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Pepper (Capsicum spp.) fruit-related traits are critical determinants of quality. These traits 
are controlled by quantitatively inherited genes for which marker-assisted selection (MAS) 
has proven insufficiently effective. Here, we evaluated the potential of genomic selection, 
in which genotype and phenotype data for a training population are used to predict 
phenotypes of a test population with only genotype data, for predicting fruit-related traits 
in pepper. We measured five fruit traits (fruit length, fruit shape, fruit width, fruit weight, 
and pericarp thickness) in 351 accessions from the pepper core collection, including 229 
Capsicum annuum, 48 Capsicum baccatum, 48 Capsicum chinense, 25 Capsicum 
frutescens, and 1 Capsicum chacoense in 4 years at two different locations and genotyped 
these accessions using genotyping-by-sequencing. Among the whole core collection, 
considering its genetic distance and sexual incompatibility, we only included 302 C. annum 
complex (229 C. annuum, 48 C. chinense, and 25 C. frutescens) into further analysis. 
We used phenotypic and genotypic data to investigate genomic prediction models, marker 
density, and effects of population structure. Among 10 genomic prediction methods 
tested, Reproducing Kernel Hilbert Space (RKHS) produced the highest prediction 
accuracies (measured as correlation between predicted values and observed values) 
across the traits, with accuracies of 0.75, 0.73, 0.84, 0.83, and 0.82 for fruit length, fruit 
shape, fruit width, fruit weight, and pericarp thickness, respectively. Overall, prediction 
accuracies were positively correlated with the number of markers for fruit traits. We tested 
our genomic selection models in a separate population of recombinant inbred lines derived 
from two parental lines from the core collection. Despite the large difference in genetic 
diversity between the training population and the test population, we obtained moderate 
prediction accuracies of 0.32, 0.34, 0.50, and 0.48 for fruit length, fruit shape, fruit width, 
and fruit weight, respectively. This use of genomic selection for fruit-related traits 
demonstrates the potential use of core collections and genomic selection as tools for 
crop improvement.

Keywords: pepper, fruit-related traits, core collection, model training, population structure, breeding, genomic 
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INTRODUCTION

Pepper (Capsicum spp.) is an important vegetable crop, consumed 
as a spice and as a fresh vegetable around the world. It is an 
important source of nutrients such as vitamins C, E, and 
provitamin A (Palevitch and Craker, 1996). Moreover, pepper 
extracts such as capsaicin and carotenoids are used for industrial 
and pharmaceutical purposes. Fruit-related traits of pepper, 
such as fruit size and pericarp thickness, are critical determinants 
of quality and are controlled by quantitative trait loci (QTLs). 
Many QTL analyses and genome-wide association studies 
(GWASs) of these fruit-related traits have been conducted and 
reported representative major QTLs for fruit shape like fs2.1, 
FrSHP2.1, and fs3.1 (Chaim et  al., 2001; Rao et  al., 2003; 
Zygier et  al., 2005; Barchi et  al., 2009; Borovsky and Paran, 
2011; Mimura et  al., 2012; Han et  al., 2016; Hill et  al., 2017; 
Chunthawodtiporn et al., 2018; Colonna et al., 2019). However, 
these studies have focused only on identifying the variants 
linked to theses quantitative traits but not on applying those 
variants for variety improvement.

Quantitative traits are difficult to improve through breeding 
programs since multiple loci with small effects control phenotypic 
variation of these traits. In genomic selection (GS; Meuwissen 
et  al., 2001), a genomics-based strategy first used in dairy cattle 
breeding, genome-wide markers are used to predict the phenotypic 
variation of complex traits. GS is conducted with two populations, 
a training population with both genotypic and phenotypic 
information and a test population that has only genotypic data. 
Statistical models estimate the sum of marker effects from the 
training population. Estimated marker effects models are used 
to predict phenotypic values called genomic estimated breeding 
values (GEBVs). Cross-validation is often then implemented to 
find the best-fitting model for evaluating the GEBVs in the test 
population (Desta and Ortiz, 2014) and generate the GS evaluation 
(Crossa et al., 2011). In cross-validation, the training population 
is randomly divided into k groups, and these groups are assigned 
to other training sets and validation sets. Training sets are used 
to estimate marker effects, and GEBVs for the validation sets 
are calculated using the models. Correlation between predicted 
GEBVs and phenotypic information of the validation sets indicates 
the prediction accuracy of the models.

GS has become a promising method in plant breeding as 
well as in animal breeding. However, GS has been mainly 
focused on staple crops such as maize (Zea mays), wheat 
(Triticum aestivum), barley (Hordeum vulgare), and potato 
(Solanum tuberosum). Investigation of GS performance for crop 
improvement was first conducted in maize (Lorenzana and 
Bernardo, 2009) followed by barley (Lorenzana and Bernardo, 
2009; Crossa et  al., 2010) and wheat (Crossa et  al., 2010; 
Heffner et  al., 2011). In the Solanaceae family, GS has been 
performed in tomato and potato. Genomic prediction was 
evaluated for agronomic traits such as yield, nutritional quality 
(Habyarimana et  al., 2017; Stich and Van Inghelandt, 2018), 
and resistance to diseases such as late blight (Phytophthora 
infestans) and common scab (Streptomyces scabies) in tetraploid 
potato (Enciso-Rodriguez et  al., 2018). Yamamoto et  al. (2017) 
conducted genomic prediction for soluble solid content and 

general yield in tomato (Solanum lycopersicum L.). However, 
the potential of GS in pepper remains to be  demonstrated.

In this study, we  tested the potential of GS for the fruit-
related traits: fruit length, fruit shape, fruit width, fruit weight, 
and pericarp thickness in pepper. We cultivated 351 accessions 
from the pepper core collection (229 Capsicum annuum, 48 
Capsicum baccatum, 48 Capsicum chinense, 25 Capsicum 
frutescens, and 1 Capsicum chacoense) in 3 years at two different 
locations. Among whole accessions, considering its crossability, 
we selected C. annuum complex (229 C. annuum, 48 C. chinense, 
and 25 C. frutescens) for training the models. Through cross-
validations, we  evaluated the effects of trait architecture and 
heritability of fruit-related traits, population structure of the 
training population, and the number of markers on prediction 
accuracies. Finally, we  tested our GS models in a population 
of recombinant inbred lines (RILs) derived from two parental 
lines from the core collection.

MATERIALS AND METHODS

Plant Materials
Plant materials were sourced from the previously constructed 
Capsicum core collection (Lee et  al., 2016) of the Horticultural 
Crops Breeding and Genetics Lab (Seoul National University, 
Korea). The population included five species: 229 C. annuum, 
48 C. baccatum, 48 C. chinense, 25 C. frutescens, and 1 C. 
chacoense. However, to reduce population structure, C. baccatum 
and C. chacoense were excluded in cross-validation and tests 
of genomic prediction. Plants were grown at RDA-GenBank 
in Jeonju, Republic of Korea, for measurement in 2015 and 
2017. In 2018 and 2019, all plants were grown at Hana Seed 
Co., Ltd. in Anseong, Republic of Korea. Over 4  years, three 
plants per accession were randomly planted and cultivated in 
greenhouses. Three fruits per plant were harvested and evaluated 
for five fruit traits (fruit length, fruit shape, fruit width, fruit 
weight, and pericarp thickness).

Pepper seeds from the core collection were sown in early 
March, and seedlings were transplanted in early May. Since 
the maturation time of fruits varied among the accessions, 
fruits were harvested through mid to late August. Five fruit-
related traits were measured.

Recombinant inbred lines (RILs) derived from a cross between 
“Perennial” (P for PD) and “Dempsey” (D for PD) were used 
as a test population to evaluate genomic prediction models 
(Han et  al., 2016). The PD RIL population comprised 122 
lines. Four fruit-related traits were measured. The population 
was grown at Hana Seed Co., Ltd., in Anseong (2011, 2012a) 
and at Seoul National University farm in Suwon, Republic of 
Korea (2012b). All plants were grown in plastic greenhouses 
at both locations; however, plants in Anseong were grown in 
soil beds, while plants in Suwon were grown in pots. Five 
plants were grown for each line in the position of which each 
line was designated randomly. Among the reported 18 
horticultural traits (Han et  al., 2016), we  utilized four fruit-
related traits (fruit length, fruit shape, fruit width, and fruit 
weight) for testing of genomic prediction.
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Library Construction
Genotyping-by-sequencing was conducted for accessions from 
the pepper core collection as previously described (Lee et  al., 
2016). Libraries were generated manually by digestion of gDNA 
with PstI/MseI and EcoRI/MseI. Library adapters were then 
ligated to digested gDNA, and the libraries were amplified 
using selective primers containing TA. Constructed libraries 
were pooled into five tubes and sequenced in separate lanes 
on a HiSeq 2000 (Illumina, San Diego, CA, USA) at Macrogen 
(Seoul, Republic of Korea). Whole-genome re-sequencing of 
the PD RILs population was conducted as previously described 
(Han et  al., 2016).

Genotype Data Generation and Analysis
Adapter trimming and quality control of raw data were 
conducted using the CLC Genomics Workbench v6.5 (Qiagen, 
Aarhus, Denmark) with a minimum read length of 80  bp 
and minimum quality score of Q20. Filtered raw reads of 
core collection accessions and PD RILs were aligned against 
the newly constructed high-quality reference genome of C. 
annuum “Dempsey” (unpublished) using the Burrows-Wheeler 
Aligner (BWA; Li and Durbin, 2009). Aligned mapping files 
were sorted and read-grouped using Genome Analysis Toolkit 
(GATK; DePristo et  al., 2011). Sorted mapping files were 
genotyped together using GATK Haplotype Caller 3.8 to 
generate variant call format (VCF) files. These VCF files were 
generated by joint genotyping of 472 samples: 350 from the 
pepper core collection and 122 PD RILs. Raw genotyped 
data were filtered using GATK VariantFIltration with the 
following criteria: MQ  <  40.0, SOR  >  3.000, QD  <  2.00, 
FS  >  60.000, MQRankSum< −12.500, ReadPosRankSum< 
−8.000. Single-nucleotide polymorphisms (SNPs) with greater 
than 70% missing markers and minor allele frequency (MAF) 
less than 0.05 were removed from filtered VCF files using 
the VCFtools software (Danecek et al., 2011). Missing genotypes 
of VCF files were imputed and phased using BEAGLE through 
the R package “synbreed” (Wimmer et  al., 2012).

Population Structure
To validate population structure information for the core 
collection from a previous study (Lee et  al., 2016), principal 
component analysis (PCA) and hierarchical clustering were 
performed using new genotypic data for the core collection 
obtained in this study. PCA of the pepper core collection with 
genome-wide SNPs was performed using the R package “poppr” 
(Kamvar et  al., 2014).

Genetic clustering analysis was conducted using ADMIXTURE 
v1.3 (Alexander et  al., 2009) to estimate the proportion of 
ancestral information in the pepper core collection. ADMIXTURE 
was run with the number of ancestral populations (K) from 
1 to 12, and the results were validated with fivefold 
cross-validation.

Hierarchical clustering was conducted using the unweighted 
pair group method with arithmetic mean (UPGMA). Genetic 
distance was estimated based on Euclidean distance using 
the R package “poppr” (Kamvar et  al., 2014). All plots of 

population structure were generated using the R package 
“ggplot2” (Wickham, 2016).

Phenotypic Data Analysis and Heritability
Among the various agronomic traits of pepper, five fruit-related 
quantitative traits (fruit length, fruit shape, fruit width, fruit 
weight, and pericarp thickness) were selected for testing traits 
of genomic prediction. Three plants (biological replications) 
of each line were planted, and three randomly selected fruits 
from each plant were measured to generate raw phenotypic 
data. Fruit length of each fruit was measured by ruler, and 
fruit width and pericarp thickness were measured by caliper. 
Each fruit was weighed on a digital weighing scale to measure 
fruit weight. Fruit shape was defined as the ratio of fruit 
length to fruit width. To confirm the difference among accessions 
in the core collection, we  conducted pairwise T-test between 
C. annuum and other accessions after analysis of variance 
(ANOVA). Four fruit-related traits (fruit length, fruit shape, 
fruit width, and fruit weight) were measured for the PD RILs 
used as a test population.

In this study, the experimental design was highly imbalanced. 
To control imbalanced phenotypic data in the core collection, 
best linear unbiased predictor (BLUP) values for each core 
collection line (genotype) were calculated using the R package 
“lme4” (Bates et al., 2015). The random-effects model for fruit-
related traits included genotype, year, location, and genotype-
environment (G  ×  E) interaction. Variance components were 
estimated from the random-effects model, and these variance 
components were used to estimate broad-sense heritability.

Genomic Prediction Method
Ten different genomic prediction models were used to investigate 
the best models for fruit-related traits in the pepper core 
collection: linear methods gblupRR, Ridge regression, LASSO, 
Elastic net, Bayesian LASSO (BL), extended Bayesian LASSO 
(EBL), Bayes-B, Bayes-C, and nonlinear methods reproducing 
kernel Hilbert space (RKHS) and random forest. gblupRR 
and RKHS are kernel methods; gblupRR estimates the variance 
of genetic effects of markers based on a single linear kernel, 
whereas RKHS is based on multiple Gaussian kernels. Each 
genomic prediction method was implemented by various R 
packages: “rrBLUP” for gblupRR and RKHS, “glmnet” for 
Ridge regression, LASSO, and Elastic-Net, “VIGoR” for BL, 
EBL, Bayes-B, and Bayes-C, and “randomForest” for random 
forest (Breiman, 2001; Endelman, 2011; Simon et  al., 2011; 
Onogi and Iwata, 2016).

Evaluation of Genomic Prediction
The accuracy of genomic prediction across the training population 
was estimated using a 10-fold cross-validation methodology. 
The whole training population was divided equally into 10 
groups. Among the subgroups, nine groups were used as training 
sets, and one group was randomly assigned as the validation 
set. This procedure was iterated in 10 different patterns for 
each trait. The prediction accuracy was recorded by Pearson 
correlation between predicted values and observed values in 

https://www.frontiersin.org/journals/plant-science
www.frontiersin.org
https://www.frontiersin.org/journals/plant-science#articles


Hong et al. Genomic Selection in Pepper

Frontiers in Plant Science | www.frontiersin.org 4 October 2020 | Volume 11 | Article 570871

every pattern, and the mean of 10 iterations was recorded as 
the result for the specific trait.

To investigate the effect of marker density, various marker 
sets were generated. SNPs were pruned from the all-marker 
sets based on linkage disequilibrium (LD) cutoff using the 
software Plink v1.9 (Purcell et  al., 2007). Different R-squared 
cutoff values of LD (0.9, 0.85, 0.8, 0.75, 0.7, 0.65, 0.6, 0.55, 
0.5, 0.45, 0.4, 0.35, 0.3, 0.25, 0.2, 0.15, and 0.1) were used to 
generate pruned marker sets, and six marker sets were selected 
by a number of markers. These marker sets were analyzed for 
statistical value of LD within 50  kb using Plink v1.9 and were 
used for cross-validation of five fruit-related traits using the 
same procedure described above.

Testing of Genomic Prediction by 
Population Structure
To estimate the effect of population structure on genomic 
prediction, the core collection was dissected into its different 
species. First, the C. annuum complex, including C. annuum, 
C. chinense, and C. frutescens accessions (302 lines), was used 
to train the models and predict the GEBVs of PD RILs. Second, 
only C. annuum lines (229 lines) were used for training.

With each training population, a combination of three 
genomic prediction methods (gblupRR, RKHS, and random 
forest) and two marker sets (18,663 SNPs, 9,282 SNPs) were 
tested on another population, PD RILs. Selected methods and 
marker sets were used to train the final genomic prediction 
model for each trait with whole genotypic datasets. Genotypic 
datasets of PD RILs were used as test data for the trained 
model. The prediction accuracies were confirmed by Pearson 
correlation between GEBVs of the PD RILs and mean of 
phenotypic values observed for 2  years. Only four traits (fruit 
length, fruit shape, fruit width, and fruit weight) were tested 
because data were not available for PD RILs.

RESULTS

Phenotypic Variability and Heritability of 
Fruit-Related Traits
Phenotype values were highly varied in the training population 
(C. annuum complex). The phenotypic variation ranged from 
6.67 to 298.67 mm in fruit length, 0.44 to 43.14  in fruit shape, 
3.38 to 101.33  mm in fruit width, 0.09 to 242.50  g in fruit 
weight, and 0.09 to 10.80 mm in pericarp thickness, respectively 
(Table 1). For all traits, phenotypic values for C. annuum were 
significantly different from those of the other three species 
groups (C. baccatum, C. chinense, and C. frutescens), indicating 
that population structure exists within the core collection 
(Figure  1).

BLUP values calculated for each fruit-related trait showed 
varying distributions (Figure  2). BLUP values for all four 
traits showed a slightly skewed distribution, with the greatest 
bias in fruit weight. Estimated broad-sense heritability (H) 
of the four traits was similar. All traits showed high heritability 
(>0.90; Table  1).

Fruit width, fruit weight, and pericarp thickness were highly 
correlated with Pearson correlation values over 0.85. However, 
FL showed less correlation with the other traits (Figure  2E).

SNP Marker Distribution and Linkage 
Disequilibrium
Genotyping of the core collection and PD RILs identified 
16,706,014 common SNPs of which 91,434 remained after 
prefiltering for SNPs with less than 30% missing alleles. The 
missing genotypes of the remaining SNPs were phased and 
imputed using BEAGLE. After imputation, SNPs with minor 
allele frequency (MAF) less than 5% were removed, giving a 
total of 18,663 remaining SNPs.

All 18,663 SNPs were pruned based on LD such that the 
remaining SNPs represented the high LD region. We  selected 
seven marker sets from the total marker set, generated using 
different LD cutoff values: all SNPs (18,663 SNPs), 2nd set 
(9,282 SNPs), 3rd set (4,896 SNPs), 4th set (2,578 SNPs), 5th 
set (1,391 SNPs), and 6th set (711 SNPs). Each pruned marker 
set showed well-distributed SNPs over 12 chromosomes (Table 2). 
Decreased SNPs in the centromeric regions of the pepper 
genome indicated weak LD values (Supplementary Figure 1).

Genetic Clustering Analysis of the Core 
Collection
To investigate the effect of population structure on genomic 
prediction, we conducted principal component analysis (PCA), 
phylogenetic tree reconstruction, and admixture analysis using 
18,663 SNPs obtained from 350 accessions from the pepper 
core collection. The pepper core collection showed a significant 
population structure due to the presence of different species 
with various origins. Although some of the accessions showed 
a slight admixture, PCA results showed four genetic clusters 
according to Capsicum species classification (Figure  3A). The 
first and second principal components explained 31.1 and 23.6% 
of the variation within the core collection, respectively.

Clusters obtained in the phylogenetic tree were similar to 
those from PCA. There was a clear separation between C. 
baccatum and the other three species. The four-species group 
was divided into two clusters, of which the major group mainly 
consisted of C. annuum accessions. We observed a clear genetic 
relationship between C. chinense and C. frutescens, which are 
known as the C. annuum-complex species. Finally, we conducted 
an ADMIXTURE analysis with the number of ancestral 

TABLE 1 | Descriptive statistics of raw phenotypic values and broad-sense 
heritability.

Traita Minimum Median Maximum Mean ± SD Heritability

FL (mm) 6.67 66.67 298.67 72.72 ± 40.26 0.975
FS 0.44 3.25 43.14 3.97 ± 17.42 0.987
FWd (mm) 3.38 19.00 101.33 24.80 ± 2.95 0.976
FWg (g) 0.09 8.57 242.50 21.22 ± 32.48 0.969
PT (mm) 0.09 1.80 10.80 2.22 ± 1.48 0.954

aFL, fruit length; FS, fruit shape; FWd, fruit width; FWg, fruit weight; PT, pericarp 
thickness.
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populations (K) ranging from 1 to 12. The cross-validation 
error was nearly saturated from K  =  7, with a value of 0.3, 
indicating the high divergence level within the core collection 
(Supplementary Figure 2). However, with K  =  5, the core 
collection clustered well according to species. The additional 
substructure was found in C. annuum accessions by increasing K.  

However, comparing the structure of K = 7 and this of K = 10, 
both structures were similar after the structure was clustered 
by species in K  =  5 (Figure  3B).

Evaluation of Genomic Predictions in 
Pepper
We evaluated GS using the core collection, which showed genetic 
diversity and population structure. We  investigated the effects 
of various genomic prediction methods and marker density on 
prediction accuracy using cross-validation. Based on cross-
validation results, we  then tested genomic prediction across the 
population under specific conditions.

Cross-Validation Results for Different Genomic 
Prediction Methods
Prediction accuracies (Pearson’s correlation) differed for the 
fruit-related traits evaluated and genomic prediction methods 
used, ranging from 0.66 to 0.84 (Figure  4). The phenotype 

FIGURE 1 | Box plots of four fruit-related traits grouped by species. We investigated the phenotype of the core collection, which contained only one Capsicum 
chacoense accession so, the phenotype of C. chacoense was excluded. Boxes indicate the range of upper quartile and lower quartile, and the bar in the box is the 
median. Whiskers from upper quartile to maximum and lower quartile to minimum are vertical lines. Black spots are outliers. The small alphabets showed the 
difference among the species. These significances were calculated by Dancan’s least significant range (LSR) test. The core collection has a distinct population 
structure by species. These phenomena were commonly observed for all four traits.

A F

B

C

D

E

FIGURE 2 | Distribution of BLUP values varies by trait. (A) Fruit length (FL) showed a fairly normal distribution with slight skewness. (B,C) Fruit width (FWd) and fruit 
shape (FS) showed a similar distribution to FL. (D) Fruit weight (FWg) showed the most skewed distribution among the four traits. (E) Pericarp thickness (PT) also 
showed a fairly normal distribution. (F) The correlation was 0.92 for FWd and PT, 0.91 for FWd and FWg, and 0.86 for FWg and PT. These Pearson correlation 
among traits showed highly correlation among FWd, FWg, and PT.

TABLE 2 | Marker distribution and linkage disequilibrium (LD) cutoff for each 
marker set.

Marker set Number 
of 

markers

LD cutoff Median Mean ± SD Maximum

All SNPs 18,663 0.119 0.343 ± 0.392 1.000
2nd set 9,282 0.80 0.027 0.137 ± 0.207 0.800
3rd set 4,896 0.4 0.013 0.067 ± 0.102 0.398
4th set 2,758 0.2 0.005 0.029 ± 0.048 0.196
5th set 1,391 0.1 0.003 0.011 ± 0.020 0.098
6th set 711 0.05 0.001 0.006 ± 0.010 0.044
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prediction accuracy for fruit width was the highest, whereas 
that for FL was the lowest.

The average prediction accuracy of FL across 10 genomic 
prediction methods was 0.70, with RKHS having the highest 
prediction accuracy of 0.75 and Lasso, Bayes B, and Bayes 
C showing the lowest accuracy of 0.67. The mean of prediction 
model accuracy was 0.71 in fruit shape. The average prediction 
accuracy of fruit width across various methods was 0.83, 
which was higher than the average prediction accuracy of 
the other traits. The two kernel-type methods (RKHS and 
gblupRR) and random forest were the most effective genomic 
prediction methods for fruit width, showing prediction accuracy 
of 0.84. The mean of prediction accuracy for fruit weight 
and pericarp thickness were 0.79 and 0.81, respectively. RKHS 
and random forest resulted in the highest prediction accuracy 
of 0.84. Bayes C showed highly variable prediction accuracies 
ranging from 0.48 to 0.83. gblupRR, RKHS, elastic net, and 
random forest showed similar prediction accuracies for pericarp 
thickness of approximately 0.82. Among the 10 genomic 
prediction models, RKHS showed stable prediction accuracies 
across the four traits (Figure  4).

Cross-Validation Results With Different Numbers 
of Markers
We used only the RKHS model that showed relatively high 
prediction accuracies to investigate the effect of marker density 
on genomic prediction. Overall results indicated that prediction 
accuracy decreased as marker number decreased (Figure  5). 
Average prediction accuracy was highest for fruit width at 
0.83 and lowest for fruit length at 0.73.

Prediction accuracy for fruit length was increased by 10.2% 
from 0.69 with 431 SNPs to 0.76 with all SNPs (Table  3). 

However, fruit length was the only trait for which prediction 
accuracy increased as marker number increased. For the other 
three traits (fruit width, fruit weight, pericarp thickness), the 
highest prediction accuracies were obtained for the 3rd set 
(4,640 SNPs). The highest prediction accuracies for each trait 
were 0.85 for fruit width, 0.82 for fruit weight, and 0.82 for 
pericarp thickness. The difference in prediction accuracy between 
the lowest number of markers and the all-marker set was 4.9, 
4.6, and 5.4% for fruit width, fruit weight, and pericarp thickness, 
respectively.

Application of Genomic Prediction Models 
in a Test Population
For the practical application of a GS method, the GS model 
should be validated across the population. To test our genomic 
prediction models, we applied three genomic prediction methods 
to a different population. The RIL population (PD RILs) was 
derived from two parental lines included in the pepper core 
collection. Since pericarp thickness data were not available for 
the PD RILs, we  only investigated fruit length, fruit shape, 
fruit width, and fruit weight.

When the model was trained with all SNPs set, the RKHS 
model showed the highest prediction accuracy for fruit shape 
(0.487), followed by fruit width (0.468), fruit weight (0.430), 
and fruit length (0.318; Table  4). Overall, the random forest 
model showed lower prediction accuracies (0.285–0.353) than 
the other models, but in the case of fruit shape trait, it showed 
the highest prediction accuracy (0.594). Using the gblupRR 
model, prediction accuracy of fruit length was the highest 
(0.352), whereas the rest of accuracies were moderate. Similar 
to the cross-validation results, fruit width and fruit weight 
were predicted with greater accuracy than fruit length across 

A B

FIGURE 3 | Population structure of the pepper core collection showing a distinct population structure based on species. (A) Principal component analysis (PCA) 
indicates strong separation of each cluster. (B) Phylogenetic tree made by using unweighted pair group method with arithmetic mean (UPGMA) showing a similar 
clustering pattern to PCA. In the ADMIXTURE Q plots, accessions cluster as C. annuum or other species when K = 2. When K = 5, almost all samples cluster into 
four species, with additional clustering within C. annuum.
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the population, but for fruit shape, it showed the highest 
accuracies in RKHS and random forest dissimilar to the cross-
validation results. RKHS showed higher and more stable 
prediction accuracies than the other genomic prediction methods. 
However, for fruit length, gblupRR showed slightly higher 
prediction accuracy than RKHS.

In the case of the all-marker set (18,663 SNPs), when 
we  used only C. annuum accessions for training the models, 
prediction accuracies for fruit length predicted by gblupRR, 
RKHS, and random forest were slightly increased to 0.363, 
0.345, and 0.328, respectively, compared with 0.352, 0.336, and 
0.385 using C. annuum complex lines. However, when models 
were trained with the population, which were genetically far 
from the test population, all models could not predict most 
traits. In conclusion, the models trained with C. annuum 
complex showed stable prediction accuracies than the case of 
models trained with only C. annuum lines (Figure 6; Table 4).

DISCUSSION

Pepper fruit-related traits are not only critical determinants 
for marketable quality but also directly affect its yield and 
postharvest quality. Therefore, fruit-related traits are one of 
the most important factors during selection in pepper breeding 
programs. Here, we  investigated the effect of the number of 
markers, prediction methods, and population structure for 
prediction of fruit-related traits from genotype data.

Phenotypic Variation and Population 
Structure
We calculated the best linear unbiased predictor (BLUP) of 
each core collection line by fitting a linear mixed effect model 
for several phenotypic data. BLUP values calculated for each 
trait were used for further analysis. The BLUP values for five 
fruit-related traits (fruit length, fruit shape, fruit width, fruit 
weight, and pericarp thickness) showed a slightly skewed 
distribution. To investigate the effect of heritability on genomic 
prediction, we used the variance components from linear mixed 
effect models to estimate heritability of the traits. Some previous 
studies have reported high values of heritability in fruit-related 
traits (Ben-Chaim and Paran, 2000; Naegele et  al., 2016). 
However, it showed way higher values than our expectations 
indicating some level of overestimation caused by relatively 
old passions of phenotyping methods and imbalanced 
experimental design. In a recently reported pepper GWAS study 
(Colonna et  al., 2019), high-resolution phenotyping methods 
by fruit scanning have been suggested and improved the results 
detecting novel causal variants. In a future GS study on pepper, 
improved phenotypic methods could lead to more precise results.

Our analysis grouped the diverse accessions of the pepper 
core collection into distinct genetic clusters (Lee et  al., 2016). 
These clusters allowed moderate differentiation of fruit-related 
phenotypic traits. Genetic clustering using ADMIXTURE showed 
similar results to PCA and hierarchical clustering. Although 
the error was saturated at K  =  7, the accessions was clustered 
by species at K  =  5. When the error was saturated, a strong 
substructure was not found additionally, and additional structures 
were clustered in only C. annuum accessions. It could be explained 
that the previous study showed that C. annuum accessions 
were clustered according to its origin (Lee et al., 2016). Similar 
to previous studies, we  obtained clear clustering between the 

FIGURE 5 | Cross-validation results using the RKHS method with various 
marker sets. Boxes indicate the range of upper quartile and lower quartile, 
and the bar in the box is the median. Whiskers from upper quartile to 
maximum and lower quartile to minimum are vertical lines. Black spots are 
outliers. Prediction accuracy tends to decrease with fewer markers.

FIGURE 4 | Prediction accuracy of cross-validation across four fruit-related 
traits by different genomic prediction methods. BLUP values for each trait 
were applied to 10 different genomic prediction models. Boxes indicate the 
range of upper quartile and lower quartile, and the bar in the box is the 
median. Whiskers from upper quartile to maximum and lower quartile to 
minimum were vertical lines. Black spots were outliers. Reproducing Kernel 
Hilbert Space (RKHS) was the most effective model for fruit length (FL). 
Random forest showed high performance for fruit width (FWd). Among the 
four traits, FWd had the highest accuracy with the highest heritability. 
Random forest showed the highest accuracy for fruit weight (FWg). Prediction 
accuracy of the Bayes C method was unstable. Random forest showed the 
highest performance for pericarp thickness (PT).
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C. annuum complex (C. annuum, C. chinense, and C. frutescens) 
and C. baccatum except for some admixed lines. Especially, 
C. baccatum accessions were genetically distinct from the other 
three species (C. annuum complex). There was one C. chacoense 
accession, which was recently reported as C. baccatum complex 
(Carrizo García et  al., 2016). However, in the core collection, 
it did not cluster in the C. baccatum cluster. To gain a deeper 
knowledge of the genetic resources of pepper, precise accession 
identification methods, adjustment of ambiguous lines in gene 
banks, and taxonomic studies are needed in the future. In 
conclusion, to improve reliability and reduce the ambiguous 
population structure, we  excluded the C. baccatum and  
C. chacoense in further genomic prediction analysis.

Prediction Accuracy of Genomic Selection 
in the Pepper Core Collection
Prediction accuracy varies among genomic prediction methods 
according to their assumptions and treatments of marker effects 
(Desta and Ortiz, 2014). Therefore, we  investigated the 
performance of various genomic prediction methods through 
10-fold cross-validation. Although there were no significant 
differences in the prediction accuracy of the methods, gblupRR 
and RKHS showed consistently high prediction accuracies 
among the 10 different methods for all traits. The mean of 
prediction accuracies for fruit length were lower than prediction 

accuracies for the other traits, highlighting the different genetic 
architectures of the loci controlling these traits. Highly correlated 
traits (fruit width, fruit weight, and pericarp thickness) showed 
similar patterns of prediction accuracy.

Previous studies have shown positive correlation between 
prediction accuracies of genomic prediction and heritability, 
and its impacts were relatively larger than other factors (Poland 
et  al., 2012; Desta and Ortiz, 2014). However, we  observed 
no correlation between prediction accuracies and heritability 
in this study. Although fruit length showed the middle-level 
heritability (0.971) among the traits tested, its prediction accuracy 
was lowest. Since all of the fruit-related traits showed high 
heritability (>0.90), differentiation of prediction accuracies was 
not clearly detected. Various traits showing a wide range of 
heritability will need to be tested in future studies to investigate 
the reliable results of interaction between heritability and 
prediction accuracy in pepper.

Lower marker density typically resulted in lower prediction 
accuracy for fruit-related traits, similar to previous studies (Desta 
and Ortiz, 2014). This can be  explained by the fact that a large 
number of markers can cover all genomic regions (also known 
as LD block) that correspond to the traits, explaining the majority 
of marker effects. However, prediction accuracies using the 2nd 
set with 9,282 SNPs were higher than those using the all-marker 
set with 18,663 SNPs for fruit length, fruit shape, fruit width, 

TABLE 4 | Results of genomic prediction tests on PD recombinant inbred lines (RILs) by training subset using the all-marker set [18,663 single-nucleotide 
polymorphisms (SNPs)] and 2rd set (9,282 SNPs).

Subset of core collection Traita gblupRR RKHS Random forest

18,663 SNPs 9,282 SNPs 18,663 SNPs 9,282 SNPs 18,663 SNPs 9,282 SNPs

Capsicum annuum complex  
(302 lines)

FL 0.352 0.317 0.336 0.318 0.285 0.333
FS 0.443 0.387 0.487 0.397 0.594 0.583
FWd 0.457 0.484 0.468 0.499 0.320 0.343
FWg 0.403 0.436 0.430 0.483 0.353 0.351

C. annuum only (229 lines)

FL 0.363 0.329 0.345 0.330 0.328 0.277
FS 0.408 0.387 0.433 0.397 0.498 0.468
FWd 0.452 0.481 0.436 0.494 0.373 0.407
FWg 0.401 0.437 0.427 0.480 0.415 0.434

Capsicum chinense and Capsicum 
frutescens (73 lines)

FL −0.308 −0.205 −0.156 −0.196 −0.006 −0.042
FS 0.245 0.391 −0.008 0.357 −0.190 0.018
FWd 0.006 0.126 −0.033 0.079 −0.129 −0.127
FWg −0.034 0.033 −0.148 0.000 −0.134 −0.094

aFL, fruit length; FS, fruit shape; FWd, fruit width; FWg, fruit weight; PT, pericarp thickness.

TABLE 3 | Average of prediction accuracy calculated by using the reproducing kernel Hilbert space (RKHS) model with different numbers of markers.

Number of markers Fruit length Fruit shape Fruit width Fruit weight Pericarp thickness

Avga SD Avg SD Avg SD Avg SD Avg SD

All SNPs (18,663 SNPs) 0.770 ±0.010 0.751 ±0.007 0.860 ±0.005 0.836 ±0.006 0.840 ±0.002
2nd set (9,282 SNPs) 0.777 ±0.011 0.756 ±0.007 0.861 ±0.002 0.830 ±0.006 0.847 ±0.003
3rd set (4,896 SNPs) 0.774 ±0.010 0.739 ±0.006 0.851 ±0.009 0.830 ±0.008 0.839 ±0.005
4th set (2,758 SNPs) 0.768 ±0.010 0.740 ±0.008 0.843 ±0.004 0.821 ±0.004 0.826 ±0.009
5th set (1,391 SNPs) 0.741 ±0.008 0.702 ±0.006 0.838 ±0.003 0.814 ±0.013 0.805 ±0.007
6th set (711 SNPs) 0.700 ±0.008 0.685 ±0.013 0.801 ±0.008 0.792 ±0.005 0.774 ±0.005

aThe mean of 10-fold cross-validation values.
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and pericarp thickness, whereas fruit weight had the highest 
prediction accuracy using the all-marker set. This indicates that 
the LD levels of loci controlling fruit width, fruit weight, and 
pericarp thickness may be  fully characterized by lower dense 
marker sets. Therefore, the 2nd marker set could cover all 
genomic regions controlling the traits, and noninformative SNPs 
in the all-marker set might decrease prediction accuracy. However, 
in the case of fruit weight, even the all-marker set could not 
cover all possible genomic regions, so a denser marker set might 
improve prediction accuracy.

After selecting a GS model and optimal marker set, we  tested 
our optimized genomic prediction conditions by cross-validation 
with another population. Across-population genomic prediction 
was conducted between the core collection and RIL populations. 
Generally, prediction accuracy among modest numbers of distant 
panels (across-population) do not enable reliability since two 
populations share a small proportion of the genome (de los 
Campos et al., 2015). Although with difficulties in across-population 
genomic prediction, we  obtained moderate-level of prediction 
accuracy because models were trained with diverse germplasms 
(Akdemir and Isidro-Sánchez, 2019). The prediction accuracy 
for fruit length (0.336) was lower than that for fruit shape (0.487), 
fruit width (0.468), and fruit weight (0.431) according to the 
result of RKHS models. The difference in prediction accuracy 
between fruit length and other traits may be  caused by the 
complexity of fruit length or the effect of population structure.

Since GS was introduced, population structure has been a 
frequent issue for improving prediction accuracy (Spindel and 
McCouch, 2016), and previous studies have emphasized the 
use of a genetically linked population as the test population 
(Desta and Ortiz, 2014). Also, other existing reports suggested 
that genetic diversity in training population could affect prediction 
accuracy (de los Campos et  al., 2015; Edwards et  al., 2019). 
To improve prediction accuracy, we  tested genomic prediction 
models by comparing different training populations: C. annuum 
complex accessions, C. annuum only accessions, and the rest 

of the accessions except C. annuum (C. chinense and C. frutescens). 
When the C. annuum complex accessions were used as the 
training population in RKHS method, higher prediction 
accuracies were obtained in most traits except fruit length. 
However, in the random forest model, prediction accuracies 
using the C. annuum only accessions were higher for fruit 
width and fruit weight than those using C. annuum complex. 
The differences in prediction accuracies between two training 
populations were not so high. However, when only the C. 
chinense and C. frutescens accessions were used for training 
population, prediction accuracies were drastically decreased. 
This may be  due to the genetic distance between the training 
population and the testing population. Heffner et  al. (2011) 
demonstrated that prediction accuracy above 0.30 would be good 
enough for applying GS in a winter wheat breeding programs. 
By obtaining moderate prediction accuracies (>0.30 in all traits) 
in this study, we showed the potential of GS in pepper breeding 
with the relatively reasonable costs (small size of training 
population and low coverage markers).

In this study, we  investigated the potential of GS in pepper 
for fruit-related traits having a high level (>0.90) of heritability. 
By using the core collection as a training population, with cross-
validation, we  found effective conditions for GS such as the 
type of genomic prediction model and the number of markers. 
The cross-validation results explained about 80% of genetic 
variation for fruit-related traits in the pepper core collection. 
We used genomic prediction models trained using a core collection 
and tested in a different population (RIL population) with narrow 
genetic diversity and weak population structure. Although the 
difference in genetic diversity was high between the training 
population and the test population, we  obtained a moderate 
prediction accuracy. This study provides a simulation of the 
commercial pepper pre-breeding procedure and deep knowledge 
of the genetic architecture of pepper fruit-related traits, showing 
the potential of GS in pepper. This is, to our knowledge, the 
first genomic prediction study reported in pepper. To improve 
the prediction accuracy of genomic prediction, integration with 
larger-scale genomics and phenomics is needed.
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