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Infection of the pasture grass Lolium perenne with the seed-transmitted fungal
endophyte Epichloë festucae enhances its resilience to biotic and abiotic stress.
Agricultural benefits of endophyte infection can be increased by generating novel
symbiotic associations through inoculating L. perenne with selected Epichloë strains.
Natural symbioses have coevolved over long periods. Thus, artificial symbioses will
probably not have static properties, but symbionts will coadapt over time improving the
fitness of the association. Here we report for the first time on temporal changes in a novel
association of Epichloë strain AR37 and the L. perenne cultivar Grasslands Samson.
Over nine generations, a seed maintenance program had increased the endophyte
seed transmission rates to > 95% (from an initial 76%). We observed an approximately
fivefold decline in endophyte biomass concentration in vegetative tissues over time
(between generations 2 and 9). This indicates strong selection pressure toward reducing
endophyte-related fitness costs by reducing endophyte biomass, without compromising
the frequency of endophyte transmission to seed. We observed no obvious changes in
tillering and only minor transcriptomic changes in infected plants over time. Functional
analysis of 40 plant genes, showing continuously decreasing expression over time,
suggests that adaptation of host metabolism and defense mechanisms are important
for increasing the fitness of this association, and possibly fitness of such symbioses in
general. Our results indicate that fitness of novel associations is likely to improve over
time and that monitoring changes in novel associations can assist in identifying key
features of endophyte-mediated enhancement of host fitness.

Keywords: Lolium perenne, Epichloë endophyte AR37, coadaptation, seed maintenance program, artificial
association, fungal colonization

INTRODUCTION

Seed-transmitted Epichloë fungal endophytes, colonizing the intercellular spaces of Pooideae
grasses, are crucial in determining performance and persistence of pastures in many parts of the
world, by protecting their hosts from a range of biotic and abiotic stressors (Clay and Schardl,
2002; Schardl et al., 2004; Sabzalian and Mirlohi, 2010; Xu et al., 2017). However, up until recently,
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this protection often came at a price to the pastoral industry,
in that many of these endophytes produce alkaloids toxic to
livestock (Fletcher and Harvey, 1981; Gallagher et al., 1981; Tor-
Agbidye et al., 2001; Philippe, 2016). Novel non-toxic Epichloë-
pasture grass associations have now been established to minimize
these detrimental effects (Bouton et al., 2002; Johnson et al.,
2013a; Young et al., 2013).

One of the most successful novel associations has been
generated by introducing the European Epichloë strain AR37
(recently designated to be a member of LpTG-3 (Hettiarachchige
et al., 2015) into the New Zealand bred forage Lolium perenne
cultivar Grasslands Samson (Pennell et al., 2005; Popay and
Bonos, 2005; Stewart, 2006; Johnson et al., 2013a). AR37
does not produce the indole diterpene lolitrem B and ergot
alkaloids that cause endophyte-associated livestock toxicosis
in New Zealand pastures. Instead, it produces several epoxy-
janthitrem indole-diterpenes (Tapper and Lane, 2004; Schardl
et al., 2012; Panaccione et al., 2014). These, while structurally
similar to lolitrem B, are much less harmful to livestock (Thom
et al., 2007; Fletcher and Sutherland, 2009; Finch et al., 2013;
Thom and Hume, 2013). AR37-grass associations are resistant to
five of the six main insect pests of perennial ryegrass (L. perenne)
in New Zealand, such as African black beetle (Heteronychus
arator) and root aphid (Aploneura lentisci) (Popay and Wyatt,
1995; Hume et al., 2004; Popay and Gerard, 2007; Popay
and Thom, 2009); other endophyte metabolites may act in
addition to epoxy-janthitrems to confer pest resistance to these
associations (Johnson et al., 2013a). Samson was one of the
first cultivars sold with AR37, and it has been an important
cultivar sold over the last 15 years with this endophyte (Stewart,
personal communication).

One of the prerequisites of pastoral use of a novel
Epichloë/pasture grass association is the continuing annual large-
scale production of endophyte-infected seed (Hume et al., 2013;
Johnson and Caradus, 2019). A nine-year seed maintenance
program has increased AR37-endophyte seed transmission rates
in Samson from 76% to close to 100% (see below). This change
indicates that some form of coadaptation of the symbionts has
occurred, leading to an agronomically desirable outcome—high
seed infection rates being crucial to the distribution of the cultivar
to farmers (Johnson et al., 2013a; Johnson and Caradus, 2019).
However, it seems unlikely that increased seed transmission is
the only trait of the association subject to change. Given that
interactions between natural associations of seed-transmitted
Epichloë and their hosts have co-evolved over long periods of
time (Schardl et al., 2008; Glémin and Bataillon, 2009), and given
the difficulty of establishing novel associations, especially novel
associations that meet the requirements for commercial seed
production (Christensen et al., 1997; Gagic et al., 2018), it can be
assumed that both partners in the AR37/Samson symbiosis were
initially not optimally adapted to each other. Since the endophyte
depends on the grass for transmission (Saikkonen et al., 2010;
Gagic et al., 2018), and since the grass depends on the endophyte
for fitness enhancements, it can be assumed that there will be
ongoing selection for changes in both symbionts that increase
the fitness of the association (Schardl et al., 2004). Such fitness
increases may be largely beneficial from an endophyte perspective

through increasing pasture productivity, although some, such
as increased animal feeding avoidance (Hernández-Agramonte
et al., 2018), may not be.

Determining the extent and nature of changes in the
AR37/Samson association is thus of interest to breeders and
farmers alike, as these changes can be expected to alter the
performance of the association. It is also of interest in the context
of determining the mechanisms underlying successful interaction
between Epichloë endophytes and their hosts. Transcriptomic
analyses have to date failed to produce a uniform view of these
interactions (Dupont et al., 2015; Dinkins et al., 2016; Schmid
et al., 2017), and it can be concluded that the symbiosis is finely
balanced, with disruption of a large number of endophyte genes
associated with catastrophic effects on the symbiosis (Zhang
et al., 2006; Tanaka et al., 2008, 2012; Eaton et al., 2010, 2015;
Charlton et al., 2012; Johnson et al., 2013b; Chujo and Scott,
2014; Becker et al., 2015; Bassett et al., 2016). As such, genes and
features that alter as the AR37/Samson symbiosis evolves, could
be implicated as determinants of fitness-enhancing drivers of a
successful interaction.

We therefore undertook an analysis of three generations
of the initial nine-generation AR37/Samson seed maintenance
program to identify changes in both symbionts associated with
their co-adaptation.

MATERIALS AND METHODS

Biological Material
Seeds of perennial ryegrass plants of the forage cultivar
Grasslands Samson in association with Epichloë strain AR37
endophyte (Pennell et al., 2005) from the second, sixth, and
ninth generation of a seed maintenance program, described
in results (henceforth termed G2, G6, and G9), were obtained
from the Margot Forde Germplasm Centre (Palmerston
North, New Zealand).

Seed Germination
For each generation, 135 to 180 seeds were placed into
propagation cell trays (60-cell tray: 6 × 10 cell configuration;
45 mm diameter; 50 mm height; Pöppelmann TEKU, Lohne,
Germany) and placed on capillary watered benches in a
greenhouse. Each cell was filled with circa 70 mL of potting
mix (Daltons, Matamata, New Zealand) augmented with
1.5 g/L of dolomite (Daltons, Matamata, New Zealand) and
1.5 g/L of Lebanon-Turf-Woodace 14-6-11.6 short-term fertilizer
(Lebanon Seaboard Cooperation, Lebanon PA, United States).
Plants were watered via 2 L/h compensating emitters (Netafim,
Auckland, New Zealand) every 2 h for 2 min during day
light hours and once overnight. After 3 weeks, germination
rates were recorded.

Plant Growth, Cloning, and Test for Endophyte
Presence
After seed germination, the emerging plants were re-potted in 1 L
pots (11× 11× 12 cm deep; Primehort, Auckland, New Zealand)
filled with potting mix (Daltons) augmented with 1.5 g/L of
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dolomite (Daltons), 2 g/L of Lebanon-Turf-Woodace 18-2.2-
8.3 long-term fertilizer and 1.5 g/L of Lebanon-Turf-Woodace
14-6-11.6 short-term fertilizer (Lebanon Seaboard Cooperation).
After 3 weeks, three tillers per plant were tested for presence
of endophyte, using a tissue-print immunoassay previously
described by Simpson et al. (2012).

Both endophyte-infected and uninfected plants were clonally
propagated by placing 10–15 tillers into a new pot (1 L volume,
filled with Daltons potting mix augmented with dolomite and
fertilizer as described above for 1 L pots) every 6 months;
endophyte infection status was assessed for three of these tillers
per plant. Plants were placed on capillary watered benches and
maintained in the greenhouse with automatic watering, via 2 L/h
compensating emitters (Netafim), twice a day for a period of
10 min each time, for the duration of the project. The pots
were arranged so that plants from different generations and
endophyte-infected and uninfected plant were not separated into
different areas; pots were rearranged every 30 days.

Experimental Setup Under Controlled
Conditions
For experiments aimed at investigating plants under controlled
environmental conditions, 10 endophyte-infected and three
uninfected plants were randomly selected for G2 and G6,
while for G9, 11 randomly selected endophyte-infected and two
uninfected plants were identified. Three single tillers from each of
these plants were potted, individually, in 300 mL trapezoidal root
trainers (T2754 Flight-Plastic-Ltd; Lower Hutt, New Zealand)
containing potting mix (AgResearch Grasslands, Palmerston
North, New Zealand) and grown under controlled conditions
(15 ± 2◦C, 70% RH, 12 h light, 700 µmol m−2 s−1) in a
plant growth chamber (Contherm BIOSYN Series Model 630).
Plants from different generations and endophyte-infected and
uninfected plants were randomized. Plants were watered to
saturation every other day and the root trainers were rearranged
inside the cabinet weekly.

Plant Growth Analysis
Plant growth was assessed, under controlled environmental
conditions, by visually counting, every 2 days, the number of
tillers emerging (including leaf tips of new tillers emerging from
their mother tiller) from three initial tillers each from 13 G2,
13 G6, and 13 G9 genotypes. For the plant growth curve, the
tiller numbers were averaged for each plant genotype and for
each time point.

Microscopic Analysis of Fungal
Colonization
In order to determine differences in fungal colonization between
generations, one tiller each from 9 G2, 10 G6, and 8 G9 plant
genotypes harboring the endophyte, and grown under controlled
conditions, was cut at ground level and immediately processed
for microscopy analysis.

Pseudostem (the part of the tiller composed of the immature
emerging leaf surrounded by the sheaths of the mature leaves)
sections of about 1 mm thickness were obtained by making two

transverse cuts approximately 1 cm above the tiller base. Sections
were initially processed by vacuum fixation with glutaraldehyde
(Christensen et al., 2002). Subsequently, sections infiltrated
with an acetone/resin mixture were cut into 1-µm slices and
stained with 0.05% toluidine blue as previously described
(Zhou et al., 2014).

Microscopy Data Processing and Statistics
Hyphae in sections were counted at 400× magnification using
a Leica light microscope and hyphal diameters were measured
using the software ImageJ1 (Schneider et al., 2012) in three
sections per tiller. For each of the three cross sections, hyphal
biovolume was determined by multiplying the averaged area of
all the hyphal diameters with the averaged number of hyphae.
For all three hyphal measurement, values were averaged for
each genotype, and a Kruskal–Wallis test was used to determine
statistical significance.

RNA Extraction
On three occasions, 39 plants per generation, obtained from 13
distinct genotypes per generation, each derived from a different
seed, were grown under controlled conditions as described above.
From each of the exponentially tillering plants approximately
100 mg (fresh weight) of pseudostem tissue per plant was
flash frozen in liquid nitrogen and stored at −80◦C. All tillers
harvested had two mature leaves. Frozen tissue was ground
in liquid nitrogen using a mortar and pestle. RNA extraction
was performed using TRIzol reagent (Ambion) following the
manufacturer’s protocol. The integrity of the RNA was assessed
by 2% agarose gel electrophoresis, while its quantification
and purity were measured using a Qubit R© 2.0 fluorometer
(Thermo Fisher Scientific) and the QubitTM RNA HS Assay Kit
(Life Technologies).

Transcriptomic Sequencing and
Differential Expression Analysis
For each of three biological replicates, equal amounts of RNA
from each of the plants of each generation were pooled. Eight,
seven, and 11 endophyte-infected plant genotypes were pooled
in each of the three biological replicates for G2, G6, and G9,
respectively; three endophyte-uninfected plant genotypes for G2
and G6, and two for G9 were pooled for each biological replicate.

Ribonucleic acid sequencing was performed using BGI
(Shenzhen, Guangdong, China) by Illumina pair-ended 150 bp
sequencing. Raw reads were cleaned from spurious adapter
contaminations and low quality terminal nucleotides by
Trimmomatic (v0.33, Bolger et al., 2014) and read pairs longer
than 60 nt were kept for further processing. A hybrid reference
genome consisting of genomic scaffolds of the E. festucae
strain AR37 genome assembly (Razzaq, 2019) and a Lolium
perenne genome assembly (Nagy et al. in preparation) was
used as the target reference sequence for producing spliced
RNA-seq alignments. RNA-seq trimmed reads were mapped
to the indexed reference sequences using HISAT2 (Kim et al.,
2015). PCR duplicates were removed from the resulting bam

1https://imagej.nih.gov/ij/
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files using the bammarkduplicates tool of the biobambam2
package.2 Short-read alignments were processed by StringTie
(v1.34b, Pertea et al., 2015) to obtain transcript counts and
abundances. Gene-based read count information was extracted
from the transcript abundance files by the prepDE.py script of
the StringTie package. Differential gene expression analysis was
carried out by the Bioconductor package EdgeR (Gentleman
et al., 2004). From the EdgeR package normalization was applied
firstly on the library size by finding a set of scaling factors using a
trimmed mean of M-values (TMM) between each pair of samples
(Robinson and Oshlack, 2010). Subsequently, the data went
through a log2 transformation and normalized by the median of
the log2 of the transcript reads per million (RPM). Differential
expression of the genes was obtained using a False Discovery
Rate (FDR) threshold of 0.05.

RESULTS

Endophyte Colonization Changes During
Nine Years of Seed Propagation of a
Novel Endophyte/Grass Association
We wanted to explore if and how endophyte colonization changes
over time during serial seed propagation of a grass population
containing a selected, artificially introduced endophyte. For this
purpose, we drew upon stored seed from a nine-generation
New Zealand seed maintenance program that improved seed
transmission of the endophyte AR37 in the perennial ryegrass
cultivar Samson. AR37 had been isolated from a European
perennial ryegrass (Popay and Bonos, 2005; Stewart, 2006;
Johnson et al., 2013a) and successfully introduced into 38 plants
of the cultivar in 1996. Seed transmission increased over a
period of nine seed propagation cycles in the maintenance
program from 76% in G1 to above 95% in G9 from the
offspring of the initial 38 plants (Figure 1). Throughout the
program, seed was generated annually by open pollination of
plants that had tested positive for endophyte infection, with
two exceptions: G3 and G5 were derived from seed generated
by open pollination of G2 and G4 plants, respectively, without
regard for their endophyte infection status (see Supplementary
File 1 for detailed description of the program). While selection
of seed for propagation was based entirely on presence of AR37
endophyte (as assessed by immunoassay and strain genotyping),
performance of the association in terms of insect resistance has
remained unaltered (Popay and Gerard, 2007; Popay and Cox,
2016; Popay personal communication).

Endophyte colonization at three time points in the
maintenance program (G2, G6, and G9), was determined
for the plants to be used for this work and generated from
seed stored under controlled environmental conditions in
the Margot Forde Germplasm Centre (Palmerston North,
New Zealand). The percentages of plants testing positive for the
presence of endophyte were very similar to those determined
earlier (Figure 1).

2https://gitlab.com/german.tischler/biobambam2

FIGURE 1 | AR37 endophyte seed transmission in perennial ryegrass plants
of cultivar Grasslands Samson over a nine-generation seed maintenance
program. Shown are the percentages of endophyte-infected plants in each
generation (G1–G9) generated from seeds from the previous generation.
Presence of the endophyte was assessed by a tissue-print immunoassay
(Simpson et al., 2012) or microscopic examination of aniline blue-stained
basal leaf sheaths (Simpson et al., 2012). Green rhombs represent infection
data generated earlier (Hume et al., unpublished data); red circles data were
generated in this study when generating plants from stored seed (see
Materials and Methods).

In L. perenne, Epichloë biomass is highest in the leaf sheaths,
and levels in any one sheath of a tiller are a reasonable predictor
of levels in other parts of the tiller and the overall level of
colonization (Herd et al., 1997; Tan et al., 2001; Christensen et al.,
2008). Microscopy was used to determine hyphal numbers and
hyphal diameters in the sheath of the second youngest mature
leaf of exponentially tillering plants grown under controlled
conditions using 9, 10, and 8 plants (each from a different seed)
for the G2, G6, and G9 generations, respectively; Figures 2, 3.
These measurements were also used to assess changes in
hyphal biovolume (Figure 2C). All three parameters changed
significantly over time (Kruskal–Wallis test with P < 0.01,
P < 0.05, and P < 0.01 for numbers, diameter, and combined
cross section area, respectively). In particular, hyphal numbers
dropped by as much as 75% from G2 to G9, with some G9 plants
having < 10 hyphae in the leaf, whereas the minimum number
in G2 and G6 was 121 hyphae. Average hyphal diameters also
decreased, and as a result of a decline of both number of hyphae
and diameter, the average biovolume of the endophyte in the leaf
declined by 33% from G2 to G6 and by 81% from G2 to G9.

The frequency of hyphae colonizing vascular bundles is
typically increased in incompatible associations (Christensen
et al., 1997, 2001). While it remained low overall, it did increase
from 0.04% in G2 to 0.23% in G6 and 0.30% in G9 (frequencies
were too low to allow us to demonstrate statistical significance at
the P < 0.05 level; P < 0.12; chi-square test).

The Endophyte’s Transcriptome Did Not
Change Across Generations
To investigate whether the transcriptome of the endophyte would
reveal adaptation-associated changes in gene expression of the
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FIGURE 2 | Changes in AR37 colonization over time. (A) Box and whisker plot of hyphal numbers determined microscopically in aniline blue-stained 10-micron
sheath cross sections (1 mm from the base of the tiller) of the second youngest mature leaf of nine G2 plants, 10 G6 plants and eight G9 plants, grown under
controlled conditions. Hyphal numbers used were the averages of three measurements of adjacent sections of the same tiller. (B) Average hyphal diameters of
hyphae in G2, G6, and G9, respectively, in the same sections (based on measurement of 40–50 hyphae per section). (C) Area occupied by hyphae in cross sections,
calculated from hyphal numbers and the average hyphal diameters.

endophyte over time, RNA-seq was performed on pseudostem
samples from sets of multiple genetically distinct endophyte-
infected plants from each of the three generations. The high-
throughput RNA sequencing generated∼1 GB reads per sample.
The total number of 100 bp clean reads produced, after adaptor
trimming, ranged from 22,631,866 to 23,849,822 per sample with
a number of nucleotide with quality higher than 20/nucleotide
(Q20) ranging from 95.93% to 96.56%. The alignment rate was
ranging from 78.08% to 80.76%. Trimmomatic was additionally
used to remove spurious adapter contaminations and low quality
terminal paired-end reads (Bolger et al., 2014). Subsequently,
reads with less than 60 nucleotides and unpaired reads were
removed. Averaged 16,270,827 RPM, 16,044,654 RPM, and
16,500,651 RPM were mapped on the plant’s genome in G2, G6,
and G9, respectively, while averaged 49,404 RPM, 39,817 RPM,
and 42,434 RPM were mapped on the endophyte’s genome in G2,
G6, and G9, respectively.

A continuous increase or decrease of expression of a gene over
time in the maintenance program could be an indication of its
role in adaptation. We therefore investigated whether the number
of genes for which the number of RPM significantly increased
or decreased from G2 to G6 to G9 was higher than expected by
chance (Schmid et al., 2017; how this was assessed is described in
more detail below for plant genes). This was not the case, which
was not unexpected given that the AR37-endophyte propagates
clonally (Philipson and Christey, 1986) and different clones are
likely to follow different adaptive paths, making clone-specific
expression differences difficult to detect in pooled samples.

Expression of janthitrem pathway genes did also not
alter significantly as the breeding program progressed
(Supplementary Figure 1). Interestingly, the contribution
of the endophyte to the transcriptome did also not diminish
in spite of the reduction in fungal biomass (Supplementary

Figure 2), indicative of an increase of metabolic rate as hyphal
number declined, and thus an undiminished capacity of the
symbiosis to synthesize janthitrem (Schmid et al., 2017).

Changes in Plant Response to the
Endophyte Over Time
To search for possible signs of host adaptation, growth and plant
transcriptomes were monitored over the three generations. There
was no detectable change over time for rates of tillering. The
length of time before a tiller formed its first daughter tiller was
likewise unaltered (Supplementary Figure 3).

Transcriptomic analysis, as previously described by Schmid
et al. (2017) identified a small number of host genes whose
expression level decreased across the three generations, indicative
of adaptation during the maintenance program. Fifty-three genes
(binominal confidence interval 40–70) were identified, which had
lower RPM values in all three G9 replicates than in all three G6
replicates, with the latter RPM values being also smaller than the
RPM values in all three G2 replicates. This number exceeded by
37 the number of genes expected to show a consistent increase
or decrease of RPM over time by chance (z test; P < 0.001;
no genes showed consistent increases in RPM over time). To
determine which of the 53 genes were most likely to represent the
37 genes that showed expression trends not merely by chance,
genes that had a statistically significant expression difference
between G2 and G9 were identified using EdgeR. Expression of 40
of the 53 genes met the EdgeR criteria for significant expression
differences, matching closely the number of genes (37) predicted
to alter expression as a result of adaptation.

For most of the 40 genes, expression changes were subtle.
Only for 10 of the genes, expression between the two generations
changed more than twofold, but all of these were minor
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FIGURE 3 | Representative leaf sheath sections in G2 (A), G6 (B), and G9 (C)
plants. Arrows indicate hyphae within the vascular bundles. In the sections are
represented spongy mesophyll (SM), xylem (X), phloem (P), and mesophyll
cells (MC). Bar: 50 µm.

components of the transcriptome (2-27 RPM; Supplementary
Tables 1, 2).

To elucidate which pathways may have altered in the course
of the maintenance program, annotation of the 40 differentially
expressed genes was performed. The inferred likely functions of
these genes (Figure 4 and Supplementary Tables 1, 2) suggested
that adaptation of the host involved predominantly changes in

metabolism (mostly protein metabolism), as well as hormone
metabolism and signaling. Five of the genes had proposed roles
in plant cell wall structure, composition, and modification, e.g.,
extension. Two of the genes, cytochrome P450 and aldo-keto
reductase, had likely primary roles in broad defense against biotic
and abiotic stresses and plant–microbe interactions (Mierziak
et al., 2014; Sengupta et al., 2015; Xu et al., 2015; Tao et al., 2017).
In addition, half of the remaining genes had functions that can
contribute to plant defense and environmental stress responses
(Espartero et al., 1994; Viitanen et al., 1995; Olczak et al., 2003;
Afzal et al., 2007; Goff and Ramonell, 2007; Tsai et al., 2012;
Antonyuk et al., 2014; Charpentier et al., 2014; Ezaki et al., 2016;
Mellidou et al., 2016; Skubacz et al., 2016; Bielach et al., 2017),
including chloroplast-associated genes.

DISCUSSION

New artificial associations between perennial ryegrass and fungal
endophytes are being continuously developed (Johnson et al.,
2013a) in order to optimize benefits of endophytes to the
pastoral industry and to ameliorate negative impacts of climate
change. Novel associations are initially intensively tested prior
to their commercial release (Thom et al., 2012). Subsequent
testing focuses largely on seed transmission of the endophyte,
a prerequisite for the bulk generation of endophyte-infected
seed (Gagic et al., 2018). It is not known how and to what
degree the properties of novel associations change over time—
these constitute important issues for long-term agricultural use
of such associations, since in a novel symbiosis both partners are
expected to undergo adaptive changes in response to selection
(Dimijian, 2000). This article describes for the first time changes
that occur over generations of a novel association combining
the Epichloë strain AR37 and the L. perenne cultivar Samson
(Pennell et al., 2005).

The most notable change was a considerable reduction in
endophyte biomass in vegetative tissue, while maintaining a

FIGURE 4 | Functional categorization of 40 genes showing an expression
signature suggestive of adaptation. See Supplementary Table 1 for details.
Note that for some of the genes likely functions involved two or more
categories. For six genes, no function could be inferred but all encoded
proteins had highly similar homologs in other plant species.
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high frequency of seed transmission. Environmental conditions,
particularly nitrogen fertilizer, do of course affect endophyte
biomass concentration (Stewart, 1986). However, while we did
not measure endophyte biomass levels in vegetative tissues
under the multitude of field conditions that existed when
seed was generated, the decline over time we saw, under
controlled conditions, in the three generations, suggests (i) a
high adaptive value of minimizing endophyte levels and thus
the metabolic burden incurred by its presence and (ii) that a
considerable reduction of AR37 endophyte biomass is achievable
without compromising seed transmission of the endophyte—and
presumably also without compromising protection of the plants
from insect pests under field conditions (Popay and Gerard,
2007; Popay and Cox, 2016; Popay personal communication).
Our data suggest that the latter may be achieved by increased
transcriptomic and metabolic activity of hyphae in the later stages
of the breeding program.

A reduction in endophyte biomass did not dramatically
alter plant growth, with tillering rates showing no differences
between generations. This is not unsurprising as the effects of
endophyte colonization on vegetative growth are subtle and
complex (Spiering et al., 2006; Tanaka et al., 2006; Eaton et al.,
2010). The reduction in biomass could also be considered a sign
of increased compatibility: when in reverse genetics experiments
the disruption of Epichloë genes reduces compatibility with the
host, this usually leads to an increase in endophyte biomass
(Tanaka et al., 2008; Johnson et al., 2013b; Becker et al., 2015).

Under controlled conditions, as used in our study, it can
be demonstrated that the plant genotype (Spiering et al., 2005)
and the endophyte strain (Zhang et al., 2006) each play a
role in determining endophyte biomass concentration in host
tissue. Possibly due to clonal interference, the presence of
multiple asexually reproducing lines carrying different mutations
(De Visser and Rozen, 2005; Neher, 2013; Vazquez-Garcia
et al., 2017), we could not identify any changes in the fungal
transcriptome that may have played a role in reducing fungal
biomass—there is evidence indicating that AR37 underwent
some degree of mutational change during the seed maintenance
program, but the number and precise nature of these mutations
cannot be inferred with confidence, being bioinformatically
derived from pooled clones (Razzaq, 2019). Transcriptome
changes in the plant, related to defense mechanisms, suggest
that alterations in plant defense mechanisms could play a role
in reducing fungal biomass, and this is consistent with the idea
that limiting and/or killing of hyphae by the plant could be
part of controlling endophyte biomass (Schmid et al., 2017).
Other changes may reflect adjustments of the host to AR37
endophyte in photosynthesis (Spiering et al., 2006; Schmid
et al., 2017)–chloroplasts act as modulators of plant innate
immunity (Padmanabhan and Dinesh-Kumar, 2010)–, hormone
production and signal transduction (Dinkins et al., 2016; Schmid
et al., 2017), cell wall structure (Dupont et al., 2015), and protein
and ion metabolism; some of these are possible secondary effects
of reducing endophyte biomass concentration.

In summary, our data support the idea that novel associations
continue to evolve over time, presumably toward increased fitness
of the symbiosis. Such fitness increases may have an associated

agricultural benefit under field conditions, but there is also
the possibility of negative effects such as grazing resistance.
It is too early to gauge the importance of the effects we
saw, in particular the reduction in endophyte biomass under
our controlled laboratory conditions, in terms of agronomic
performance of pastures. What is clear is that monitoring changes
in novel associations may help maintain and optimize their
pastoral benefits. In addition, changes in these associations offer
a unique opportunity to explore many of the largely unknown
mechanisms by which fungal endophytes enhance fitness and
pastoral performance of their grass hosts.
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AgResearch in 1996. These original 38 G0 plants were used to generate new
plants (G1) in 1997. The percentage of endophyte-infected plants in G1 was 76%
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seed of 1200 G1 plants that had been open pollinated at Lincoln. The percentage
of endophyte-infected plants in G2 was 89%. Following agronomic trialing in
New Zealand, reported elsewhere (Hume et al., 2004, Hume et al., 2007), the G3
was produced in 2007 from the seed of G2 plants following their open pollination
at Lincoln using both endophyte-infected and endophyte-free plants. G3 plants
were 96% AR37-infected and, following open pollination at Lincoln, seeds from
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