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Global warming is predicted to impact many agricultural areas, which will suffer from
reduced water availability. Due to precipitation changes, mild summer droughts are
expected to become more frequent, even in temperate regions. For perennial ryegrass
(Lolium perenne L.), an important forage grass of the Poaceae family, leaf growth is
a crucial factor determining biomass accumulation and hence forage yield. Although
leaf elongation has been shown to be temperature-dependent under normal conditions,
the genetic regulation of leaf growth under water deficit in perennial ryegrass is poorly
understood. Herein, we evaluated the response to water deprivation in a diverse panel
of perennial ryegrass genotypes, employing a high-precision phenotyping platform. The
study revealed phenotypic variation for growth-related traits and significant (P < 0.05)
differences in leaf growth under normal conditions within the subgroups of turf and
forage type cultivars. The phenotypic data was combined with genotypic variants
identified using genotyping-by-sequencing to conduct a genome-wide association
study (GWAS). Using GWAS, we identified DNA polymorphisms significantly associated
with leaf growth reduction under water deprivation. These polymorphisms were adjacent
to genes predicted to encode for phytochrome B and a MYB41 transcription factor.
The result obtained in the present study will increase our understanding on the complex
molecular mechanisms involved in plant growth under water deficit. Moreover, the single
nucleotide polymorphism (SNP) markers identified will serve as a valuable resource in
future breeding programs to select for enhanced biomass formation under mild summer
drought conditions.

Keywords: leaf growth, drought tolerance, genome-wide association study, dynamic phenotyping, Lolium
perenne L., Phytochrome B, MYB41

INTRODUCTION

Abiotic stress has detrimental effects on agriculture worldwide, threatening food security as huge
yield losses are already being reported (Daryanto et al., 2016; Fahad et al., 2017). Moreover, concerns
are rising about the effect climate shifts may impose on grassland productivity, and consequently
feed production (Ergon et al., 2018). Climate models predict an increase in dry spells in the
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future, the key components being water deficit caused by the
changes in precipitation patterns and temperature increase
(Boyer, 1982; Lobell and Field, 2007; Salekdeh et al., 2009; Moore
and Lobell, 2015).

Drought is a major limitation to crop productivity, crop
irrigation consumes large amounts of water resources (Condon
et al., 2004). Plant breeding for drought tolerant cultivars is
considered as an important measures to mitigate the effects of
drought on food and feed production, however, direct selection
for yield under water stress resulted in limited genetic gain for
drought tolerance (Hu and Xiong, 2014; Kumar et al., 2014;
Mwadzingeni et al., 2016; Sandhu and Kumar, 2017). Plant
phenotypes are inherently complex, reflecting the interactions
of the genotype with environmental factors (Forsman, 2014).
These interactions influence plant growth and development,
which affect biomass accumulation and hence yield formation.
A very important aspect to consider when breeding for drought
tolerant crops is the severity and duration of the stress,
as increased survival under severe drought does not mean
improved performance under mild drought (Skirycz et al., 2011).
When faced with water limitation during summer droughts
in temperate environments, plants might employ alternative
strategies, like drought escape, and drought avoidance (Kooyers,
2015). In either case, the outcome is reduced vegetative growth
and biomass accumulation (Farooq et al., 2012). Plants can
adapt to water stress in different ways, they might choose
between survival, meaning reduced water use and growth halt,
or continued slow growth (Claeys and Inzé, 2013). The latter
option offers a competitive advantage in biomass accumulation,
assuming the stress is temporary but can threaten survival if
the stress persists. From a practical point of view, aiming to
obtain stable yield under mild drought, a forage grass cultivar
continuing slower growth after sensing the water deprivation is
preferable to the one that opts for the survival strategy and halts
its growth early.

Throughout the decades of perennial ryegrass (Lolium perenne
L.) breeding, progress has been made in many quality-related
traits (Humphreys et al., 2010; Sampoux et al., 2011, 2013).
Drought adaptation of cultivars and natural ecotypes, reflected
both in aboveground biomass production under field conditions
and controlled environments, has been the focus of many studies
(Korte and Chu, 1983; Kemesyte et al., 2017; Bothe et al., 2018;
Lee et al., 2019). However, most of the earlier studies used
destructive phenotyping methods or were limited to measuring
the traits at start and end of the stress. This might lead to missing
important quantitative trait loci (QTL) in association studies
(Bac-Molenaar et al., 2016) as well as limited understanding
of the overall complexity of temporal plant response to the
environment. Recently, Yates et al. (2019) described a dynamic
phenotyping method as a non-destructive and precise diagnostic
tool to profile leaf growth under water deficit stress in situ.
This method allows modeling leaf growth and pinpointing when
a plant reduces and arrests leaf growth due to water deficit
and thus has the potential to unravel the genetic mechanisms
underlying these responses by QTL analysis. In this study,
we aimed at: (i) determining the genotypic response of leaf
growth to temperature and soil water availability, (ii) identifying

genome-wide DNA sequence polymorphisms using genotyping-
by-sequencing (GBS) for population description, and (iii) g
genetic loci associated with the response to water deficit stress by
performing genome-wide association study (GWAS).

MATERIALS AND METHODS

Plant Material and Growth Conditions
A perennial ryegrass association panel consisting of 197
genotypes was used throughout the water deficit experiments.
The panel was chosen on the basis of earlier experiments
for drought (Jonavičienė et al., 2014) and freezing tolerance
(Aleliūnas et al., 2015), where results revealed a high genotypic
diversity among the panel individuals as well as a high phenotypic
variability for drought-related traits. Most of the cultivars were
of European origin, except one genotype coming from Japan,
one genotype from New Zealand and six genotypes from the
United States. The majority of ecotypes were of Lithuanian
and Ukrainian origin, 35 and 55, respectively, but a few of
the ecotypes were from Latvia (two), Poland (two), Slovakia
(two), Denmark (one), and the Kaliningrad Region of Russian
Federation (ten). A detailed description of the association
mapping panel is presented in Supplementary Tables 1, 2.

For the leaf growth under water deficit experiment, plants
were vegetatively propagated into four clonal replicates,
each consisting of 20 tillers, and grown in plastic pots
(ø15 cm and 12 cm height) filled with 450 g of commercial
potting mix substrate (“Spezialmischung 209,” RICOTER
Erdaufbereitung AG, Aarberg, Switzerland) under regular
irrigation and fertilization in a greenhouse. 4 to 6 weeks after
clonal propagation, plants were transferred into a climate
chamber (Conviron, 86 Winnipeg, Canada) under controlled
conditions with a light/dark photoperiod of 16/8 h and a light
intensity of 275 µmol photosynthetically active radiation (PAR)
m−2 s−1. The climate chamber was equipped with a 2:1 mixture
of fluorescent lamps of two types (T5 FQ 54W/840 HO, Osram
GmbH, Munich, Germany and T5 FH054W/GRO G5 F 54W,
Havells Sylvania Europe Ltd, London, United Kingdom). The
day/night temperature was 25/15◦C, and relative air humidity
was set to 50%.

Water Deficit Treatment and Leaf Growth
Measurements
To measure the phenotypic response to water deficit, leaf
growth was assessed non-destructively using a largely automated
phenotyping platform as described by Yates et al. (2019). Briefly,
the tip of a young growing leaf was attached with a hair pin
to a string and kept taut using weights of 20 g. White plastic
beads (ø20 mm, 7 g) were threaded onto the strings and placed
on the growth array to provide artificial landmarks for image-
based marker tracking. Images of the growth array were taken
every 2 min with a LupusNET HD camera (LUPUS-Electronics

R©

Gmbh, Landau, Germany) and analyzed with the LLT software
(Nagelmüller et al., 2016).

To induce a water deficit stress, perennial ryegrass plants
were deprived of water for 130 h. After the stress treatment,
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plants were re-watered and grown for additional 35 h to
confirm that water limitation was the cause of leaf growth
arrest, but not leaf age. Soil moisture deficit was measured
using an integrated wireless microclimate sensing system (WiFi
Plant sensor, Koubachi, Switzerland). Each sensor was calibrated
individually and soil moisture data was measured at a depth of
7 cm every 4 h. The meristem temperatures of six plants per
experiment were measured with a K type thermocouple (GTF
300, Greisinger, Germany; ø 0.2 mm) inserted into the tiller at
meristem height.

The statistical analysis was implemented with the open source
R statistical environment (version 3.1.0; R Development Core
Team, 2005). Leaf growth under water limitation was estimated
using the TriPhase function described by Yates et al. (2019).
The function dissects complex growth processes into qualitative
traits, described as leaf thermal growth (a), leaf growth reduction
point (6), and the leaf growth arrest point (σ). The average
phenotype for each trait per genotype was determined using least-
square means implemented in “lsmeans” package for R (Lenth,
2016). Student’s t-test was used to compare the means of different
growth traits and the Pearson’s correlation coefficients between
different phenotypes were estimated. Broad sense heritability of
the traits was determined using the “heritability” package of R
(Kruijer et al., 2014).

Genotyping-by-Sequencing and SNP
Discovery
High-molecular-weight DNA was extracted from fresh leaf
material using the method described by Mayjonade et al. (2016).
The DNA was quality checked on a 1% agarose gel and quantified
with a NanoDrop 2000 spectrophotometer (Thermo Fisher
Scientific, Waltham, MA, United States). The association panel
was divided into three groups with equal number of individuals
in each to produce GBS libraries. One hundred ng of DNA of
each individual was digested by PstI (Thermo Fisher Scientific,
Waltham, MA, United States) and then unique barcodes were
ligated using T4 DNA ligase (Thermo Fisher Scientific, Waltham,
MA, United States). The libraries were then pooled into a
single tube and PCR-amplified using a common primer with
a HiSeq adapter. After quality checking and cleaning using
Qiagen spin columns (QIAGEN Sciences Inc, United States),
the samples were sequenced by 126 bp single-end reads on a
Illumina HiSeq 2500 (Illumina, Inc, San Diego, United States)
sequencing system at the Functional Genomics Center Zurich
(Zurich, Switzerland).

The quality of raw sequence data was checked using FastQC
(v0.11, DePristo et al., 2011). After the initial quality check, reads
of 164 genotypes were demultiplexed into separate files using
saber1 with no mismatches allowed. Illumina adapter sequences
were removed using Cutadapt (v1.18; Martin, 2011) and reads
shorter than 40 bp were discarded. The reads were mapped
to the perennial ryegrass draft genome assembly (Byrne et al.,
2015) using BWA-MEM (Li, 2013). Bi-allelic variants were called
using Genome Analysis Toolkits (GATK, v.3.8-1-0, McKenna
et al., 2010) and then hard-filtered using vcftools (v.0.1.14,

1https://github.com/najoshi/sabre

Auton et al., 2011) with minimum depth of 5 and minimum
quality (GQ) score of 40. After removing single nucleotide
polymorphisms (SNPs) with low-quality scores, variant sites were
additionally filtered on allele frequencies by excluding variants
with a minor allele frequency (MAF) below 0.05. Afterward,
variant sites with more than 50% of missing data in the
population were excluded.

Linkage Disequilibrium, Population
Structure and GWAS
Linkage disequilibrium (LD) in the association panel was
expressed as squared Pearson’s correlation coefficient (r2) on all
the marker-tagged scaffolds larger than 20 kbp. For LD analysis,
SNPs with an estimated MAF lower than 0.05 were removed.
Squared correlation coefficient between the variant sites was
evaluated using vcftools (v0.1.16), while the subsequent analysis
was performed using R.

Population structure of the perennial ryegrass association
panel was investigated using principal component analysis
(PCA). PCA was conducted using “prcomp” function
implemented in stats package for R. For PCA, genotypic
data matrix was used with missing data replaced using
mean imputation.

Marker-trait associations were tested using the mean
phenotypic values. A GWAS was performed for each trait
separately using a single marker regression (SMR, Lenth,
2016) and three complementing methods: (1) FarmCPU (Fixed
and random model Circulating Probability Unification, Liu
et al., 2016) implemented in GAPIT software package2, (2)
multi-locus mixed model (MLMM, Segura et al., 2012), and (3)
Bayesian-information and Linkage-disequilibrium Iteratively
Nested Keyway (BLINK, Zhang et al., 2018) for R. The first
three principal components (PC) were provided as covariate
variables. For the SMR analysis, each SNP marker was tested
with the phenotype as the response variable and the genotype
scores as predictor variable. SNPs were retained when more than
100 data points for both the phenotype and the genotype were
available. Alleles were removed if their MAF was less than
0.05 If a SNP met these criteria and was still polymorphic,
a regression model using the “lm” function in R was fitted
and the significance (P-value) and the variance explained
(R2) was extracted.

To correct for multiple testing, the P-values were
adjusted using both FDR (Benjamini and Hochberg, 1995)
and Bonferroni corrections. An annotation file from the
Perennial Ryegrass Genome Sequencing Project (available
online at: http://185.45.23.197:5080/ryegrassdata/GENE_
ANNOTATIONS/Lp_Annotation_V1.1.mp.gff3) was used to
retrieve predicted gene positions and sequence information.

To identify the putative location of markers on chromosome
level, scaffolds harboring significant marker-trait associations
were anchored to the pseudomolecules of Hordeum vulgare
genome (Mascher et al., 2017) using LAST3.

2https://github.com/jiabowang/GAPIT3
3http://last.cbrc.jp/
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FIGURE 1 | Variation of thermal leaf growth (a), leaf growth reduction point
(6), leaf growth arrest point (σ), and water deprivation tolerance (c) between
the forage cultivar (n = 43), turf cultivar (n = 46), maritime origin ecotype
(EcoMar, n = 50) and continental origin ecotype (EcoCont, n = 58) groups in
the perennial ryegrass panel. *indicates significant difference at P < 0.05
(Student’s t-test).

RESULTS

Phenotyping of Leaf Growth Under Water
Deficit Conditions
Substantial variation for leaf growth under water deficit was
detected within the perennial ryegrass panel (Figure 1). In the
whole association panel, the values for leaf thermal growth rate
(a) ranged from 0.001 to 0.147 mm.h−1.◦C−1 with a mean
a value of 0.06 mm.h−1.◦C−1. Growth reduction point (6)
varied between 1.368–4.432 log10 (hPa) with a mean 6 value
of 2.38 log10 (hPa). The growth arrest point (σ) was lower and
varied between 1.87–5.94 log10 (hPa) with a mean σ value of
3.89 log10 (hPa). The comparison between ecotype and cultivar
groups in the association panel revealed no significant differences
(P > 0.05) for all assessed traits, but significant differences
were found when comparing the subgroups. Under optimal
conditions, the averaged thermal growth rate of forage type
cultivars was a= 0.07 mm.h−1.◦C−1, while the turf type cultivars
grow significantly (P < 0.01) slower with a= 0.05 mm.h−1.◦C−1.
A significant difference was also observed between the turf
subgroup and both ecotype groups originating from maritime
and continental climate zones (P < 0.05). Overall, the heritability
values for the measured traits were high: leaf thermal growth rate
(a) h2

= 0.67, growth reduction point (6) h2
= 0.72, and growth

arrest point (σ) h2
= 0.71.

Variable correlations between the thermal growth, growth
reduction point (6), and the growth arrest point (σ) were
obtained in the subgroups (Figure 2). Strong to moderate
positive and significant correlation was observed between growth
reduction and growth arrest points in both ecotype groups and

turf type cultivar group, ranging from r = 0.62 to r = 0.46,
P < 0.05. Leaf growth arrest point strongly correlated with
tolerance of genotypes in all groups (r ranging from 0.50 to 0.61,
P < 0.05).

GBS, Population Structure and LD
Sequencing of the GBS libraries yielded over 573 million
reads. The number of reads per sample ranged from
257,518 to 3,667,767 reads with an average reads number
of 1,528,212± 604,999. After removing variant sites with missing
rates ≥0.5 and minor allele frequency <0.05, 21,648 markers
were identified and used for further analyses.

A rapid LD decay was observed in the perennial ryegrass
association panel using GBS-PstI markers. LD was measured by
the r2 and the average distance between the SNPs with LD ≥ 0.5
was determined to be 712 bp. The distance for SNPs with
LD ≥ 0.25 was on average 1,378 bp.

Genetic structure in perennial ryegrass association panel was
visualized using PCA (Figure 3). The first and second PC
accounted from 3.0 to 4.0% and from 1.9 to 2.4% of the observed
genetic variance, respectively. The first PC (Figure 3A) did not
discriminate between ecotypes and cultivars, but the second PC
shown some separation. The subgroups of forage and turf type
cultivars were not clearly separated (Figure 3B), while for the
ecotype group, a clear separation of the genotypes was observed
regarding the country of origin (Figure 3C). Moreover, a high
correlation was detected between PC1 and geographical latitude
(r = 0.87, P < 0.01). Genotypes for the neighboring countries
of Lithuania, Latvia and Kaliningrad region of Russia formed a
distinct cluster, while Ukrainian, Polish and Slovakian ecotypes
formed a separate cluster. Interestingly, two Ukrainian ecotypes
were found to be distantly related to other genotypes with an
obvious separation on PC2 (Figure 3C). PC1, in Figure 3C,
clearly separated ecotypes originating from the Baltic Sea region
from the ecotype group of Ukrainian and Slovakian which
represented continental climate zone.

GWAS for Biomass Formation
Marker trait associations were tested individually using SMR and
three multi-QTL approaches: FarmCPU, BLINK, and MLMM.
No significant marker trait associations were found after
correcting for multiple testing, using SMR. This is attributable
to the incomplete genotypic data from GBS and rare alleles
coupled with strict multiple testing. Although three SNPs were
significantly associated with the growth reduction point 6,
after correction for multiple testing, when using FarmCPU,
BLINK, and MLMM. These markers are in close proximity
or within predicted genes (Table 1 and Figure 4). However,
no SNPs were significantly associated with other traits. The
significant MYB41 loci found by FarmCPU had the lowest
P-value (P = 6.35E−06) when tested by SMR model. Given that
both Bayesian and frequentist procedures, using FarmCPU and
SMR statistical approaches, respectively, identified the same loci
suggests they are important.

The location of the marker-tagged scaffolds at the
chromosome level was revealed by BLAST alignment to the
barley H. vulgare genome (Mascher et al., 2017). Two of
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FIGURE 2 | Correlation between thermal leaf growth (a), the leaf growth reduction point (6), the leaf growth arrest point (σ), and water deprivation tolerance (c) traits
in perennial ryegrass panel; In (A) upper triangle represents forage cultivar group and lower triangle represents turf. (B) Upper triangle represents group of ecotypes
of maritime origin and lower triangle represents group of ecotypes of continental origin.

FIGURE 3 | Principal component analysis (PCA) of 197 perennial ryegrass cultivars and ecotypes based on genotyping-by-sequencing data. (A) shows the
dispersion of cultivars and ecotypes where cultivars are indicated in red and ecotypes in blue dots. The dispersion of cultivars based on the type is shown in (B),
where forage type cultivars are represented in red dots and blue dots indicate turf type cultivars. (C) demonstrates the distribution of the ecotypes according to their
country of origin. Countries are presented in two-letter codes: RU, Kaliningrad region, Russian Federation; LT, Lithuania; LV, Latvia; PL, Poland; SK, Slovakia; and
UA, Ukraine.

the scaffolds which harbored the most significant markers
were anchored to chromosomes 4 and 6 in barley. The allele
substitution effects for the significant markers associated with
growth reduction ranged from −0.548 to 0.739 log10 (hPa).
The most significant SNP (P = 4.19E−07) with an estimated
effect size of −0.548 log10 (hPa) was located on a small genomic
scaffold 20866| ref0045961 at position 1,878 bp. This scaffold
harbored a single gene prediction for MYB41 transcription factor

(TF), while the marker was of 708 bp away from the gene. The
second most significant SNP (P = 1.79E−07), estimated effect
of 0.739 log10 (hPa) and was located at 32,616 bp of scaffold
4484| ref0039062 within the intron of predicted gene with a high
sequence homology to Phytochrome B. The third most significant
marker (P = 4.436E−07) was on scaffold 21802| ref0017195 at
position 728 bp. However, there were no gene predictions in
close proximity to the marker.
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TABLE 1 | Description of the most significant marker trait associations for the growth decrease trait on genomic scaffolds.

Scaffold Position Gene prediction
(blastn)

Location Scaffold
position in

barley genome

GWAS
method

SNP
effect

MAF P-value P-values
FDR

P-values
(Bonferroni
correction)

scaffold_20866|
ref0045961

1878 Transcription
factor MYB41
(XM_003573090.4)

Outside
gene
(708 bp)

Hv_chr6H FarmCPU −0.548 0.091 4.19E-07 0.009 0.009

BLINK NA 0.091 4.15E-07 0.009 NA

MLMM NA 0.091 8.16E-07 0.009 0.018

scaffold_4484|
ref0039062

32616 Phytochrome B
(XM_020328926.1)

Intron Hv_chr4H FarmCPU 0.739 0.054 1.79E-07 0.019 0.039

BLINK NA NA 1.78E-06 0.019 NA

scaffold_21802|
ref0017195

728 NA Intergenic
space

NA MLMM NA 0.256 4.43E-07 0.009 0.010

Scaffolds with significant markers were mapped to Hordeum vulgare genome assembly.

FIGURE 4 | Quantile-quantile (QQ)-plots for biomass formation under water deficit condition traits after correction for population structure: (A) shows thermal leaf
growth (a) of perennial ryegrass under optimal growth conditions; leaf growth reduction point (6) presented in (B); in (C) the leaf growth arrest point (σ) shown and
tolerance to water deprivation (c) traits is given in (D).

DISCUSSION

This study revealed the wide range of growth response to
water deficit in a diverse panel of perennial ryegrass in a
changing environment. The most sensitive genotypes limited
the growth already under moist conditions [6 < 1.50 log10

(hPa)], while some of the genotypes maintained leaf growth
under lethal conditions [6 > 4.00 log10 (hPa)]. The slower
growth of genotypes representing turf cultivars obtained in the
study reflects the decades of selective breeding aiming in opposite
directions for forage and amenity grasses. The results show that
turf types have shorter leaves because they grow slower. Though
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this may also be attributable to reduced growth duration, which
was not evaluated in this study. The shorter, narrower leaves
and lower plant height of turf genotypes was already confirmed
in previous studies on plant architecture by Statkevičiūtė et al.
(2015, 2018). The forage varieties in contrast have been selected
for high biomass, for which leaf growth is an important factor
(Wilkins, 1991; Barre et al., 2006).

Natural ecotypes are considered a source of stress resistance.
Furthermore, they can possess high yielding potential,
comparable to that of registered cultivars (Bachmann-Pfabe
et al., 2018). The ecotypes in our study demonstrated similar
growth patterns to the forage cultivar group. The significant
correlation between the growth reduction (6) and the growth
arrest (σ) points was estimated in all genotype groups except the
forage cultivars, but it is worth noting that this correlation was
strongest in the continental climate ecotype group. Extensive
studies of natural perennial ryegrass diversity in Europe
demonstrated that modern cultivars are mostly related to north-
western Europe ecotypes (Blanco-Pastor et al., 2019), leaving
the vast majority of the natural genetic variation unexploited.
This was confirmed in our study as most ecotypes, especially
the ones originating from Ukraine, genetically separated from
the cultivars with very little overlap. Furthermore, the latitudinal
position correlated highly with the first principle component
of genetic structure suggesting latitude was a prominent
force shaping the diversity of wild-growing perennial ryegrass
populations. From a breeder’s perspective, combining an ecotype
that responds late to water stress with elite germplasm that has
high thermal growth rate would result in a high yielding drought
tolerant cultivars.

Three significant marker trait associations were found
with growth reduction under water deficit, with all of them
passing Bonferroni correction. For two of these markers are
in close proximity to predicted genes with sequence homology
to PhytochromeB (PhyB) and MYB41. Both genes have well
established functions within plant kingdom.

The phytochrome family is a part of the plant circadian clock,
they initiate and mediate a complex photomorphogenesis signal
cascade when activated by the red light, with the PhyB being the
main photoreceptor (Nagy and Schäfer, 2002; Srivastava et al.,
2019). The role of PhyB in plant growth and development has
been known for decades when abnormal elongation of various
tissues, from stems to root hair, has been demonstrated in
Arabidopsis thaliana phyB mutant (Reed et al., 1993). Transgenic
plants overexpressing PhyB had increased transpiration rate
caused by higher stomata density and stomatal index, leading
to enhanced photosynthesis but reduced water-use efficiency
(Boccalandro et al., 2009). The development of rice phyB mutants
did not differ from WT plants under well-watered conditions;
but exhibited higher tolerance when drought stress was applied.
This was mainly due to reduced transpiration and stomatal
density compared to WT plants (Liu et al., 2012). PhyB was
also shown to enhance ABA sensitivity under water shortage
in A. thaliana (González et al., 2012). Moreover, the role
of PhyB was shown in other abiotic stresses, like heat and
cold (He Y. et al., 2016; Song et al., 2017). Plant hormone
biosynthesis and signaling pathway genes, as well as abiotic

stress-related genes were found to be regulated by PhyB in wheat
(Pearce et al., 2016).

The MYB proteins comprise one of the largest TF
transcription factor families in plants and are known to be
involved in multiple functions, including plant development,
growth, metabolism, cell fate, and abiotic stress response
(Dubos et al., 2010; Baldoni et al., 2015; Li et al., 2015). The
R2R3-MYB family, which is the biggest MYB transcription
factor family in plants, has been studied in various plant
species, especially Arabidopsis (Dubos et al., 2010; Du et al.,
2012a,b; Katiyar et al., 2012; He et al., 2019). However, not
much is known about the MYB TFs in ryegrasses. A number
of MYB TFs were demonstrated to coordinate drought and
salt stress responses in cotton, sheepgrass and rice with
various effects; some were down-regulated during stress,
some up-regulated, or differentially expressed in different
plant organs (Chen et al., 2015; Zhu et al., 2015; He Q. et al.,
2016; Zhao et al., 2019). In Arabidopsis, the expression of
MYB41 was only detectable under drought, salt and ABA
treatment. Transgenic plants over-expressing this gene were
more sensitive to desiccation and had smaller cells among
other phenotypic effects. Furthermore, the expression of genes
regulating lipid metabolism, cell wall modifications and cell
expansion was altered (Cominelli et al., 2008). The increased
expression of MYB41 in osmotic stress response was confirmed
in a study by Lippold et al. (2009), although the effect of
MYB41 over-expression on plant growth were less drastic.
Involvement of MYB41 in cell-wall associated lipid metabolism
as well as activation of MYB41 promoter in the endodermis
under abiotic stress was observed in both Arabidopsis and
Nicotiana benthamiana (Kosma et al., 2014). These results
suggest that MYB41 might confer osmotic stress resistance by
regulating cell wall and leaf cuticle deposition, yet the exact
mode of action of this particular TF is not defined due to the
complexity of the gene regulation network it is involved in.
A number of other MYB TFs modulate plant stress resistance
in a similar manner to PhyB by regulating size, density, and
opening rates of stomata (Baldoni et al., 2015; Chen et al., 2015;
Butt et al., 2017).

Taken together, this study combines precision phenotyping
of leaf growth in response to water stress, with genome wide
association. The PhyB and MYB41 genes, identified in this
study, are known to modulate abiotic stress response in many
plant species. Given the sub-gene LD level in this population,
suggests they are the causal genes underlying the detected
QTL. To our knowledge this is the first time these genes
have been associated with perennial ryegrass leaf growth under
drought stress. The study also has practical applications for
plant breeding; depicting how different, natural, alleles might
be used to improve drought tolerance and what effect they
have. In addition, the genes found highlight the potential
of the phenotyping method. Namely, that using leaf growth
as a proxy for stress response is a tool that can be used
to dissect a complex trait into fundamental components.
Thus, improving our understanding of plant behavior under
water stress and subsequently, yielding potential in the
regions experiencing frequent albeit mild summer droughts.
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Cultivars, purposely selected for a high tolerance, in terms of
growth reduction and arrest by our phenotyping model, might
provide a reliable feed source in the changing environment of
the future world.
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