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Foliar fungal diseases may cause important losses on yield and quality of wheat (Triticum
aestivum L.). They may impact crop growth rate differently, modifying nitrogen (N)
dynamics and carbohydrate accumulation in the grain. The relationship between N and
carbohydrates accumulation determines the grain protein concentration, which impacts
the gluten concentration and rheological properties of the wheat flour. In addition,
types of fungicides and N fertilization can influence the intensity of foliar diseases and
have an effect on the milling and end-use quality, depending on the bread-making
aptitude of the genotypes, the nutritional habit of the pathogen involved, the amount
and time of infection, environmental factors, and interactions between these factors.
In that way, N fertilization may modify the severity of the diseases according to the
nutritional habit of the pathogen involved. Some fungicides, such as strobilurins and
carboxamides, produce high levels of disease control and prolong the healthy leaf area
duration, which translates into important yield responses, potentially compromising the
grain protein concentration by additional carbohydrate production, with consequences
in the bread-making quality. Furthermore, infections caused by biotrophic pathogens
can be more damaging to N deposition than to dry matter accumulation, whereas the
reverse has been generally true for diseases caused by necrotrophic pathogens. The
time of infection could also affect yield components and N dynamics differentially. Early
epidemics may reduce the number of grains per area and the N remobilization, whereas
late epidemics may affect the thousand kernel weight and mainly the N absorption post-
flowering. A review updating findings of the effects of infections caused by foliar fungal
pathogens of different nutritional habits and the incidence of several factors modifying
these effects on the above-ground biomass generation, N dynamics, protein and gluten
concentration, milling, rheological properties, loaf volume, and other quality-related traits
is summarized. Three main pathogens in particular, for which recent information is
available, were taken as representative of biotrophic (Puccinia triticina), necrotrophic
(Pyrenophora tritici-repentis), and hemibiotrophic (Zymoseptoria tritici) nutritional habit,
and some general models of their effects are proposed. New challenges for researchers
to minimize the impact of foliar diseases on end-use quality are also discussed.

Keywords: fungal pathogens, foliar disease severity, fungicides, N fertilization, N remobilization, N post-anthesis
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INTRODUCTION

Meeting the growing demand for food and increasing the
nutritional quality of crops over the next 30 years will be
challenging, given the rapid population growth (FAO, IFAD,
UNICEF, WFP, and WHO, 2019). Bread wheat (Triticum
aestivum L.) is an important portion of the standard diet for many
people in most countries where it is consumed regularly as a main
source of calories. Wheat also provides a number of components
that are essential for health, notably protein, vitamins (mainly B
vitamins), dietary fiber, and phytochemicals (Shewry and Hey,
2015). Yield potential and attainable yield in wheat, which are
affected by biotic and abiotic stresses, must dramatically increase
in future years to meet the forecasted world demand; this increase
should be accompanied by improved nutritional quality.

Wheat quality is a complex concept. It is defined in terms
that represent value to a specific end-user, i.e., wheat quality
is perceived differently, depending on the stakeholders of the
wheat value chain. Farmers will value a wheat variety that
produces high yields and allows them to allocate the harvested
grain at the highest price in the market, whereas millers will
focus on getting high flour yields during milling. For their
part, manufacturers will put emphasis on (i) processing quality,
which is the aptitude of a particular variety to be processed
at a low cost to obtain a constant result, and (ii) the end-use
quality, which is the ability to produce a specific product that
meets consumer requirements. For millers, grain hardness and
density (test weight) are important parameters of milling quality
(Guzmán et al., 2016), whereas for processing as well as end-
use quality, grain hardness, grain protein concentration (GPC),
gluten quality, and quantity affecting rheological properties are
important. Furthermore, nutritional quality, which is important
for physical health, is becoming a priority for food producers
(Köpke, 2005).

The main components of the endosperm of grain wheat
are starch and protein. Starch, which is composed of amylose
and amylopectin, is the key factor determining wheat yield,
accounting for 65 to more than 80% of grain weight (Hurkman
et al., 2003). The starch physicochemical properties are
influenced by the ratio of amylose to amylopectin (about 25–
30% to 70–75%) which are essential for the end-use quality.
Carbohydrates in the grains mainly come from photosynthesis
during the grain filling (Blum, 1998). The other important storage
compound of the wheat grain is protein-related with the nitrogen
(N) dynamics and accounts for 10–15%, whose composition is
essential for flour quality (Li et al., 2018). The deposition and
redistribution of N are crucial processes regulating grain yield
and grain quality in wheat (Gaju et al., 2014). High uptakes of
N are critical for obtaining high grain yields or high grain quality

Abbreviations: AlvL, dough extensibility; AlvP/L, dough tenacity/dough
extensibility ratio; AlvP, dough tenacity; AlvW, dough strength; BU, Brabender
unit; CGR, crop growth rate; FarA, flour water absorption; FarB, dough
development time; FarD, dough stability; FarE, dough softening degree; GLAI,
green leaf area index; GNC, grain nitrogen concentration; GPC, grain protein
concentration; HAD, healthy area duration; HFN, Hagberg falling number;
NPA, nitrogen post-anthesis absorption; NREM, nitrogen remobilization; RUE,
radiation use efficiency.

(Barraclough et al., 2014). Nitrogen grain yield is mainly derived
from (i) the amount of N accumulated in the plant previous to
anthesis and remobilized to the filling grains (N remobilization;
NREM); (ii) the N uptake from the soil after anthesis (N post-
anthesis absorption; NPA), and (iii) the redistribution during
grain development (Masclaux-Daubresse et al., 2010; Gaju et al.,
2014). An important amount of N in mature grains (50–95%)
comes from the NREM (Palta and Fillery, 1995; Kichey et al.,
2007), the main sources of which are stems and leaves (Critchley,
2001). Furthermore, NPA can provide between 5 and 50% of
grain N (Van Sanford and MacKown, 1987; de Ruiter and
Brooking, 1994), depending on the N available in the soil,
environmental conditions, and the effect of abiotic-biotic stresses
during this period (Palta et al., 1994; Barbottin et al., 2005).

Prolamins consisting of gliadins and glutenins account for
70–80%, while the non-prolamin part, including albumins and
globulins, accounts for 20–30% (Tasleem-Tahir et al., 2012).
Prolamins are the main storage proteins and condition the
viscoelasticity of dough. In contrast, non-prolamins, called
metabolic proteins, are important in cellular metabolism and
contain more essential amino acids important for human health,
such as aspartate, threonine, lysine, and tryptophan compared
to prolamins (Tasleem-Tahir et al., 2012). Nonetheless, some
studies have also reported high-molecular-weight albumins and
certain globulins having a storage function (Gao et al., 2009;
Dong et al., 2012). Albumins and globulins are accumulated first,
during the first 10 days after the anthesis (Gupta et al., 1991;
Stone and Nicolas, 1996). Although they accumulate through
the whole grain-filling development stage, they represent a low
percentage of the total protein amount at physiological maturity.
This is because, after that, the accumulation of reserve proteins
accounting for the highest percentage of the total amount at
maturity starts (Stone and Savin, 1999; Triboi et al., 2003).
There are suggestions in the literature about the influence of
certain albumins on rheological properties of wheat flour dough,
especially those associated with water absorption and resistance
to extension (Osipova et al., 2012; Tomić et al., 2015). However,
gluten proteins are primarily responsible for the viscoelastic
properties of dough and ultimately the processing and end-
use quality of wheat. Gluten is mainly composed of gliadins,
soluble in alcohol, and glutenins, insoluble in alcohol–water
solutions. Gliadins are the first reserve proteins deposited, around
5–10 days after fertilization, whereas glutenins are detectable
20 days after fecundation; both accumulate at the end of
grain-filling (Panozzo et al., 2001; Figure 1). Gliadins provide
the extensibility and viscosity of the dough, while glutenins
contribute to elasticity and dough strength (Wieser, 2007).
Equilibrium between gliadins and glutenins is advantageous to
attain dough that does not need excessive mixing energy to reach
peak development (Stone and Savin, 1999). Therefore, any factor
affecting the length and rate of the grain-filling period may alter
protein composition and reduce the GPC, thus modifying the
dough properties (Jamieson et al., 2001).

The gluten constitution of a wheat-flour sample is set by the
genotype, due to the configuration of the three high-molecular-
weight glutenins (HMW-GS) subunits, the three low-molecular-
weight glutenins subunits (LMW-GS), and six gliadin-coding loci
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FIGURE 1 | General scheme of protein fractions (A) and dry matter accumulation (B) in the wheat grain as a function of the days after anthesis (Phase 1: cell division,
Phase 2: cell enlargement, and Phase 3: dehydration and grain maturation). Reproduced from Stone and Nicolas (1996) with permission from CSIRO Publishing.

(Wrigley et al., 2006). The gluten quantity is generally correlated
with the GPC that is more influenced by growing conditions
determined by temperature, rainfall, and soil fertility, as well as
harvest, storage, and transport. Interactions between genotype
and environment also have significant influence on wheat quality
as some cultivars are more affected by growing conditions than
others (Wrigley, 2009).

The interaction between different components of the wheat
grain determines the processing and end-use quality. The growth
of wheat grain is sigmoidal, beginning with a short lag phase
when cells in the endosperm divide rapidly with little increase
in dry weight, which determines the potential size of the grain
(Brocklehurst, 1977; Hunt et al., 1991). During this lag phase,
the sites where starch and proteins will accumulate are formed,
and the first traces of starch and protein, mainly metabolics
and gliadins, appear. This phase is followed by a longer and
more rapid filling period when dry weight increases as a linear
function until a maximum dry weight is attained (Brocklehurst,
1977; Jenner, 1991), at the end of which the rate of dry matter
accumulation slows until physiological maturity when no further
addition is made to grain weight (Figure 1).

Although considerable attempts have been made to further
understand abiotic stresses, including N nutrition on milling,
processing, and end-use quality of wheat (Triboi et al., 2000;
Nuttall et al., 2017), there is less known about the effect of biotic
factors, such as genotypic resistance to fungal diseases and their
interaction with N fertilizers and fungicides on crop N dynamics,
GPC, gluten content, milling, and dough properties, which have
been only partly addressed in recent years.

Wheat diseases are responsible for 10–28% of yield losses
worldwide (Bockus et al., 2001; Figueroa et al., 2018; Savary et al.,
2019). Among them, foliar diseases have crucial importance.
Foliar diseases caused by fungi-like rusts [stripe (yellow) rust
Puccinia striiformis f. sp. tritici Westend., leaf rust Puccinia
triticina Eriks], Septoria leaf blotch (Zymoseptoria tritici P.
Crous), and powdery mildew (Blumeria graminis f. sp. tritici (DC.
Speer) are ranked among the most important ones worldwide

(Dean et al., 2012). Other important foliar wheat diseases are
tan spot (Pyrenophora tritici-repentis (Died.) Drechs, anamorph
Drechslera tritici-repentis (Died), spot blotch (Cochliobolus
sativus S. Ito & Kurib., anamorph Bipolaris sorokiniana (Sacc.)
Shoemaker), and Septoria nodorum blotch (Phaeosphaeria
nodorum (Müller) Hedjar, anamorph Parastagonospora nodorum
(Berk.) Quaedvl., Verkley & Crous).

Foliar diseases may influence the dynamics of carbohydrates
and N, which determine grain yield and quality (Gaju et al.,
2014). In addition, management practices such as N fertilization,
genotypes, and fungicides may impact these effects in a
differential way. Nitrogen fertilization may influence the severity
caused by fungal diseases, generally increasing grain yield and
modifying N dynamics and end-use quality (Castro et al.,
2018; Schierenbeck et al., 2019a,b,c). Furthermore, fungicide
applications can increase yield and cause a differential effect
on the N remobilization, processing, and end-use quality
parameters, depending on the nutritional habit of the pathogen
(Fleitas et al., 2018a,b; Schierenbeck et al., 2019a,b,c). Moreover,
the effects of fungicides on NREM and end-use quality can be
different according to the type of fungicides used, due to their
variable effects on leaf senescence and grain yield. Triazoles,
which are characterized by a lively inhibitor of ergosterol, are
one of the foremost groups of fungicides available to control
foliar diseases in wheat. They are usually utilized in combination
with strobilurins, which are synthetic derivatives produced by
the Basidiomycete fungus Strobilurus tenacellus (Pers.), with
a wide antifungal spectrum. Bayles (1999) mentioned that
strobilurins could cause substantial yield increases, higher than
those produced by conventional fungicides, because they have
an ethylene-synthesis-inhibition property, which can cause a
delay in leaf senescence. Furthermore, the incorporation of
carboxamides (succinate dehydrogenase inhibitors) in triazole-
strobilurin mixtures has resulted in better control of some
foliar wheat diseases, such as tan spot and leaf rust (Fleitas
et al., 2018a,b). On the other hand, the effects of fungal
diseases and consequently of fungicides used to control them on

Frontiers in Plant Science | www.frontiersin.org 3 November 2020 | Volume 11 | Article 569401

https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles


fpls-11-569401 November 13, 2020 Time: 14:24 # 4

Simón et al. Foliar Diseases and Wheat Quality

GPC may vary according to the end-use quality of genotypes
used (Puppala et al., 1998; Dimmock and Gooding, 2002c;
Castro and Simón, 2016).

A review of the effects of fungal foliar diseases with
different nutritional habits on crop dynamics, protein and
gluten concentration, milling, and end-use quality in wheat is
presented. The interaction among the diverse nutrition strategies
of foliar pathogens with different N schemes, genotypes, and
fungicide applications is also summarized. Controversial results,
drawbacks, and gaps in research areas, and new insights and
strategies to solve them and minimize the impact of those diseases
on quality variables are discussed.

THE INTERACTION OF NITROGEN
FERTILIZATION WITH FOLIAR WHEAT
DISEASES CAUSED BY PATHOGENS OF
DIFFERENT NUTRITIONAL STRATEGIES

Effects of foliar wheat diseases on yield and N dynamics and
consequently on milling and end-use quality depends on several
factors, including the severity of the diseases and the growth stage
at which they occur. It has been reported that the nutritional
habit of the pathogen and its interaction with N fertilization affect
the severity of the diseases (Olesen et al., 2003) impacting N
dynamics (Schierenbeck et al., 2019a,b,c).

According to their nutritional habit, pathogens can be
classified as biotrophs, necrotrophs, or hemibiotrophs (Oliver
and Ipcho, 2004). Necrotrophs (such as P. tritici-repentis,
Phaeosphaeria nodorum, Cochiobolus sativus) are non-obligate
parasites that kill host tissues as they colonize and grow on the
contents of dead or dying cells (Stone, 2001). When a spore of
P. tritici-repentis comes in contact with a leaf of a susceptible
host, it germinates by forming a germ tube that penetrates
the epidermal cells through an appressorium or stomates and
forms a vesicle. Fungal growth proceeds intercellularly within the
mesophyll layer. Three pathogenic toxins have been identified
beyond the advancing hyphae within the infection process. Ptr
ToxA induces the necrosis symptom. The other two toxins, Ptr
ToxB and Ptr ToxC, induce chlorosis but on different host lines
and cultivars (Wegulo, 2011). Conversely, biotrophs (such as
P. striiformis f. sp tritici, P. triticina, B. graminis f. sp. tritici)
are obligate parasites that acquire nutrients for growth and
sporulation from living cells, and hence the pathogen must
maintain host viability (Voegele and Mendgen, 2011) modifying
source–sink ratio within the leaf, deriving host nutrients to
the fungal mycelium (Scholes and Rolfe, 2009; Bancal et al.,
2012; Ney et al., 2013), and secreting a limited amount of
lytic enzymes (Cooper, 1984). The host response to biotrophs,
which colonize the intercellular space using structures, namely
haustoria, which takes in nutrients without disrupting the cell
wall, tends to be more complex (Mendgen and Hahn, 2004).
This response often results in rate depletion of photosynthesis,
a loss of chlorophyll from the infected leaf, and an increase
in the respiration rate (Scholes and Rolfe, 1995; Robert et al.,
2005; Carretero et al., 2011). Furthermore, hemibiotrophs, such

as Z. tritici, shift from an early biotrophic phase to a late
necrotrophic phase. This term is applied to species that have
an extended (4–14 days) asymptomatic phase taking nutrients
from living cells at the beginning. For Z. tritici, two stages with
five phases are documented (Ponomarenko et al., 2011). The
whole asexual cycle lasts a minimum of 2–3 weeks without
physically penetrating host cells, indicating an exchange of cell
surface–localized molecules. The first phase occurred 0–24 h
after contact: initial growth of the hyphae on the leaf surface.
The second occurred 24–48 h after contact: host penetration via
stomata. The third occurred 2–12 days after contact: intercellular
biotrophic phase as hyphae extending within mesophyll tissue
and obtaining nutrients from the plant apoplast (Ponomarenko
et al., 2011). During this early phase of colonization, the fungus
grows slowly, and it is very difficult to detect increases in fungal
biomass (Keon et al., 2007). However, after that, for reasons
that are unclear, wheat cells start to die, likely generated by the
increased apoplastic nutrient availability due to the loss of the
plasma membrane within the host. During this second stage,
called necrotrophic growth, two phases were identified. The
primary occurred 12–14 days after contact: a rapid change to
necrotrophic growth consisting of the appearance of lesions on
the leaf surface and collapse of the plant tissues. The second
phase, which occurred 14–28 days after contact, is the further
colonization of mesophyll tissue and formation of pycnidia with
conidia in substomatal cavities of senescent tissue. Involvement
of a toxin during the switch from biotrophic to necrotrophic
growth is suspected but has not yet been proven (Ponomarenko
et al., 2011). This classification of Z. tritici as a hemibiotroph has
been discussed recently as detailed analyses of the asymptomatic
phase show that the pathogen does not affect host growth,
calling into question the biotrophic nature of this asymptomatic
phase (Sánchez-Vallet et al., 2015). However, Precigout et al.
(2020) also considered Z. tritici a hemibiotroph because it
shows a long latent period, which is characteristic of other
hemibiotrophs. It is possible to say that at least during the first
phases of development, Z. tritici does not physically penetrate
host cells as do necrotrophics, and the presence of toxins that can
quickly induce necrosis in necrotrophic pathogens is not proved.
Figure 2 shows the main foliar diseases representing biotrophic
(a, leaf rust), necrotrophic (b, tan spot), and hemibiotrophic (c,
Septoria leaf blotch) pathogens in this review.

In early N fertilization, the tillering increases, modifying
the crop structure and affecting the disease severity (Savary
et al., 1995). In addition, high N rates increase the green
leaf area index (GLAI) and N concentration and prompt a
delay in senescence due to a higher radiation interception and
radiation use efficiency (RUE) (Walters and Bingham, 2007;
Hawkesford, 2014). Moreover, Snoeijers et al. (2000) reported
that N nutrition status of wheat plants could induce contrasting
effects on the expression of different foliar diseases depending
on the cultivar, environment, and type of pathogen. On the one
hand, a high N supply may cause a greater susceptibility of wheat
to fungal diseases, by creating a positive crop microclimate due
to an enhancement on aboveground biomass (Neumann et al.,
2004; Devadas et al., 2014) or increasing the N compounds
necessary to pathogen growth (Hoffland et al., 2000). Conversely,
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FIGURE 2 | Disease symptoms caused by (A) Puccinia triticina (leaf rust),
(B) Pyrenophora tritici-repentis (tan spot), and (C) Zymoseptoria tritici
(Septoria leaf blotch).

N can also enhance plant defense (Solomon et al., 2003;
Tavernier et al., 2007).

The impact of a high N status of wheat plants on disease
susceptibility was proved for biotrophic pathogens like P. triticina
as they benefit from increased metabolite pools within the host
cells (Jensen and Munk, 1997; Hoffland et al., 2000; Gerard
et al., 2015; Fleitas et al., 2018a) increasing their severity under
high N rates (Figure 3). This increased susceptibility at high
N rates has been ascribed to the anatomical and biochemical
modifications caused by N, together with the increase in organic
N compounds, which are used as substrates by biotrophic
pathogens (Dordas, 2008). In contrast, necrotrophic pathogens
showed a more variable response to N (Hoffland et al., 2000;
Long et al., 2000; Carignano et al., 2008; Fleitas et al., 2018a),

probably because necrotrophs are ready to break down plant
cell elements, allowing them to use a wider range of N sources
(Solomon et al., 2003). Several researchers (Jones et al., 1990;
Talbot et al., 1997; Hoffland et al., 1999; Snoeijers et al., 2000;
Krupinsky et al., 2007; Carretero et al., 2010; Simón et al.,
2011; Castro et al., 2018) have shown that tan spot severity
(caused by a necrotrophic pathogen) decreased when N rates
increased as low N availability results in weaker plants that are
unable to defend themselves (Figure 3). For hemibiotrophic
pathogens (such as Z. tritici) several investigations (Gheorghies,
1974; Prew et al., 1983; Broscious et al., 1985; Howard et al.,
1994; Leitch and Jenkins, 1995; Simón et al., 2002, 2003) reported
that N inputs increased the severity of the disease (behaving as a
biotroph) (Figure 3). However, Johnston et al. (1979); Gooding
and Davies (1992), and Fleitas et al. (2017) documented a
decrease in the severity with increased N input with a differential
response among genotypes, indicating a preponderance of the
necrotrophic phase (Figure 3).

Controversial results, particularly for the specific case of
a hemibiotrophic pathogen such as Z. tritici, can be mainly
attributed to differences in total available N, different sources
of N, or the possibility of an optimum N concentration for the
development of this pathogen. The likelihood of an optimum
N concentration in host plants for the development of Z. tritici
was reported by Ishikawa et al. (2012). Furthermore, it should be
considered that the hemibiotrophy of Z. tritici has been discussed
(Sánchez-Vallet et al., 2015) due to the absence of alteration in the
host growth during the asymptomatic phase. A question would be
if under specific conditions some alterations in the host growth
during that phase could emerge. These findings demonstrated
that more research on the influence of N applications on the
incidence of foliar diseases is needed. Joint experiments carried
out recently with several pathogens separately inoculated in the
same experiments already helped answer some questions (Fleitas
et al., 2017, 2018a,b, Figure 3). Those experiments allowed us
to determine that under the same environmental conditions
and under artificial inoculations, P. triticina increased with N
fertilization, whereas P. tritici-repentis and Z. tritici decreased,
indicating behavior similar to a necrotrophic pathogen.

IMPACT OF FOLIAR WHEAT
PATHOGENS WITH DIFFERENT
NUTRITIONAL HABIT ON CROP
GROWTH AND BIOMASS GENERATION

Foliar diseases produced effects on the milling and end-use
quality through modifications on the ratio N/carbohydrates in
the grains. They may cause impacts on crop growth, reducing the
number of grains and/or thousand kernel weights, impacting the
N accumulation in the grains as a consequence.

In that way, the damage that foliar diseases produce depends
not only on the severity of the pathogen but also on the
incidence on the attributes responsible for the assimilation of
carbon in the crop (Johnson, 1987; Waggoner and Berger,
1987). Foliar wheat diseases affect the GLAI and the healthy
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FIGURE 3 | General diagram of the effect of nitrogen fertilization on three main foliar diseases of wheat in the same inoculated experiments. The nutritional habit of
each pathogen causing disease is also indicated (AUDPC, area under disease progress curve; N, kg nitrogen/ha). Data indicated the most common response for
biotroph and necrotroph pathogens and the different possible responses for hemibiotrophs.

area duration (HAD) (Castro et al., 2018; Schierenbeck et al.,
2019a,b,c) and consequently may have effects on dry matter
losses, N accumulation in the grain, and GPC. More information
is available on the effect of foliar diseases on dry matter yield
losses (Bastiaans, 1993; Robert et al., 2004; Savary et al., 2006;
Serrago et al., 2009; Carretero et al., 2010; Schierenbeck et al.,
2016) than on N yield and GPC. As a general response, fungal
foliar diseases decrease the crop growth rate (CGR) through
reductions in HAD caused by foliar necrosis and accelerated
death of tillers, reducing the ability of the crop to intercept
and accumulate photosynthetically active radiation, and as a
result, reducing the above-ground biomass accumulation and
grain yield (Bancal et al., 2008; Serrago et al., 2009; Carretero
et al., 2010; Ney et al., 2013). Wheat genotypes under standard
practices in farmers’ fields (including N rates high enough to
achieve yield goals and without fungicides) and under intensified
practices (high N rates and fungicides) were recently compared.
Results indicated that with a prevalent natural inoculum of
Z. tritici, P. tritici-repentis, and B. graminis early in the season
and P. triticina and P. striiformis late in the season, biomass
response to intensified management was the driver for the yield
increase, and that yield response was determined by the grain
number but not by the grain weight (de Oliveira Silva et al., 2020).
Within the same genotype, the biomass during the growing cycle,
the rate of dry matter accumulation, and the grain-filling period
duration may vary according to the date of sowing. Although
no information is available, it is possible to speculate that likely
within the same cultivars, a higher effect of pathogens could be
evident in late sowing when phases are shorter.

Inoculations of P. tritici-repentis generated more significant
reductions in radiation absorption compared to P. triticina.

By contrast, P. triticina reduced more RUE and CGR than
P. tritici-repentis, implying that the photosynthetic system
of the remaining healthy tissues infected by P. triticina is
more negatively affected than under P. tritici-repentis infections
(Schierenbeck et al., 2016). The negative effect of leaf rust on
RUE and CGR could be associated with the nutritional habit
of the fungus that generates major changes in the physiology
of the host, reducing leaf N concentrations and enhancing
assimilates consumed by leaf respiration. Increases in inoculum
concentration decreased biomass generation, mostly conditioned
by decreases in HAD and depletion on radiation absorption, with
more significant reductions when the crop was inoculated with
P. tritici-repentis than with P. triticina (Schierenbeck et al., 2016).
Reductions in HAD were also found under Z. tritici inoculations
(Castro and Simón, 2016; Figure 4).

Effects on the attributes related to the aboveground biomass
production explain the yield losses that fungal leaf pathogens
generate in wheat, leading to variations in the carbon/N balance
in the grain that have an impact on flour quality. In this sense,
yield can be expressed as the amount of biomass produced and
the proportion derived to the reproductive organs (van der Werf,
1996). Another approach for yield determination considers the
product of its numerical components, grain number/m2 and
grain weight. Indeed, the yield is reduced predominantly through
effects on the HAD and limitations on the number of grains per
spike and grain weight (Cornish et al., 1990; Parker et al., 2004;
Robert et al., 2004; Blandino et al., 2009; Serrago et al., 2011).

In wheat, the period between the beginning of the active
growth of the spike and the brief period immediately after
flowering, in which the stem and spike grow together, is crucial
for yield determination because its main component, the grain
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FIGURE 4 | General diagram of the effect of three main foliar diseases of wheat, tan spot (Ts), Septoria leaf blotch (Sb), and leaf rust (Lr) on ecophysiological
components of grain yield. AUDPC, area under disease progress curve; H, healthy (control treatment); TLAI, total leaf area index; GLAI, green leaf area index; HAD,
healthy area index duration; ARAD, absorbed radiation; RUE, radiation use efficiency; CGR, crop growth rate; RUEI, Intercepted radiation use efficiency; RUEA,
absorbed radiation use efficiency.

number/m2, is being defined (Fischer, 1985). During this period,
the crop is strongly limited by the photosynthetic capacity, so the
maintenance of HAD is essential in order to maximize the CGR
and provide assimilates to the spike (Miralles et al., 2000; Serrago
et al., 2008). Taking this into account, the presence of foliar
diseases during the critical period will cause (depending on GLAI
reduction level) reduced grain yield due to its effect on different
yield components (Yang and Zeng, 1989) and consequently,
impacting milling and end-use quality. Depending on the growth
stage when the fungal infection occurs, foliar diseases can affect
the spikes/m2 (Leitch and Jenkins, 1995; Simón et al., 2002)
generally associated with early epidemics of pathogens that
survive on stubble and/or due to favorable conditions for the
progress of these diseases during the early stages, mainly in
susceptible cultivars. In addition, the grain number per spike
(Madden and Nutter, 1995) and thousand kernel weights may
be also commonly affected (Simón et al., 1996, 2011; Wang
et al., 2004; Ishikawa et al., 2012; Castro and Simón, 2016),
the latter associated with post-flowering infections. However,
in some late infections, thousand kernel weight is not reduced
for several reasons as compensation between thousand kernel
weight and the number of grains when the latter is reduced,
originating a higher accumulated absorbed radiation/number of
grains ratio or due to compensation caused by other organs as
spikes when the foliar area is affected by disease (Serrago et al.,
2011; Carretero et al., 2011).

Furthermore, Rozo Ortega (2019) found that foliar diseases
before flowering increased the source/sink ratio, whereas
during the grain-filling period the source/sink ratio declined,

consequently impacting the end-use quality. Moreover, it has
been reported that foliar diseases also induce the crop to use
the reserves of soluble carbohydrates stored in the stem to
compensate the thousand kernel weight due to limitations in the
source during the grain filling development stage (Bancal et al.,
2007; Rozo Ortega, 2019).

PHYSIOLOGICAL EFFECTS OF
FUNGICIDES TO CONTROL FOLIAR
DISEASES ON CROP GROWTH

The impact of different fungicide molecules on physiological
mechanisms involved in the green leaf area duration is a field
of study of great interest that has received little attention in
recent years. Different types of fungicides may exert a differential
effect on crop growth and grain yield. In this sense, Wu
and von Tiedemann (2001) reported that a mix of strobilurin
and triazole molecules were able to delay canopy senescence
due to an improved enzyme superoxide dismutase activity
and high H2O2 levels that protected the plants from active
oxygen species compared to untreated leaves. For their part,
Ajigboye et al. (2014) documented that fungicides containing
carboxamides and triazoles increased photosystem II efficiency
in the flag leaf below, a response that showed a linear
correlation with grain yield and biomass production even in
the absence of disease. Positive effects of carboxamides and
triazoles on photosynthetic activity due to HAD extensions
and decreases in leaf temperature that led to a delay in leaf
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and ear senescence were also documented by Berdugo et al.
(2012) under controlled conditions. Effects on photosynthesis
efficiency, stomatal aperture, and plant transpiration were also
reported following strobilurin applications in wheat (Kuznetsov
et al., 2018). Another mechanism that would play a role in
the senescence-delaying is the reduction in ethylene production
reported by Gerhard et al. (1998) under strobilurin and triazole
treatments. Furthermore, the chemical control of saprophytic
fungi that are not able to attack plants but cause leaf senescence
and grain yield reductions due to the energy cost of defense
reactions were also reported as a beneficial effect of different types
of fungicides (Bertelsen et al., 2001).

IMPACT OF THE NUTRITIONAL HABIT
OF FOLIAR WHEAT PATHOGENS ON
NITROGEN DYNAMICS

The evaluation of the impact of foliar diseases on NREM and
end-use quality faces several problems including the following: 1-
Assesments under natural infections implies that the individual
consequence of each pathogen is not easily determined. 2-The
use of artificial inoculations allows us to determine the effect
of the prevalent inoculated pathogen, which usually competes
with other pathogens due to natural infections, but the latter
is not completely eliminated. Several experiments have been
carried out under natural infections and a few under artificial
inoculations with specific pathogens. Nitrogen inputs may also
interact with diseases and the fungicides used to control them,
causing differential effects on N dynamics and consequently on
GPC and gluten concentration.

Accumulation and N redistribution are important processes
determining yield and grain quality (Simpson et al., 1983; Gaju
et al., 2011). As mentioned previously, N in grains mainly comes
from N accumulated before anthesis, and the amount of NREM
is dependent on the N accumulated in anthesis (Gaju et al.,
2014). Therefore, an early high N availability or late N supply can
increase N in grains and, consequently, GPC.

In addition, several researchers have mentioned that NREM is
involved in the control of leaf senescence (Masclaux et al., 2001;
Uauy et al., 2006). At the beginning of grain development, N
accumulation is source and sink regulated; however, during the
grain filling, N accumulation was always limited by the source
supply from vegetative tissues, even when soil N was non-limiting
(Martre et al., 2003). The increase in N remobilization efficiency
to slow down senescence may be critical for maintaining a longer
photosynthesis period during grain-filling to achieve higher
yields, but in bread-making cultivars this may not be beneficial
due to the negative impact on N in the grain and consequently
in GPC. The onset of post-anthesis senescence was negatively
correlated to NREM under low N availability, but not under high
N supplies (Gaju et al., 2014). Furthermore, NREM variations
in N yield depend not only on NREM but also on both NPA
and biotic and abiotic stresses during the grain-filling period
(Barbottin et al., 2005).

Earlier reports about the effect of pathogens with differential
nutritional strategies on the host have mainly been carried

out under natural infections of a complex of pathogens or
addressing the effect of single pathogens (Gooding et al.,
2005; Bancal et al., 2008; Devadas et al., 2014). Hence, the
individual effects of necrotrophic, biotrophic or biotrophic
pathogens on crop N dynamics and grain quality traits are
not easy to discriminate. However, it has been reported that
when biotrophic pathogens affect wheat plants, the infection
can be more disturbing to N deposition and partitioning to the
grain than to dry matter partitioning and deposition (Dimmock
and Gooding, 2002c). On the other hand, necrotrophic and
hemibiotrophic pathogens have been reported to affect primarily
the carbohydrates accumulation (Puppala et al., 1998; Gooding
et al., 2007), while fungicides reverse this response (Fleitas et al.,
2017), causing an increase in GPC.

The severity caused by the biotrophic pathogen P. triticina
has greater effects on GPC than in dry matter partitioning
and deposition in the grain, increasing protein concentration
in leaves and stems and reducing GPC (Caldwell et al., 1934;
Greaney et al., 1941). Although biotrophic pathogens also
affect most N accumulation in the grain, they also reduce
GLAI, radiation interception, and RUE, and cause premature
senescence, reducing photosynthesis and translocation (Bryson
et al., 1995; Lucas, 1998; Schierenbeck et al., 2016). Sugar
and amino acids retention in diseased leaves and pustules of
P. triticina leading to restrictions on the normal remobilization
of assimilates to developing grains and decreases on N harvest
index and N remobilization efficiency have also been reported
(Walters, 1989; Dimmock and Gooding, 2002c; Schierenbeck
et al., 2019a,c). Furthermore, Debaeke et al. (1996) determined
that leaf rust, water shortage, and high temperatures affected
dry matter deposition during grain-filling, generating a high
GNC, indicating that environmental factors can also influence
the differential effects of pathogens with distinctive nutritional
habits. They also found that GNC was related to N absorption
when N availability was the main restricting factor and to the N
harvest index when drought or foliar diseases limited wheat yield.

Furthermore, it is also important to consider the time of
infection. On the one hand, Bastiaans (1993) determined that
when epidemics of foliar diseases occur before flowering in
cereals, they reduce the absorption of N, but rarely affect the
NPA. On the other hand, when infections occur after flowering,
Barbottin et al. (2005) found that the impact of the environmental
factors on the association between N uptake at flowering and
NREM varied according to NPA, genotype, and disease pressure.
They also reported that disease-resistant genotypes keep N
remobilization efficiency more stable under high disease pressure.
Moreover, Bancal et al. (2008) determined that although NPA
accounted for a third of N yield and NREM for two thirds in
healthy and diseased crops affected by late epidemics, variations
in N yield were more correlated with NPA than with NREM,
and they suggested that the latter is not associated with N
yield in healthy crops. In addition, extending HAD through
adequate climatic conditions, genetic resistance, or fungicide
applications can be directly related to increases in N stored in
grains (Gooding et al., 2005).

Under separated artificial inoculations with a necrotrophic
(P. tritici-repentis) and a biotrophic (P. triticina) pathogen in
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the same experiment, NREM was more reduced by leaf rust
infections through reductions in HAD and CGR compared to
tan spot. Furthermore, P. triticina reduced N remobilization
efficiency, GNC, and N stored in grains, whereas P. tritici-
repentis increased GNC (Schierenbeck et al., 2019a,c; Figure 5).
This higher impact of P. triticina on N dynamics, caused by
the retention of N in green tissues, pustules, and mycelium
of the pathogen that act as a secondary sink, has been found
in other biotrophs and hemibiotrophs (Walters, 1989; Gooding
et al., 2005; Ney et al., 2013). In inoculated experiments,
Z. tritici also reduced NREM significantly, whereas NPA was less
affected, producing lower GNC (Castro et al., 2015; Figure 5).
Inconveniences in the nutrient balance of the crop reducing
photosynthesis and remobilization of assimilates also have
been reported as one of the main consequences of leaf rust
(Lucas, 1998).

Negative effects exerted by foliar fungal pathogens on crop
N dynamics could be reverted by management practices such
as N fertilization, fungicide applications, and genetic resistance.
Fungicide applications, mainly including specific mixtures of
triazoles and strobilurins, extended the HAD and the duration
of N filling in the grain, improving variables of N dynamics
(Ruske et al., 2003; Barbottin et al., 2005; Gooding et al.,
2005; Bancal et al., 2008; Ishikawa et al., 2012). Recently,
Schierenbeck et al. (2019c; 2019b) documented that interactions
between N applications and fungicide mixtures, including
triazole + strobilurin and triazole + strobilurin + carboxamide,
can reverse the detrimental impact caused by P. tritici-repentis
or P. triticina infections on NREM, NPA, GNC, and N stored in
grains. The triple fungicide mixtures produced greater increases
in HAD and area under disease progress curve reductions,
increases in grain yield, NREM, NPA, and N stored in grains
with respect to triazole + strobilurin fungicides under high N
rates and P. tritici-repentis infections (Schierenbeck et al., 2019b).
Similarly, combinations of triple fungicide mixtures and high N
rates surpassed double mixtures at high N rates in the effects on
NREM, NPA, N stored in grains, GNC, and grain yield and caused
significant increases on N remobilization efficiency and N harvest
index under P. triticina inoculations (Schierenbeck et al., 2019c).
These results showed that the use of new fungicidal molecules in
combination with N fertilization could be a key tool to increase
the efficiency of N utilization in wheat, reduce the incidence of
disease, and improve grain quality parameters with differential
responses, depending on the nutritional strategies of the main
pathogen present.

A broad genotypic variation on NREM has been reported
by Cox et al. (1985a; 1985b), Gooding et al. (2005), Kichey
et al. (2007) and also by Barbottin et al. (2005) evaluating
NREM against infections of P. triticina and P. striiformis, while
Castro et al. (2015) did not find differences in the NREM
in genotypes inoculated with Z. tritici as it may depend on
the genotypes used. Additionally, variations in NPA among
genotypes were reported (Cox et al., 1985a,b; Kichey et al.,
2007; Bahrani et al., 2011). For instance, Schierenbeck et al.
(2019a) found genotypic variations in NREM, NPA, N stored in
grains, and GNC under separate inoculations with P. triticina and
P. tritici-repentis.

Regarding the effect of combinations of fungicide applications
and N doses in different genotypes, Mascagni et al. (1997), Ruske
et al. (2003); Brinkman et al. (2014), and Schierenbeck et al.
(2019c; 2019b) reported that the highest responses in crop N
dynamics were detected in genotypes with greater susceptibility
to diseases, allowing better discrimination of the effects of
pathogens with different nutritional strategies under increases
in N fertilization. In the same way, the application of foliar
fungicides has shown variable responses for yield (Roth and
Marshall, 1987), but in general, it has been beneficial when it was
used for cultivars susceptible or intolerant to diseases and with
high yield potential (Kelley, 2001; Olesen et al., 2003).

As mentioned previously, necrotrophic pathogens such as
P. tritici-repentis reduces HAD and the absorbed radiation, which
decreases the CGR (Serrago et al., 2009; Schierenbeck et al., 2016).
If these effects occur during the grain-filling stage, given that
almost 65–80% of the N was already accumulated at anthesis,
the GPC may increase due to a concentration effect. Conversely,
biotrophic pathogens such as P. triticina, in addition to reducing
the absorbed radiation (Bryson et al., 1995), affect the RUE
(Schierenbeck et al., 2016), which limit their remobilization to
grains and N harvest index, generally causing a reduction in
GNC (Dimmock and Gooding, 2002c; Schierenbeck et al., 2019a;
Figure 6).

Results showed that pathogens with different nutritional
habits impact N dynamics differentially. Particularly in recent
years, important contributions have been made with pathogens
inoculated separately in the same experiments, allowing better
discrimination of individual microorganisms. New fungicide
molecules in combination with N applications have reduced
the effect of biotrophic pathogens on the N dynamics. These
data deserve to be incorporated in simulation models, increasing
possibilities for the management of those diseases.

THE EFFECT OF FOLIAR WHEAT
DISEASES ON MILLING, PROCESSING,
AND END-USE QUALITY

Effects on the Balance Between N and
Carbohydrate Accumulation
The balance between N and carbohydrate accumulation in
the grain may produce variation in thousand kernel weight,
affecting milling and GPC. Both components are accumulated
independently, starting with metabolic proteins and gliadins and
then glutenins and starch deposition. The increase in the grain
mass, mainly due to a high carbohydrate accumulation, may
cause a dilution in GPC, whereas the reduction in thousand
kernel weight, in addition to producing shriveled grains, may
concentrate GPC. As mentioned previously, the N accumulated
in the grains mainly comes from the N deposition in vegetative
tissues before anthesis and is remobilized to the grains during the
grain-filling period (Palta and Fillery, 1995). The accumulation
of carbohydrates depends mainly on the current photosynthesis
during grain development (Blum, 1998). The effect of foliar
diseases on the N/carbohydrates ratio in the grains depends on
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FIGURE 5 | Regression between healthy area duration (HAD) and grain yield (A), N remobilization (NREM) (B), N post-anthesis uptake (NPA) (C), grain N
concentration (GNC) (D), and N accumulated in grains (NG) (E); N accumulated in grains (NG) and NPA (F), NREM (G) in wheat inoculated with P. tritici-repentis (×),
Z. tritici (�), and P. triticina (◦). Each data point represents the means of each cultivar for three replications, regression fitted to data for each pathogen and three
levels of inoculations. Reproduced from Schierenbeck et al. (2019a) with permission from Elsevier.
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FIGURE 6 | General diagram of the effect of three main foliar diseases of
wheat, tan spot (Ts), Septoria leaf blotch (Sb), and leaf rust (Lr), on
ecophysiological components of grain yield and N dynamics. H, healthy
(control treatment); NG, N accumulated in grains; NREM, nitrogen
remobilization; NPA, N post-anthesis absorption; GNC, grain N concentration.

the magnitude of the reduction they generate on each component
in the vegetative organs, the nutritional habit of the pathogens
being a key factor. It also depends on the ability of the crop
to compensate shortfalls of carbon generated from current
photosynthesis by translocation of carbohydrates to the filling
grains (Robert et al., 2002).

Abiotic and biotic stresses during the grain filling inhibit
current photosynthesis, generating a reduction in post-anthesis
carbohydrates assimilation but increases in the remobilization
of reserves. For that reason, the relative contribution of stem
reserves as soluble carbohydrates to the grain mass fluctuates
according to the growing conditions, biotic stresses, and
genotypes (Palta et al., 1994; Blum, 1998). Furthermore, when
grain filling depends on those reserves, the rate of remobilization
and the duration of grain development are very important to
determine the grain weight (Blum, 1998). Some tolerant wheat
genotypes did not reduce the thousand kernel weight under
epidemics of Z. tritici, which can be attributed to a compensation
through carbohydrates supply from healthy tissues to the grains
(Zilberstein et al., 1985).

Early sowing dates where Z. tritici was the predominant
pathogen caused a low reduction in soluble carbohydrates,
whereas late sowing dates where P. graminis was the main
pathogen implied important reductions in soluble carbohydrates
likely attributed to the strong demand due to the grain filling.
Biotrophic pathogens caused reductions in photosynthesis as

necrotrophics but also a direct consumption of photoassimilates,
causing higher reductions in soluble carbohydrates (Serrago
et al., 2011). Additionally, differences in the growth duration
of the whole cycle and the duration of the grain-filling
period can cause differential effects on the accumulation of
soluble carbohydrates determining different concentrations in
the grain. The date of sowing of the cultivars may also cause
variation in the accumulation of carbohydrates, causing different
N/carbohydrates balances in the grain, although no information
is available using the same genotypes.

Managing foliar diseases helps grain-filling, reducing the
phenomenon of grain shriveling, which is related to low
flour extraction rates in milling. In general, fungicides applied
at flag leaf stage have the greatest effect on carbohydrates
accumulation, yield, thousand kernel weight, and test weights
when severe diseases are controlled. For instance, MacLean
et al. (2018) noted that fungicide application at anthesis to
control leaf spotting diseases resulted in yield benefits, and
improved grain quality measured as test weight and thousand
kernel weights; however, it may dilute GPC. Ultimately, foliar
diseases might also affect processing and end-use quality of
wheat as the behavior of the dough is associated with the
type and amount of protein present in the flour (Simón et al.,
2013). Strong evidence suggests that the effect of disease control
on milling, processing, and end-use quality interact with the
genotype, climate and agronomic practices, pathogen type, time
and intensity of infection, among other factors discussed here.
Several investigations of these variables have been conducted
under natural infections caused by fungi, where, in some cases,
prevalent pathogens in the field are not specified. Only a few
investigations have been carried out under artificial inoculations
with specific pathogens.

The Effect of Foliar Diseases and Their
Control of Milling Quality and
Alpha-Amylase Activity of Wheat
Milling quality of bread wheat is referred to as the aptitude of
a cultivar to produce high levels of flour (Guzmán et al., 2016).
As mentioned previously, the most important traits associated
with milling quality are the grain morphology, thousand kernel
weight, grain hardness, and grain density (test weight). Millers
prefer sound, large grains, well filled and without shriveling, with
absence of sprouted grain (Carson and Edwards, 2009).

Test weight is the weight of 100 liters of wheat evaluated with
the Schopper chondrometer. It is a measure of the density and
compactness of the grain (Carson and Edwards, 2009; Edwards,
2010). With larger grains, the endosperm/bran ratio is greater,
and therefore the potential yield of flour as well. On the other
hand, grain hardness refers to the texture of the wheat grain
endosperm. Hard grains require more power consumption in
the mill to fracture and mill a selected weight of the sample.
Additionally, the harder the grain, the more damaged the starch
granules in the flour, which is a source of fermentable sugar
during baking but also will determine the water absorption of the
flour. Thus, grain hardness significantly affects milling along with
processing and end-use quality (Morris, 2002; Pasha et al., 2010).
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Foliar diseases affect milling quality through less dry matter
accumulation in the mature grain that results from decreases
in the photosynthetic area of leaves, through reductions of
the radiation intercepted and RUE, but also increases in the
respiration rate, interfering with photosynthates translocation
(Figure 4). Herrman et al. (1996) documented premature
senescence of the flag leaf in rusted plants, which shortened the
grain-filling and restricted N remobilization to the grains.

Regardless of the pathogen nutritional habit, diseased plants
may generate fewer tillers and set fewer and smaller grains
per spike, usually shriveled and with lower milling quality than
healthy plants. Shriveled grains occur because the time available
for the grain to fill is shortened (i.e., the dry matter assigned to
the grain is reduced) but also because the disease leads to earlier
maturity of the plant (Agrios, 2005). Shriveled grains have low
test weights, contribute to impurities in the flour, have lower flour
yield, higher ash content, lower metabolizable energy content
(Gaines et al., 1997; Gooding and Davies, 1997), and increased
hardness (Buendía-Ayala et al., 2019) compared to well-filled
kernels. They may also have inferior baking qualities (decreased
cookie diameter) despite their greater grain and flour protein
content compared to well-filled grains (Gaines et al., 1997).

The starch composition (amylose/amylopectin ratio) may
have an influence in milling properties as well as rheological
dough characteristics and may be affected by foliar diseases.
The amylose/amylopectin ratio has been found negatively
correlated with vitreous kernels, wet gluten, and flour protein
content in some experiments and positively correlated with flour
yield, test weight, and (sodium dodecyl sulfate) sedimentation
test or farinograph water absorption in some others. In a
combination of three environments, starch content played a
more important role in quality than amylose/amylopectin ratio.
Starch content was positively correlated with single kernel
diameter, test weight, and thousand kernel weight and negatively
correlated with loaf volume, alveograph strength, wet gluten
content, flour protein, and farinograph absorption (Labuschagne
et al., 2007), due to a reduction in the N/carbohydrates
ratio. Genotypes and environment affected the starch content,
and a high content sometimes caused lower bread-making
quality. Although the information is scarce, it has been
found that some foliar pathogens, such as B.graminis, caused
a decrease in amylopectin content (Li et al., 2018) and a
decrease in the ratio of amylose/amylopectin and grain fullness
(Morris and Rose, 1996).

Fungicide applications significantly increased both grain yield
and milling quality, on the order of 10–32% compared to
the control without fungicide according to the type of active
ingredient, the growth stage of the application, genotype, and
disease controlled (Castellarín et al., 2004). In general, when the
severity of disease is significant, effects on test weight and/or
thousand kernel weight are coincident. Varga et al. (2007) found
that the test weight increased after triazole application, mainly
for disease-susceptible genotypes at high N rates, although no
information about the prevalent diseases is indicated. When
predominant diseases were recorded, losses in thousand kernel
weight and test weight, reducing milling yield under P. triticina
and P. graminis natural infections (Keed and White, 1971) or

P. striiformis infections were found (O’Brien et al., 1990). Several
experiments under triazole applications reported that thousand
kernel weight and test weight were improved in crops affected by
P. tritici-repentis and Z. tritici (MacLean et al., 2018) or Z. tritici
(Ruske et al., 2003) or Z. tritici, P. tritici-repentis and P. triticina
infections (Puppala et al., 1998). More recently, long-term field
experiments under natural infections with a predominance of
Z. tritici, P. striiformis, and B. graminis found that different
carboxamides, strobilurins, and sterol-demethylation inhibitors
increased thousand kernel weight, test weight, and grain starch
content (Matzen et al., 2019).

An additional important test in the milling industry to
determine the acceptability of a wheat grain lot is the Hagberg
falling number (HFN) analysis, which quantifies the level of
alpha-amylase activity in the grain. Under rainy conditions
before harvest, wheat seeds may germinate within the spike,
and associated enzymes activate. This phenomenon, known as
“pre-harvest sprouting” (Carson and Edwards, 2009), causes an
increase in alpha-amylase activity that is undesirable for bread
production. The HFN can be measured through a rapid test, by
timing the descent of a stirrer through a hot suspension of ground
wheat in water (Hagberg, 1961). The greater the amount of alpha-
amylase, the faster the stirrer will fall, determining low values of
HFN. An additional cause for high alpha-amylase activity is late
maturity alpha-amylase, which is a genetic defect existing in some
genotypes related to rapid temperature change after flowering
(Newberry et al., 2018).

It has been suggested that the alpha-amylase level is affected
by agronomic practices, such as fungicide applications to control
foliar diseases (Gooding et al., 1987; Kettlewell, 1999; Matzen
et al., 2019). Extending HAD in wheat with fungicides may
increase alpha-amylase activity and/or reduce HFN associated
with increased grain size and weight (Gooding, 2017). The
mechanism by which fungicide affects alpha-amylase activity,
and consequently HFN, has yet to be clearly defined, but in
the absence of sprouting, alpha-amylase activity seems to be
increased by slow grain drying (Gale et al., 1983; Kettlewell,
1997). Fungicide interactions that increase predisposition to
late maturity alpha-amylase may also cause a hormonal effect.
Numerous studies have reported HFN reductions after triazole
and/or strobilurin applications under the prevalence of several
pathogens (Ruske et al., 2003, 2004; Wang et al., 2004);
however, values often remain above the 250 seconds, which
are required standards for bread-making (Draper and Stewart,
1980). Dimmock and Gooding (2002a) found that although
HFN was reduced by fungicide applications, this effect depended
on the cultivar, fungicide type, and the prevalent pathogen,
as controlling severe rust did not affect HFN. More recently,
Gooding (2017) stated that the effect of fungicides on HFN
does not seem to depend on the type of pathogen controlled or
the mode of action of the protectant. One possible explanation
is that the effect of fungicides may depend on how much the
thousand kernel weight increase causes a dilution in the alpha-
amylase activity. Clearly, the information available is scarce, and
further investigations to elucidate how fungal diseases impact
HFN, particularly with different genotypes and N fertilization
rates, are necessary.
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The Effect of Foliar Diseases and Their
Control on Processing and End-Use
Quality of Wheat
Main Variables of Processing and End-Use Quality
Affected by Foliar Diseases
Foliar diseases may affect grain protein and gluten concentration,
with consequences on processing and end-use quality variables.
Among those variables, the alveograph estimates the gluten
strength of dough by means of the Chopin R© Alveograph
measuring (i) dough tenacity (AlvP), which is the force necessary
to blow a bubble of dough; (ii) dough extensibility (AlvL),
which is the extensibility of the dough before the bubble
breaks; (iii) the AlvP/L ratio, which is the relationship between
dough tenacity and dough extensibility; and (iv) dough strength
(AlvW), which is the area under the curve and is proportional
to the energy required to cause the dough bubble to break.
A farinograph determines the resistance of dough to mixing. It
is measured by the Brabender R© Farinograph, evaluating (i) flour
water absorption (FarA), which is the amount of water necessary
to center the farinograph curve on the 500-Brabender unit (BU)
line and is related to the amount of water required for a flour to be
optimally processed into end products; (ii) dough development
time (FarB) (peak time), which is the time from water added
to the flour until the dough maximum consistency, providing
an indication of optimum mixing time under standardized
conditions; (iii) dough stability time (Far D), which is the time
difference between the point where the top of the curve first
intercepts the 500 BU line and the point where it leaves the
500 BU line. Dough stability time indicates the time the dough
maintains the maximum consistency and is a good indication of
dough strength. Finally, (iv) dough softening degree or departure
time (FarE) is the time when the top of the curve leaves the
500 BU line, indicating the time when the dough is beginning to
break down and dough consistency starts falling below optimum
during kneading.

Another end-use quality test is Zeleny sedimentation, which
is based on the ability of gluten-forming proteins to soak in
water, indicating the gluten strength and baking potential. The
mixing tolerance index is the difference in BU between the
top of the curve at peak time (FarB) and the top of the curve
5 min later, indicating the degree of softening during mixing. The
extensograph determines the resistance and extensibility of the
dough by evaluating the force required to stretch the dough with
a hook until it breaks. The resistance to extension is a measure
of dough strength and the extensibility determines the amount of
elasticity in the dough and its ability to stretch without breaking.
Finally, the loaf volume gives end users information on flour
quality traits. It is determined by measuring the volume of bread
obtained after the bread-making process by means of a rapeseed
displacement using a volume-meter.

Effect of Foliar Diseases Caused by Biotrophs on
Processing and End-Use Quality of Wheat
As mentioned previously, biotrophs can produce greater effects
on N accumulation in the grain than on carbohydrates
(Caldwell et al., 1934; Keed and White, 1971; Park et al., 1988;

Herrman et al., 1996; Dimmock and Gooding, 2002c; Rozo
Ortega, 2019), and thus, GPC increases by fungicide applications
(Figure 7). More recently, artificial-inoculated experiments also
showed that the control of leaf rust increased grain protein
and gluten concentration, even when thousand kernel weight
increased, indicating that there was no evidence of protein
dilution (Fleitas et al., 2015, 2018b; Figure 7).

Although the tendency of the impact of biotrophic pathogens
is clearly toward a decrease in GPC as N is generally more affected
than assimilated carbohydrates, some controversial results have
been reported. O’Brien et al. (1990) documented that when
P. striiformis was predominant, GPC increased due to the
concentration effect generated by shriveled grains and Matzen
et al. (2019) under natural infections generated by Z. tritici,
P. striiformis, and B. graminis found that disease control reduced
GPC, also due to a dilution effect. Furthermore, different
responses depending on the genotype have been found (Everts
et al., 2001; Buendía-Ayala et al., 2019), sometimes varying with
the resistance level (Conner et al., 2003).

Results indicate that in some experiments a high reduction
in thousand kernel weight due to biotrophic pathogens could
be decisive for causing a concentration in GPC. In other
cases, several diseases are present together, causing inconsistent
effects, mainly under natural infections. The end-use quality of
genotypes can also play a role, as those with higher bread-making
aptitude tend to maintain higher GPC values. In addition, N
availability may influence the results as a high N availability
can increase the incidence of some biotrophs, such as rusts,
but also tends to increase GPC. Furthermore, Robert et al.
(2004) observed an N threshold from which the N fertilization
impact is more important on GPC than on leaf rust severity. In
addition, in “modern” cultivars, mainly affected by P. triticina
but also by P. tritici-repentis, the reduction in protein and
gluten concentration was higher than in “old” cultivars due to
a greater number of grains determining less N available for
each grain, causing a dilution effect (Rozo Ortega, 2019). Under
different stresses, the remobilization of reserves from the stem
to the grains can increase, although some contradictory effects
have been reported in genotypes affected by P. graminis and
P. striiformis (Chang et al., 2013) due to the susceptibility of
the genotypes. In that way, biotrophic pathogens may affect
translocation of N into the grains but also the accumulation
of soluble carbohydrates due to reductions in the HAD and
the increase in senescence (Dimmock and Gooding, 2002c;
Matzen et al., 2019). Therefore, the effect on the GPC may
depend on the magnitude to which N and soluble carbohydrates
are affected.

Recently Fleitas et al. (2018b), in inoculated experiments
with P. triticina, reported that rusted plants had shorter grain-
filling periods and reduced gluten concentration with respect
to protected plots with different fungicide mixtures (Figure 7).
Even though gluten concentration followed the same tendency
as GPC, the effects of leaf rust in the untreated plots compared
to healthy plants were more important on gluten concentration
than on GPC, particularly under higher N status, indicating that
the disease may alter the GPC composition, likely reducing the
proportion of insoluble protein fractions.
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FIGURE 7 | General diagram of the effect of three main foliar diseases of wheat, tan spot (Ts), Septoria leaf blotch (Sb), and leaf rust (Lr), on grain yield and
bread-making quality. H, healthy (control treatment); AlvW, dough strength; AlvP/L, dough tenacity/dough extensibility ratio; GPC, grain protein concentration; GC,
gluten concentration; HI, harvest index.

On the other hand, the effect of biotrophic pathogens in dough
rheology is not as consistent or as marked as that observed on
GPC, and the magnitude and direction of those effects have been
understood less clearly. It has also been reported that under
P. triticina artificial inoculations, the alveogram parameter AlvP
was more decreased than AlvL, resulting in a minor AlvP/L ratio
(Fleitas et al., 2018b; Rozo Ortega, 2019), and loaf volume was
also affected (Fleitas et al., 2018b). O’Brien et al. (1990) reported
that under P. striiformis epidemics, the dough development time
from the farinograph (FarB) was shorter and mixing tolerance
and extensograph maximum resistance were lower for susceptible
varieties, whereas the loaf volume was not affected. Conversely,
Feng et al. (2014) addressed the influence of powdery mildew
infection and found that rheological variables of the dough,
such as extensograph and farinograph parameters, increased in

diseased plants, whereas Buendía-Ayala et al. (2019) found that
the dough kneading time following fungicide applications to
control yellow rust decreased.

Interactions between different types of fungicides and N
fertilization for gluten concentration, rheological properties, and
loaf volume were also found in experiments inoculated with
P. triticina. Fungicide treatments reduced wet gluten content at
low N rates, but this effect was reverted at the highest N dose,
where the treatment with triazole + strobilurin + carboxamides
evidenced higher values compared to the control and the
triazole + strobilurin treatment (Fleitas et al., 2018b).
Furthermore, AlvP and AlvW augmented more under N
applications when experiments were treated with the triple
fungicide mixture compared to the double mixture and the
untreated plots. Values of AlvL increased independently of the
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fungicide type and N rates. Additionally, farinograph parameters
FarA and FarB increased under the triple fungicide mixture
and FarE under all fungicide treatments at rising N rates.
Moreover, fungicide applications generated greater increments
of loaf volume with increasing N rates (independently of the
fungicide type) than the untreated plots (Fleitas et al., 2018b).
Blandino and Reyneri (2009) reported that AlvW increased
under N application treatments following a triazole-only and a
triazole + strobilurin fungicide application and a tendency to
increase the AlvP/L under fungicide treatments compared to the
unprotected treatments.

The literature available on the effects of the diseases on
rheological parameters is characterized by many inconsistencies,
and more research is necessary. For instance, many of these
studies have a limited number of genotypes, and hence
the lack of distinction in the response of the genotypes
according to their bread-making aptitude could have led to
the inconsistent results (Dimmock and Gooding, 2002c). In
addition, gluten composition may influence these discrepancies
as the effect of foliar diseases on gliadins/glutenins ratio has not
been addressed. Gliadins fraction, which tends to accumulate
earlier in the grain, affect the AlvL values, whereas glutenins
(which accumulate later) affect AlvP values; thus the effect
of diseases could be different, depending on which phase of
grain development is more affected. This fact has been also
confirmed under inoculations with P. triticina as the decrease
in AlvP/L and consequent reduction in loaf volume compared
to the protected treatments could be attributed to changes
in gluten composition (Fleitas et al., 2018b). Furthermore,
the ratio between gluten fractions with different molecular
weight can be modified. In that sense the leaf rust decreased
high-molecular-weight glutenins, increasing dough extensibility
(Fullington and Nityagopal, 1986).

Knowledge is even more limited regarding the effect of
foliar diseases on albumin and globulin accumulation in wheat
grains, which may affect some rheological properties. Gao
et al. (2018) studied the expression pattern of non-prolamins
at specific growth stages under powdery mildew stress in five
susceptible Chinese wheat cultivars and reported that globulin
concentrations changed dynamically and significantly, especially
at 25 days after anthesis when disease indices were the highest.
However, the authors did not observe variations of grain
albumin accumulation in any treatment with increasing powdery
mildew severity.

Effect of Foliar Diseases Caused by Necrotrophs or
Hemibiotrophs on Processing and End-Use Quality of
Wheat
A different effect of necrotrophic pathogens with respect to
biotrophics has been reported. An early report of effects of
the necrotroph P. tritici-repentis causing increases in GPC
(Rees et al., 1982) was confirmed by later results (Fleitas
et al., 2018a; Castro et al., 2018; Figure 7). Conversely,
Z. tritici usually either had no effect or increased GPC
and/or gluten concentration (Gooding et al., 1994; McKendry
et al., 1995; Puppala et al., 1998; Ishikawa et al., 2001;
Dimmock and Gooding, 2002c; Ruske et al., 2003; Gooding, 2007;

Blandino and Reyneri, 2009; Rodrigo et al., 2015; Castro and
Simón, 2016, 2017; Fleitas et al., 2017; Castro et al., 2018;
MacLean et al., 2018). However, there are situations when
Z. tritici reduced GPC. For instance, Arabi et al. (2007)
found that GPC reductions caused by Z. tritici depended on
the susceptibility of the genotype with no GPC changes in
resistant cultivars but significant decreases for the susceptible
genotypes. Differences in the magnitude of modifications in
the N/carbohydrates ratio in the different experiments probably
cause these discrepancies. But in addition, reports where the
GPC increased by the effect of Z. tritici suggest that the
necrotroph stage of this pathogen is the main contributor for
these effects or the lack of effect of this pathogen on the
host growth during the asymptomatic phase as was reported
by Sánchez-Vallet et al. (2015).

Nitrogen and fungicide treatments may show combined
effects with respect to GPC. Ruske et al. (2003) found that,
in some cases, reductions in GPC due to applications of
fungicides to control Z. tritici were compensated by applications
of foliar urea at anthesis. Penny et al. (1978) found a
positive complementary effect between fungicide and liquid
N applications at ear emergence on GPC under S. nodorum
and B. graminis epidemics. However, Kelley (1993) reported
that only under topdress N supply, GPC increased and foliar
fungicide had no effect. Reductions of GPC for Z. tritici
with triazole + strobilurin fungicides tended to decrease as N
increased, whereas for inoculations with P. tritici-repentis no
differences in GPC were evident among fungicide and untreated
plots at the highest N rates. Conversely, under lower N rates,
GPC decreased when fungicides were applied, mainly with the
triazole + strobilurin + carboxamide treatment (Castro et al.,
2018). Under high N rates, although fungicides may reduce grain
shriveling due to a higher carbohydrates accumulation in the
grains, N uptake and N translocation to the grains may generate
this lower reduction in GPC.

Regarding the effect of necrotrophic and hemibiotrophic
pathogens on rheological properties, results are not consistent. In
the particular case of hemibiotrophic pathogens, the results are
expected to be not as consistent or as marked as those observed
for a pure necrotrophic organism because of the first biotrophic-
like behavior. Therefore, responses between a necrotrophic and
biotrophic pathogen can be expected (Figure 7). Thus, increases
or no effect of Z. tritici in AlvW with the use of fungicides
containing triazole-strobilurin have been reported. Discrepancies
were also found for the AlvL and the AlvP/L ratio (Cátedra-
Cerón and Solís Martel, 2003; Blandino and Reyneri, 2009; Castro
and Simón, 2017). Differences between experiments may be
partly due to the effect of several pathogens affecting bread-
making quality at the same time under natural infections, in
addition to the different bread-making aptitude of the genotypes.
It has been reported that GPC increases in those cultivars
with high bread-making quality (i.e., suitable for leavened-
bread production) but tends to decrease in those cultivars with
poor bread-making quality (Dimmock and Gooding, 2002c;
Castro and Simón, 2017). The protein quality (gliadin/glutenin
ratio) is essentially determined by the genotype. That is
why positive conditions for the deposition of proteins and
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increments in the gluten concentration in “modern” varieties
do not always correspond to AlvW increases or other gains in
bread-making quality. Although GPC and gluten concentration
can be estimated reciprocally, none of these parameters showed
a significant association with AlvW (García et al., 2001). For
instance, when GPC increased in cultivars with high bread-
making aptitude, the AlvW improved, while in cultivars of lower
bread-making aptitude, the AlvW values increased more slowly
(Renzi et al., 2007).

In addition, the effect of pathogens in the gliadins/glutenins
ratio may play a role in these discrepancies. It is likely that,
when no alteration of rheological properties by specific pathogens
was observed, protein composition was not modified. It has
been demonstrated that in some cases, despite modifications in
GPC, protein composition is not altered (Arabi et al., 2007).
The effects of the diseases in the duration of phases in which
gliadins and glutenins are formed is probably involved in
these apparent contradictions. As stated previously, gliadins
are the first storage proteins accumulated in the grain, while
glutenins are synthesized later in the grain-filling stage. Under
stressed conditions, glutenin synthesis and accumulation are
the first protein fraction being interrupted, whereas gliadins
generally continue. Therefore, the final gliadin/glutenin ratio
in the grain changes, which causes weak glutens and doughs
with less development time (Blumenthal et al., 1993). As
other pathogens Z. tritici infections reduce the grain-filling
development (Dimmock and Gooding, 2002b; Pepler et al., 2006);
hence there might be proportionally more gliadins, as glutenins
are the most affected and the gliadin/glutenin ratio increases,
affecting the rheological properties (Stone and Savin, 1999).
Related to this, Castro and Simón (2017) found that cultivars
with the lowest flag leaf green area duration showed the highest
decrease in AlvP and the highest AlvL, AlvW, and loaf volume
values when affected by Z. tritici, which can be associated with a
high gliadin/glutenin ratio.

GENERAL DISCUSSION: CHALLENGES
AND AREAS FOR FURTHER RESEARCH

In addition to the need to increase the wheat yield to meet
world demand, the international market also has increasing
quality requirements for the industry, and milling and end-
use quality are essential to determine its worth in the market.
In many countries, this value is determined according to
standards based on milling properties and GPC. In addition,
dough rheological properties determining end-use quality are
of crucial importance for millers. The increases in grain
yield in recent years have caused a reduction in the end-use
quality, which is determined genotypically but also affected
by abiotic and biotic stresses. Although there is much
information about abiotic stresses determining N dynamics,
milling characteristics, and end-use quality, the incidence of
biotic stresses, among them those caused by foliar fungal diseases,
is less understood, and results found in the literature are
sometimes inconsistent. This review critically summarizes the
available information on the subject, discussing fundamental

findings and concepts, interactions among diseases with N
fertilization schemes, and fungicide applications. Controversial
results, possible explanations through ecophysiological models,
drawbacks and gaps in the information available, and further
research needed to minimize the impact of the foliar diseases on
wheat quality are also discussed.

Several important foliar diseases affect wheat worldwide. Some
controversial results of the impact of such diseases on wheat
quality are partly due to the different nutritional habits of the
pathogens involved and their interactions with N fertilization.
This review summarizes findings of the incidence of several
foliar fungal diseases on milling and end-use quality. Three
pathogens that are among the most important and for which
there is recent information available were taken as representative
of biotrophic (P. triticina), necrotrophic (P. tritici-repentis), and
hemibiotrophic (Z. tritici). In recent years, the impact of these
diseases on ecophysiological variables affecting yield and end-use
quality has been addressed.

The effect of foliar wheat diseases on GPC and end-use
quality depends on several factors, among them the intensity
and growth stage when diseases develop. The effect of N
availability on the severity of the diseases with different
nutritional habits has shown controversial results. As mentioned
previously, while it is generally accepted that the severity of
biotrophic pathogens increases under high N rates (Jensen
and Munk, 1997; Hoffland et al., 2000), the severity of
necrotrophic pathogens shows a variable response with a
tendency to decrease (Hoffland et al., 2000; Long et al., 2000;
Carignano et al., 2008), and for hemibiotrophic pathogens
such as Z. tritici, an increase (Gheorghies, 1974; Simón et al.,
2002) or decrease (Johnston et al., 1979). Several factors,
such as N availability in the soil, weather conditions that
can promote the growth of the crop or the pathogen in
a differential way, the type and amount of N applied, and
specific N concentration for a given pathogen can modify
these results. Furthermore, experiments under natural infections
do not allow to discriminate pathogens precisely. In addition,
the severity of the diseases may be different and could have
been assessed in different ways when comparing different
studies. Experiments considering only the area under the
disease progress curve caused by the pathogens and its
relation to yield, GPC, and end-use quality do not provide
information on the absolute size of the canopy. This canopy
may vary among different genotypes, sites, and seasons, and
the remaining healthy tissue could be of different magnitude
across experiments. Ecophysiological approaches assessing the
HAD as was done in the joint experiments presented in this
review are more appropriate to quantify GPC modifications. In
addition, quantification of variations in GPC and end-use quality
related to source/sink ratio and thousand kernel weight will help
elucidate some questions.

As indicated, in recent years, joint inoculation experiments
with several pathogens inoculated separately at the same time,
with different N rates and fungicide types under defined N
availability, allowed us to elucidate some of the questions
(Castro et al., 2018; Fleitas et al., 2018a,b). These kinds of
experiments are extremely laborious as many (and large) plots
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need to be inoculated and assessed. However, they are able to
avoid differences in environments, the inoculated pathogen is
dominant, and the genotypes and N availability in the soil are
fixed. Those experiments also enable us to explore how pathogens
of different nutritional habit impact differentially on crop growth
at different growth stages. Despite their limitations, attempts
to carry out more inoculated experiments assessing the effect
of individual pathogens in different environments is necessary.
The use of some recent specific fungicides that act mainly on
biotrophic or on necrotrophic pathogens will be useful to better
discriminate the prevalent pathogens when specific inoculations
are carried out.

In fact, there are carboxamides that control primarily
rusts whereas other carboxamides better control necrotrophic
pathogens. In this sense, it has been reported that carboxamides
such as benzovindiflupyr are more effective against leaf rust
epidemics in comparison to another carboxamide molecules,
such as fluxapyroxad and pydiflumetofen, which are widely
used against necrothroph pathogens. Although scientific reports
about this behavior are scarce (Gosling, 2018) there is
already a commercial company promoting a fungicide with
benzovindiflupyr and fluxapyroxad for specific control of rust
and necrotrophic foliar diseases, respectively. These specific
fungicides, used separately, would be able to better discriminate
different types of pathogens in research experiments, although
for wheat production it is usual to use fungicide brands
composed of different modes of action. This allows expanding the
control of pathogens and reducing the possibility of resistance
development. In recent years more experiments have been
carried out using ecophysiological approaches to analyze the
impact of foliar diseases on wheat growth according to its
nutritional habit (Serrago et al., 2009; Schierenbeck et al., 2016)
and its consequences in yield and/or N dynamics and end-
use quality (Castro and Simón, 2017; Fleitas et al., 2018a,b;
Schierenbeck et al., 2019a).

The effect of foliar diseases on N dynamics, milling, and end-
use quality depends not only on the intensity and nutritional
habit of the prevalent pathogen but also on the time of infection,
consequently determining whether the number of grains per
unit area (early infection) or the thousand kernel weight (late
infection) is most affected. As mentioned previously, how the
relationship between carbohydrates and N is modified and
how the crop is able to compensate for those modifications is
critical for determining milling, processing, and end-use quality
in wheat.

In addition, the effects of foliar diseases on protein
composition have not been investigated. Aside from the effects on
the GPC, the gliadin/glutenin ratio could affect the impact of the
diseases on the rheological properties. Cultivars with the lowest
flag leaf green area duration showed the highest decrease of AlvP
and the highest AlvL, AlvW, and loaf volume values (Castro and
Simón, 2017) when affected by Z. tritici, which can be related
to the gliadin/glutenin ratio. As mentioned previously, these
proteins accumulate in the grain asynchronously influencing
dough rheological properties (Stone and Savin, 1999) and
ultimately bread-making quality. More research needs to be
done in this area.

Further research is also necessary on how a low source/sink
ratio or a lower translocation of reserve stored on the stems
can affect the reduction of thousand kernel weight or test
weight, increasing grain protein and gluten concentration
under late epidemics. A high source/sink ratio could reduce
the use of soluble carbohydrates stored, whereas a low
ratio could increase its translocation (Serrago et al., 2011).
Experiments should be expanded to different environments and
genotypes under infections with foliar pathogens with different
nutritional habit.

In addition, although it has been demonstrated that soluble
carbohydrates represent about 40% of dry matter in the stems
at the beginning of the grain-filling stage (Reynolds et al., 2009),
differences have been observed on its contribution to the grain
yield (Foulkes et al., 2007; del Pozo et al., 2016) as its translocation
can be affected by abiotic and biotic factors in a differential way.
Genotypes have been found with a different concentration of
soluble carbohydrates in the stems (Dreccer et al., 2009) which
might exhibit a higher tolerance to foliar diseases during the
critical period, although this hypothesis has not been confirmed.
However, these genotypes may reduce the GPC due to a higher
thousand kernel weight (Rozo Ortega, 2019).

Another area that warrants further research is how foliar
diseases and fungicides to control them affect HFN. Large
genotypic variability is observed in this variable in preliminary
studies, and how genetic and environmental factors can influence
its value has been studied. However, although it is known
that fungicides can increase this problem affecting the baking
industry, the physiology behind this phenomenon has not been
investigated and should be addressed.

The end-use quality of each genotype will also determine
how the pathogens will affect it, whereas the type of fungicide
applied and the N fertilization rate could reverse negative effects
caused mainly by biotrophic pathogens. Farmers should take into
account the nutritional habits of the prevalent diseases to take
management actions not only to increase grain yield but also
end-use quality.
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