conditions, due to a reduced discrimination
against 13C by RuBisCO (Farquhar et al., 1989), and to partial
recovery after re-watering (Xu et al., 2010; Ramıŕez et al., 2016;
Silva-Dıáz et al., 2020). In that respect, leaf 13C discrimination
from primed plants, measured in every recovery period, reflects
the effects of previous water restriction periods. Memory effects
were determined by calculating the maximum leaf 13C
discrimination (Dmax) reached by primed plants and comparing
it with the one achieved by non-primed plants. Primed plants
from 30 accessions (Figure 2D) mitigated the negative effects of
the first water restriction period, and even reached a higher Dmax,
at the end of the priming process, than non-primed plants grown
under fully irrigated conditions suggesting a potential short-term
memory occurrence. This improvement in photosynthetic
performance has also been documented in potato (Ramıŕez
et al., 2016; Silva-Dıáz et al., 2020), wheat (Monneveux et al.,
2005), and rice (Impa et al., 2005), but not on a level as high as
observed in our study, induced by short-term memory in
primed plants.

Of the four traits evaluated, the performance of senescence
and photosynthesis were the most favorable following the
priming process, which revealed their potential flexibility
under stress memory induction. These results suggest that
potential stress memory induction helps modify metabolic
pathways related to chlorophyll degradation (Rivero et al.,
FIGURE 5 | Boxplot of short-term memory (STM) effect on leaf 13C
discrimination (STMΔ) for each cluster. Red dashed line indicates the STM
occurrence (STMD > 1). In each cluster’s boxplot, black line represents the
median value. Boxplot contains the variation between 25 and 75% and gray
circles are the outlier values.
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2007; Abdelrahman et al., 2017) and photosynthesis recovery
(Ramıŕez et al., 2016). Also, despite their corroborated relation to
drought tolerance, FA and dT presented a lower percentage of
STM occurrence, suggesting a more complex response enhanced
by stress memory. Species such as I. leucantha, I. australis and I.
grandifolia presented even higher STMS than sweetpotato
cultivars (Figure 3A), leading us to recommend the consideration
of these CWR species for use in breeding programs. Regarding
photosynthetic performance, all SP-CWR species contained at least
one accession in which STM occurrence (Figure 3D) suggests the
potential of this group of species for easy recovery in environments
with prolonged drought seasons.
A New Model for Drought Tolerance
Improvement in Sweetpotato Based on
Stress-Memory Induction and Wild
Relatives
Resilience of a crop is the extent to which it is capable of
surviving stress or other perturbations through physiological
adaptations, with a minimum effect on yield (Holling, 1973;
Trenbath, 1999). There is a differentiated capability of
sweetpotato genotypes to allocate more carbon to above
ground biomass than harvestable roots (e.g. Ejumula variety)
under non-stress growth conditions (Coleman et al., 2006;
Ramıŕez et al., 2017), however, the implications of this shifted
resource allocation have not been explored yet. In our study, the
capability to increase foliar area appears to be the main trait
responsible for enhanced resilience (Table 2), an observation
that is in agreement with previous studies on sorghum in which
genotypes submitted to severe water restriction presented higher
yields due to both increased leaf area and delayed senescence
(Borrell et al., 2000). Moreover, in cassava, De Souza et al. (2017)
highlight the importance of breeding for genotypes with
increased leaf area to improve biomass production and drought
response. Our results suggest that there is an association between
delayed senescence and increased foliar area that elevated RCI
response (Figure 4). In cereals, early-heading, which translates as
a delayed senescence, is considered an escape strategy from
adverse environmental conditions (Turner, 1979; Levitt, 1980;
Dolferus, 2014) rather than representing a resilience response
(Thiry et al., 2016). This study’s results suggest that delayed
senescence is the cause of increased leaf area. This resilience
response includes more and longer-living foliage, which provides
more time and space to fix additional CO2 (Legg et al., 1979; Zhu
et al., 2008; De Souza et al., 2017), and results in higher aerial
biomass (Puangbut et al., 2009). However, the link between
senescence delay and leaf biomass production is a relationship
that should be explored more profoundly in the future.

Crop productivity has been associated with canopy
temperature (e.g. dT) and the latter has been frequently used as
a selection method for drought tolerance (Jackson et al., 1981;
Jones, 2006; Takai et al., 2010; Zia et al., 2013). Some studies have
shown that lower dT values are a consequence of higher stomatal
conductance (Jackson et al., 1977; Hatfield, 1983; Rinza et al.,
2019) and effective water uptake (Blum, 2009) representing the
Frontiers in Plant Science | www.frontiersin.org 11
optimization of leaf thermoregulation and gas exchange. In our
study, production capacity (PCI) was mainly related to STMdT

(Table 2) confirming the aforementioned results of other authors.
The combination of dT and leaf 13C discrimination were
associated with elevated PCI values (Figure 4) suggesting that
optimized leaf thermoregulation and gas exchange is a
consequence of improved photosynthetic performance and
recovery (Jefferies and Mackerron, 1997; Dawson et al., 2002),
which ultimately leads to higher levels of productivity in SP-CWR.

Three groups of accessions performed differently in this study.
Accessions from cluster I, presented higher biomass production in
non-stress (Ynpr) than in water deficit conditions (Ypr) (Table 4).
Accessions in this cluster correspond to Group B of Fernandez’s
(1992) classification of plants based on biomass production (Table
1). Group B corresponds to Thiry et al. (2016) classification based
on PCI and RCI, since accessions falling into group B also showed
the highest average PCI value (4.39 ± 1.7). In cluster II, primed
plants equaled the biomass production obtained from non-primed
plants of the same accession (Table 4). This together with the
highest average RCI value (7.0 ± 1.1), suggests that these
accessions belong to Group C in Fernandez (1992) classification
(Table 1). Cluster III of this study corresponds to Group D in
Fernandez (1992) classification (Table 1) because the respective
accessions had the lowest biomass production performance in
both non-stress and stress conditions and the lowest PCI and RCI
values (Table 4). Our results suggest that sweetpotato crop wild
relatives possess outstanding physiological mechanisms to
respond to both non-stress and water restriction scenarios.
Primed SP-CWR species from cluster II (Table 1) such as I.
triloba (CIP 460116) and I. trifida (CIP 107665.9, CIP 460663, and
113735.283) showed better biomass production performance
under drought stress and hence could be considered for use in
breeding programs (Thiry et al., 2016) to improve sweetpotato
resilience, a trait much appreciated by breeders (Andrade et al.,
2016). The aforementioned species coincide with previous studies
(Iwanaga, 1988; Komaki, 2004; Zhang and Liu, 2005;
Nimmakayala et al., 2011), which were based on biomass
production under stress conditions but did not assess
physiological performance. On the other hand, accessions from
species such as I. splendor-sylvae, I. ramosissima, I. tiliacea, and
wild I. batatas from cluster I could only be used as a potential
genetic source of traits related to optimized leaf transpiration and
photosynthetic performance.

The enhancement of drought tolerance in our study is also
supported from a physiological point of view. Ramıŕez et al.
(2015a) defined drought tolerance enhancement based on 13C
discrimination, when primed plants presented higher 13C
discrimination than non-primed plants. This physiological
criterium matches our RCI-PCI drought tolerant genotypes
from cluster I and II, as both of them contained the highest
number of accessions with STMΔ occurrence (Figure 5).
Therefore, we have demonstrated, experimentally, the existence
of drought tolerance and, physiologically, the drought tolerance
enhancement induced by short-term memory.

Due to ploidy differences of the taxa and other barriers to
hybridization, interspecific hybridization between sweetpotato
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and related wild species is challenging and usually requires the
employment of a pre-breeding approach. However, several
authors have shown that the creation of interspecific hybrids is
feasible using ovule culture (Kobayashi et al., 1994), somatic cell
hybridization (Liu et al., 1994; Zhang et al., 2002; Yang et al.,
2009), application of phytohormones in combination with
controlled pollination (Cao et al., 2009), creation of synthetic
hexaploids and triploids (Nishiyama et al., 1975; Shiotani and
Kawase, 1987; Freyre et al., 1991), and interploidy hybridization
(Orjeda et al., 1991). Successful production of hybrids between
hexaploid sweetpotato and CWR species of the Batatas complex
was reported for I. trifida (Orjeda et al., 1991; Kobayashi et al.,
1994), I. triloba (Kobayashi et al., 1994; Liu et al., 1994; Yang
et al., 2009), I. lacunosa (Kobayashi et al., 1994; Zhang et al.,
2002), I. grandifolia (Cao et al., 2009), I. littoralis (Nishiyama
et al., 1975), and I. leucantha (Nishiyama et al., 1975). Moreover,
modern breeding techniques (e.g. CRISPR/Cas9-mediated
genome editing) offer promising options for introgression of
genes from wild relatives into the hexaploid cultivated genepool
which need to be further explored (Wang et al., 2019).
CONCLUSION

Potential short-term memory induction constitutes a promising
method to enhance physiological responses in SP-CWR. Primed
accessions in this study showed physiological mechanisms
(delayed senescence, increased foliar area, optimized leaf
transpiration, or improved photosynthetic performance) that
enable plants to cope with severe drought conditions. Because
potential stress memory triggered the greatest increase in foliar
area in I. tiliacea and some accessions from I. ramosissima (CIP
460032, CIP 460722) and I. triloba (CIP 460116), this trait might
be more relevant in breeding for dual purpose sweetpotato cultivars,
used to produce food as well as livestock feed. However, with a view
toward long-term memory induction, more studies are required to
elucidate the underlying molecular mechanisms (epigenetic
processes, gene silencing, chromatin remodeling) responsible for
drought tolerance improvement in sweetpotato as shown in this
study. Furthermore, we showed that SP-CWR developed drought
tolerance through two basic mechanisms: i) resilience, by
developing more leaves with an increased time to fix carbon and
ii) productivity, by optimizing leaf thermoregulation and gas
exchange. The use of resilience capacity and productivity
capacity, simultaneously, allowed us to easily identify genotypes
from Group C, a group of plants that is highly appreciated by
breeders. This study confirms the effectiveness of a potential short-
term memory induction for enhancing plants’ drought stress
response, the potential applications of which include more
efficient water use in irrigated crops and the production of more
resilient sweetpotato planting material. It also sets a precedent in
stress memory in SP-CWR and demonstrates that this group
constitutes a potential and untapped source of valuable
physiological traits for sweetpotato improvement programs.
However, further field trials under different environmental
Frontiers in Plant Science | www.frontiersin.org 12
conditions and in different years are necessary to confirm our
preliminary results.
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