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Within the context of global warming, long-living plants such as perennial woody
species endure adverse conditions. Among all of the abiotic stresses, drought stress
is one of the most detrimental stresses that inhibit plant growth and productivity.
Plants have evolved multiple mechanisms to respond to drought stress, among which
transcriptional regulation is one of the key mechanisms. In this review, we summarize
recent progress on the regulation of drought response by transcription factor (TF)
families, which include abscisic acid (ABA)-dependent ABA-responsive element/ABRE-
binding factors (ABRE/ABF), WRKY, and Nuclear Factor Y families, as well as ABA-
independent AP2/ERF and NAC families, in the model plant Arabidopsis. We also
review what is known in woody species, particularly Populus, due to its importance
and relevance in economic and ecological processes. We discuss opportunities for a
deeper understanding of drought response in woody plants with the development of
high-throughput omics analyses and advanced genome editing techniques.
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INTRODUCTION

Plant growth and development are affected by environmental stimuli including biotic and abiotic
stresses. Drought stress is one of the most deleterious abiotic stresses to plants caused by limited
rainfall, rising temperatures, and insufficient water availability and has become an increasing
concern because of global climate change (Yamaguchi-Shinozaki and Shinozaki, 2006; Nakashima
et al., 2014; Gupta et al., 2020a). Drought stress causes a series of injuries in terms of plant
physiological, biochemical, and metabolic impacts, which result in plant growth retardation,
cell damage, and leads to loss of crop yield and quality (Joshi et al., 2016). The sessile nature
of plants requires them to develop effective responsive mechanisms, including escape (i.e.,
accelerating flowering), avoidance (i.e., maintaining high internal water content), and tolerance
(i.e., maintaining growth under low internal water content) to adapt to drought stress (Salehi-Lisar
and Bakhshayeshan-Agdam, 2016; Gupta et al., 2020a).
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In response to drought stress, stomatal closure is an early
and rapid response to avoid water loss, although it also can
lead to negative effects on photosynthesis (Raghavendra et al.,
2010). Morphological changes, including wax biosynthesis on
leaf surface and enhanced root growth are other strategies
adopted by plants to reduce respiration and improve water
uptake, respectively, (Aharoni et al., 2004; Meng et al., 2019).
Secondly, plants produce functional proteins, such as dehydrins
and late embryogenesis-abundant proteins (LEA), as well as wide
spectrum of metabolites to relieve potential osmotic damage from
drought stress. Thirdly, plants produce antioxidant enzymes
to scavenge reactive oxygen species (ROS) and protect cells
from oxidative damage induced by drought stress (Claeys and
Inze, 2013). Noticeably, stomatal closure is through a complex
membrane transporter system to quickly respond to drought
stress (Raghavendra et al., 2010; Gong et al., 2020). Most of the
other responses are typically under the control of transcriptional
regulation in which transcription factors (TFs) play the pivotal
roles (Takahashi et al., 2018).

Much of the progress of drought response studies has
been made in the model plants Arabidopsis thaliana and rice
(Oryza sativa) over the past decades (Shinozaki and Yamaguchi-
Shinozaki, 2006; Joshi et al., 2016). As a stress hormone, abscisic
acid (ABA) is abruptly synthesized in response to different
stresses, including drought, enhancing plant drought tolerance
through closing stomata and restraining plant growth (Zeevaart,
1980; Zhu, 2016). ABA is perceived by the PYR/PYL/RCAR
receptors, which activate downstream TFs, such as ABA-
responsive element (ABRE)-binding proteins (AREBs)/ABRE-
binding factors (ABFs) by cascade kinase reactions. Activated
ABA signaling enhances drought tolerance by inducing stress-
responsive genes. However, expression of some drought-
responsive genes is independent of ABA. For example, RD29A
and ERD1 can be induced by drought in an ABA-independent
pathway. Their expression is controlled by other TFs families,
such as APETALA2/ethylene-responsive factor (AP2/ERF), and
NAM, ATAF1/2, and CUC2 (NAC) (Takahashi et al., 2018).

Similar to Arabidopsis and rice, woody plant species are
also negatively affected by drought, including reduced plant
growth, inhibited wood formation, and increased susceptibility to
pathogens (Fernàndez-Martínez et al., 2013; Yin et al., 2014; Polle
et al., 2019). With the approaches of genetics and omics, studies
on response of woody plants have identified many important
TFs, and the transcriptional regulation of drought response is
emerging (Estravis-Barcala et al., 2019). In this review, we will
provide an update on the recent progress of the role of TFs in
drought response in the model plant, Arabidopsis, and highlight
findings in the woody genus, Populus.

ABA-DEPENDENT DROUGHT
RESPONSE PATHWAY

The ABA signaling pathway consists of receptor
RCAR/PYR/PYLs, protein phosphatase PP2C, kinase SnRK2s
(SnRK2.2, SnRK2.3, and SnRK2.6), and the targeting substrates
(Umezawa et al., 2010; Guo et al., 2011). Once bound and

activated by ABA, PYR/PYL/RCARs form a trimeric complex
with PP2Cs, which inhibits the phosphatase activity of PP2Cs.
SnRK2s are then released from the association with PP2Cs.
Released SnRK2s can be activated by autophosphorylation, and,
in turn, phosphorylate the downstream TFs and ion channel
proteins (Fujita et al., 2009; Ma et al., 2009; Park et al., 2009;
Umezawa et al., 2009). Among SnRK2 targets, AREBs/ABFs are
the downstream TFs in the ABA signaling pathway. Some other
TF families, such as WRKY, MYB, and NF-Ys, are also involved
in drought response and adaption (Singh and Laxmi, 2015).

AREBs/ABFs
Gene expression microarray and RNA-seq approaches have
been used extensively to identify drought-responsive genes.
Through the analysis of cis-acting promoter elements, 8-bp-
long ABRE, PyACGTGGC, was identified in the promoter in
82% of dehydration-responsive genes in Arabidopsis (Maruyama
et al., 2012). ABRE are bound by AREBs/ABFs, which belong
to the bZIP TF family. Four members of AREBs/ABFs (AREB1,
AREB2, ABF3, and ABF1), whose expression are induced by
both dehydration and ABA treatment, were reported to regulate
drought response through the ABA-dependent pathway. The
quadruple mutant of areb1 areb2 abf3 abf1 showed a drought-
sensitive phenotype and reduced sensitivity to ABA (Yoshida
et al., 2010, 2015). ENHANCED EM LEVEL (EFL), belonging to
bZIP TF family, formed a protein complex with GIGANTEA (GI)
to regulate diurnal ABA biosynthesis contributing to drought
tolerance (Baek et al., 2020a). Noticeably, an ABRE is required to
co-locate with other copies of ABRE or coupling elements (CEs)
to activate ABA-responsive genes (Figure 1). Since ABA regulates
most of its target genes through AREBs/ABFs, the ABRE element
is recognized as a key signature for drought-responsive genes
regulated by the ABA-dependent pathway.

Recently, many ABA signaling components have been
reported to be involved in drought response in woody plants.
Overexpression of the ABA receptor, PtPYRL1 or PtPYRL5,
increased drought tolerance (Yu et al., 2017). Accordingly,
Arabidopsis transgenic plants overexpressing Populus PP2C genes
negatively regulated drought tolerance and showed enhanced
water loss (Arshad and Mattsson, 2014; Chen et al., 2015). There
are 14 putative AREB/ABF members encoded in the Populus
genome. Eight of them were upregulated upon exogenous ABA
treatment, whereas the other six members were downregulated
(Ji et al., 2013). Transgenic plants overexpressing PtrAREB3
showed a strong drought tolerance phenotype under drought
conditions with compromised biomass production (Yu et al.,
2019). PeABF3, isolated from Populus euphratica, was induced
by dehydration and ABA treatment. Overexpression of PeABF3
enhance drought tolerance by promoting ABA-induced stomatal
closure (Yang Y. et al., 2020). Li et al. (2019) identified four
ABRE1 homologs in P. trichocarpa, three of which (PtrAREB1-
2, PtrAREB1-3, and PtrAREB1-4) were induced by drought
treatment. Knocking down of PtrAREB1 showed reduced
drought tolerance in transgenic poplar (Table 1). PtrAREB1-
2 was reported to recruit HAT complex proteins, ADA2b and
GCN5, to increase H3K9 acetylation and activate the expression
of downstream genes, such as PtrNACs (Li et al., 2019). Besides
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FIGURE 1 | Schematic representation of major transcription factors and transcriptional network involved in drought stress response. Drought stress is perceived by
plant in an unclear mechanism, which induces the biosynthesis of ABA. ABA signaling, in turn, activates several TF families, including AREB, NF-Y, WRKY, and MYB.
There are ABA-independent TFs involved in drought stress, such as DREB2A, HD-ZIP, MYC2, and several NACs. These TFs, individually or cooperatively, regulate
plant growth and development, metabolism, and expression of stress-inducible genes, such as RD22 and ERD1. Arrows and bars indicate activation and inhibition
of the expression of downstream genes, respectively. Components in the gray background denote the ABA-dependent pathway, and components in brown
background denote the ABA-independent pathway.

AREB/ABFs, another bZIP TF PtabZIP1L contributed to drought
tolerance by increasing lateral root formation and modulating the
biosynthesis of the drought tolerance-related metabolites (Dash
et al., 2017). In conclusion, ABA biosynthesis and the ABA
signaling pathway play pivotal roles in drought stress response
in woody plants, such as poplar.

WRKYs
Some other TF families do not recognize the signature ABRE
motif but play an important role in ABA-dependent stress
response (Singh and Laxmi, 2015). As one of the largest plant
TF families, the WRKY TF family features the conserved WRKY
domain which shows potential DNA-binding activity. WRKYs
recognize the W-box (TTGACC/T) that has been found in the
promoters of many biotic and abiotic stress-responsive genes
(Chen et al., 2019). WRKY18, WRKY40, and WRKY60 negatively
regulate ABA-responsive genes (i.e., ABI4, ABI5, and ABF4) by
directly binding to their promoters under normal conditions, and
the wrky40 mutant showed ABA-hypersensitivity phenotypes.
Expression of WRKY18, WRKY40, and WRKY60 are induced

by water deficiency as well as ABA, and ABA also promotes
the ABAR-WRKY40 interaction to relieve the negative effect of
WRKY40 on ABI5 expression (Chen et al., 2010; Shang et al.,
2010). WRKY63/ABO3 is induced by ABA treatment, and the
abo3 mutant is more sensitive to drought stress (Ren et al., 2010).
WRKY46, WRKY54, and WRKY70 have also been identified to
be involved in BR-regulated drought response, and the wrky46
wrky54 wrky70 triple mutant shows more tolerance to drought
stress (Chen et al., 2017). In addition to negatively regulating
drought stress, WRKY40 and WRKY70 are known repressors
in plant immunity, and it will be interesting to investigate their
roles in the crosstalk of pathogen and drought stress, given
that it has been reported that drought stress-induced ABA
biosynthesis inhibits salicylic acid (SA)-mediated plant immunity
(Chen et al., 2019; Gupta et al., 2020b). Other WRKY TFs,
such as WRKY28 and WRKY21, were reported to positively and
negatively regulate plant response to drought stress, respectively,
(Babitha et al., 2013; Zhao K. X. et al., 2020; Figure 1).

Genome-wide identification of the WRKY TF family have
been carried out in several woody plants, such as poplar and
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TABLE 1 | Summary of the transcription factors involved in drought response in woody plants.

Gene
family

Gene symbol Identified from species Studied in species Pathway Description References

AREB/ABF PtrAREB3 Populus trichocarpa Populus tremula × tremuloides
“T89”

ABA responsive Positive regulator Yu et al., 2019

PtrAREB1-2 Populus trichocarpa Populus trichocarpa Drought inducible Positive regulator Li et al., 2019

PeABF3 Populus euphratica Populus tomentosa Mannitol, ABA,
dehydration-inducible

Positive regulator Yang Y. et al.,
2020

WRKY PbrWRKY53 Pyrus betulaefolia Tobacco, Pyrus ussuriensis ABA, drought inducible Positive regulator Liu Y. et al.,
2019

NF-Y PtNF-YA9 Populus trichocarpa Arabidopsis thaliana Mannitol, NaCl, ABA
repressible

Positive regulator Lian et al., 2018

PdNF-YB7 Populus
nigra × (P. deltoides × P. nigra)

Arabidopsis thaliana PEG6000, ABA inducible Positive regulator Han et al., 2013

PdNF-YB21 Populus
nigra × (P. deltoides × P. nigra)

Populus alba × P. glandulosa ABA, osmotic, drought
inducible

Negative regulator Zhou et al., 2020

MYB PtoMYB170 Populus tomentosa Arabidopsis thaliana Unknown Positive regulator Xu et al., 2017

PtrMYB94 Populus trichocarpa Arabidopsis thaliana, Populus
tomentosa

Dehydration, ABA inducible Positive regulator Fang et al., 2019

AP2/ERF PeDREB2L Populus euphratica Oliva Arabidopsis thaliana Dehydration, salt, ABA
inducible

Positive regulator Chen et al.,
2011

PeDREB2a Populus euphratica Arabidopsis thaliana PEG, salt, cold inducible Positive regulator Zhou et al., 2012

PeSHN1 Populus × euramericana
“Neva”

Populus alba × P. glandulosa Dehydration, ABA inducible Positive regulator Meng et al.,
2019

MdERF38 Malus × domestic “Gala” Malus × domestic “Gala” and
Arabidopsis thaliana

PEG inducible Positive regulator An et al., 2020

MdWRI4 Malus × domestic “Gala” Malus × domestic “Gala” PEG, ABA, and
NaCl-inducible

Positive regulator Zhang et al.,
2020

MdSHINE2 Malus × domestic “Gala” Arabidopsis thaliana PEG, ABA,GA and
NaCl-inducible

Positive regulator Zhang Y.-L.
et al., 2019

NAC PeNAC036 Populus euphratica Arabidopsis thaliana Drought, salt inducible Positive regulator Lu et al., 2018

PeNAC034 Populus euphratica Arabidopsis thaliana Drought, salt repressible Negative regulator Lu et al., 2018

PeNAC045 Populus euphratica Populus tomentosa Drought, salt repressible Negative regulator Lu et al., 2018

PtrNAC006 Populus trichocarpa Populus trichocarpa Drought inducible Positive regulator Li et al., 2019

PtrNAC007 Populus trichocarpa Populus trichocarpa Drought inducible Positive regulator Li et al., 2019

PtrNAC120 Populus trichocarpa Populus trichocarpa Drought inducible Positive regulator Li et al., 2019

VaNAC26 Vitis amurensis Arabidopsis thaliana Cold, drought, salt inducible Positive regulator Fang et al., 2016

VvNAC08 Vitis vinifera Arabidopsis thaliana Drought, SA, ABA, JA, MT
inducible

Positive regulator Ju et al., 2020a

VvNAC17 Vitis vinifera Arabidopsis thaliana Drought, high temperature,
cold, SA, ABA inducible

Positive regulator Ju et al., 2020b

VaNAC17 Vitis amurensis Arabidopsis thaliana PEG, MeJA, and
ABA-inducible

Positive regulator Su et al., 2020

ZFP PdC3H17 Populus deltoides Populus
deltoides × P. euramericana
“nanlin895”

Unknown Positive regulator Zhuang et al.,
2020

bZIP PtabZIP1L Populus tremula × P. alba Populus tremula × P. alba PEG inducible Positive regulator Dash et al., 2017

WOX PagWOX11/12a Populus alba × P. glandulosa cv.
“84K”

Populus alba × P. glandulosa
cv. “84K”

PEG inducible Positive regulator Wang et al.,
2019

HD-Zip EcHB1 Eucalyptus camaldulensis Eucalyptus
grandis × E. urophylla

Unknown Positive regulator Sasaki et al.,
2019

MdHB-7 Malus domestica Malus domestica ABA and drought Positive regulator Zhao S. et al.,
2020

grapevine (He et al., 2012; Jiang et al., 2014; Wang et al.,
2014). Over 100 putative PtrWRKY genes have been identified
in Populus, and several WRKY members in group III showed
enhanced expression in response to drought treatment. It
would be interesting to further investigate the function of these

drought-responsive PtrWRKYs, such as PtrWRKY89, whose
expression is strongly induced by ABA and PEG treatment
(He et al., 2012; Wang et al., 2015). Recently, a drought and
ABA-induced PbrWRKY53 was isolated from Pyrus betulaefolia.
Overexpression of PbrWRKY53 increased drought tolerance
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in tobacco and Pyrus ussuriensis, whereas the PbrWRKY53
knock-down lines showed compromised drought tolerance
in P. ussuriensis with reduced PbrNCED1 and PbrNCED3
expression levels (Liu Y. et al., 2019; Table 1). The function
of WRKY TFs in biotic stress response has been well-studied
in woody plants (Duan et al., 2015; Jiang et al., 2017; Liu G.
et al., 2019). However, their function in abiotic stress response,
especially in drought response, needs to be deeply investigated.

NF-Ys
NF-Ys consist of three subunits (NF-YA, NF-YB, and NF-
YC) and recognize the CCAAT box in the promoters of
target genes. Arabidopsis AtNF-YA5 is induced by drought
stress in an ABA-dependent manner, and the mutant nf-
ya5 shows hypersensitivity to drought stress, whereas
overexpression of NF-YA5 enhances drought tolerance (Li
et al., 2008). Other members in NF-YA family, such as AtNF-
YA3, AtNF-YA7, and AtNF-YA10 are positive regulators of
drought response (Leyva-Gonzalez et al., 2012). AtNF-YB2,
induced by dehydration stress in both ABA-dependent and
ABA-independent manners, also positively regulates drought
tolerance (Sato et al., 2019). It was also reported that AtNF-
YC3/4/9 enhances drought-escape-responsive flowering by
interacting with ABF3/4 and activates SOC1 expression under
drought stress (Hwang et al., 2019; Figure 1).

There are 52 NF-Y genes, including 13 NF-YAs, 20 NF-
YBs, and 19 NF-YCs identified in the P. trichocarpa genome.
Among 13 PtNF-YA genes, 11 of them were found to contain the
ABRE element in their promoter regions, which correlates with
their expressions being induced by abiotic stresses. Noticeably,
PtNF-YA2 and PtNF-YA4 were induced by polyethylene glycol-
simulated drought treatment (Liu et al., 2020). Although the
expression of PtNF-YA9 was not induced by dehydration,
Arabidopsis plants overexpressing PtNF-YA9 showed high
tolerance to drought stress by promoting ABA-dependent
stomatal closure in leaves (Lian et al., 2018). Similarly, PdNF-
YB7 identified from Populus nigra × (P. deltoides × P. nigra)
was also reported to increase drought tolerance in Arabidopsis
by regulating ABA-dependent dehydration response (Han
et al., 2013). Overexpression of PdNF-YB21, another PdNF-
YB, enhanced root growth and drought tolerance, while the
knockout mutant showed the opposite phenotypes in poplar
[Populus nigra × (P. deltoides × P. nigra)] (Zhou et al.,
2020). Further investigation showed that PdNF-YB21 interacts
with a B3 domain TF PdFUSCA3 and activates the expression
of ABA biosynthesis genes (Suzuki and McCarty, 2008).
Accumulation of ABA in the roots of PdNF-YB21 overexpression
plants increased root growth and enhanced drought tolerance
by promoting IAA transport (Zhou et al., 2020; Table 1).
Collectively, these results indicate that NF-Y TFs have important
functions in drought response in the ABA-dependent pathway
in woody plants.

MYBs and Other TF Families
For some drought-responsive genes, such as RD22 and AtADH1,
their expression is dependent on ABA. However, the ABRE
cis-elements are not found in their promoters. Further studies

identified two cis-elements, specifically MYBRS (C/TAACNA/G)
and MYCRS (CANNTG), in their promoters. The MYB TF
family member AtMYB2 and the bHLH TF AtMYC2 have
been identified to recognize these elements, respectively, (Abe
et al., 1997, 2003). AtAMYB96 is another MYB TF involved in
drought response, and the myb96-1 mutant showed susceptibility
to drought, whereas transgenic plants overexpressing AtMYB96
showed enhanced drought tolerance. In addition to the activation
of target genes in response to ABA, AtMYB96 was reported
to negatively regulate ABA-repressible genes RHO GTPASE
OF PLANTS (ROPs) by recruiting HDA15 (Seo et al., 2009;
Lee and Seo, 2019; Figure 1).

There are other TF families that regulate drought response
via the ABA-dependent pathway. ABA-induced transcriptional
repressors (AITRs) belong to a novel TF family, and the
double mutant of aitr2 aitr5 and triple mutant of aitr2 aitr5
aitr6 show strong drought tolerance. Further analysis shows
that these AITRs are able to target and repress key regulators
in ABA signaling, such as ABI2 (Tian et al., 2017). Auxin-
sensitive Aux/IAA transcriptional repressors are also reported
to be involved in drought response. The triple mutant of
iaa5 iaa6 iaa19 shows decreased drought tolerance. Further
analysis indicated that IAA5/6/19, induced by drought and
ABA, regulate stomatal closure by adjusting glucosinolate levels
(Salehin et al., 2019).

As one of the largest TF families, there are over 190 MYB
TFs identified in poplar (Wilkins et al., 2009). PtoMYB170 was
identified from Populus tomentosa (Chinese white poplar), and
overexpression of PtoMYB170 in Arabidopsis increased drought
tolerance by promoting dark-induced stomatal closure (Xu et al.,
2017). Overexpression of PtrMYB94 increased drought tolerance
in both poplar and Arabidopsis. Further analysis revealed that
PtrMYB94 enhanced drought tolerance in an ABA-dependent
manner by activating ABA-responsive genes and increasing
ABA content (Fang et al., 2019; Table 1). Compared with
Arabidopsis, studies of MYB TFs in drought response in poplar
are still limited.

ABA-INDEPENDENT DROUGHT
RESPONSE PATHWAY

Although many TFs are induced by ABA and function in
the ABA-dependent signaling pathway, there are some TFs
whose expression is highly induced by water deficiency, but
not primarily mediated by ABA biosynthesis or signaling
pathway (Yoshida et al., 2014). DREB2s and some NACs belong
to this category.

AP2/ERFs
Dehydration-responsive element DRE (A/GCCGAC) was
identified in many drought-responsive genes, which is recognized
by DREB2 proteins. DREB2A and DREB2B belong to the
AP2/ERF (Apetala2 and ethylene-responsive factors) TF family
(Maruyama et al., 2012). The expression of DREB2A is slightly
induced by ABA, but highly induced by dehydration, supporting
the ABA-independent manner in response to drought stress
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(Kim et al., 2011). Overexpression of the constitutively active
DREB2A (DREB2A-CA) increases drought tolerance. The active
form of DREB2A-CA lacks the PEST sequence that is a negative
regulatory domain for DREB2A, and makes this protein unstable
under non-stressful conditions (Sakuma et al., 2006). Further
analysis revealed that protein stability of DREB2A is controlled
by DRIP1 and DRIP2 through the ubiquitin/26S proteasome
system under normal conditions (Qin et al., 2008). TINY belongs
to AP2/ERF family in Arabidopsis. tiny tiny2 tiny3 triple mutant
showed hypersensitive phenotypes to drought stress whereas
transgenic plants overexpressing TINY enhanced drought
tolerance. TINY positively regulates drought-responsive genes
and promotes ABA-mediated stomatal closure by interacting
with BES1 in BR signaling (Xie et al., 2019). Other ERF/AP2
TF family members such as HARDY (HRD), TG/RAP2.4A,
and AtERF74 were also reported to positively regulate drought
tolerance, while AtRAP2.1 negatively regulates drought response
(Karaba et al., 2007; Dong and Liu, 2010; Zhu et al., 2014;
Yao et al., 2017; Figure 1).

In woody species, there are 202 and 149 AP2/ERFs
(consisting of ERF, RAV, APW, and Soloist subfamilies) in
Populus and Vitis vinifera, respectively, (Zhuang et al., 2008;
Licausi et al., 2010). PeSHN1, an AP2/ERF member isolated from
Populus × euramericana “Neva,” was reported to promote wax
biosynthesis by targeting PeLACS2 and other related genes. It was
concluded that poplar plants overexpressing PeSHN1 enhance
drought tolerance by increasing wax biosynthesis and reducing
transpiration (Meng et al., 2019). Orthologs of Arabidopsis
DREB2A, PeDREB2a and PeDREB2L from P. euphratica were
shown to be involved in drought response. Overexpression
of PeDREB2a or PeDREB2L in Arabidopsis enhances drought
tolerance although the potential PEST sequences were identified
within the protein sequence. These results suggest that PeDREB2s
are more stable than DREB2A and may function as the
constitutively active form (Chen et al., 2011; Zhou et al.,
2012). PagERF35, whose encoding gene is induced by drought
treatment, can directly bind to the DRE motifs in the promoter of
PagWOX11/12a. PagWOX11/12a, belonging to the WUSCHEL-
related homebox (WOX) TF familiy, positively regulates drought
tolerance by increasing root growth. In addition, co-expression
analysis and transcriptional activation assay suggest that ERF
and WOX may form a regulatory module responding to drought
stress (Wang et al., 2019). MdERF38 was shown to interact with
MdMYB1 to promote anthocyanin biosynthesis in response to
drought stress in apple (An et al., 2020). Another two AP2/ERF
TFs, MdSHINE2 and MdWRI4, were also positively involved in
drought tolerance by regulating wax biosynthesis in Arabidopsis
(Zhang Y.-L. et al., 2019; Zhang et al., 2020; Table 1).

NACs and Other TF Families
NAM, ATAF, and CUC (NAC) TFs are encoded by the largest
plant-specific NAC gene family. Many NACs induced by
drought stress or ABA were reported to bind NACRS(CGTG/A)
sequence in the promoters of drought stress-responsive genes
(Puranik et al., 2012). Some NACs regulate drought response
through the ABA-dependent pathway, while the other NACs
do so through the ABA-independent pathway. ERD1 is a

dehydration-responsive gene whose expression is induced
by drought stress, but not by ABA (Nakashima et al., 1997).
Further analysis revealed that the ERD1 promoter contains
both NACRS (CATGTG) and zinc finger homeodomain
recognition sequences (ZFHDR, CACTAAATTGTCAC).
ANAC019, ANAC055, ANAC072/RD26, and ZFHD1 were
reported to bind to the promoter of ERD1. Overexpression
of ZFHD1 or co-overexpression of ZFHD1 and ANACs show
induced ERD1 expression and drought tolerance (Tran et al.,
2007; Singh and Laxmi, 2015). Interestingly, ANAC072/RD26
regulates other drought-responsive genes and enhances
drought tolerance in an ABA-dependent manner (Fujita
et al., 2004). Recently, phosphorylation of RD26 by BIN2
was reported to be required for the activation of RD26 in
drought-responsive genes (Jiang et al., 2019). JUB1 is a
drought-induced NAC TF. Overexpression of JUB1, driven
by either CaMV35S promoter or the RD29A promoter,
enhances drought response, and JUB1 was positively regulated
by HD-Zip class I TF AtHB13 (Ebrahimian-Motlagh et al.,
2017). SUPPRESSOR OF MORE AXILLARY GROWTH2
(MAX2)-LIKE6 (SMXL6), SMXL7, and SMXL8 belonging
to SAMX1-LIKE (SMXL) family, in addition to acting as
transcriptional repressors in strigolactone signaling, negatively
regulate drought response. Transcriptomic and physiological
evidence suggested that these three SMXL proteins regulate
drought response in both the ABA-dependent and ABA-
independent pathways (Wang et al., 2020; Yang T. et al., 2020;
Figure 1).

There are 163 NAC genes identified in P. trichocarpa (Hu et al.,
2010). Three drought-responsive NAC genes were identified from
P. euphratica, including PeNAC034, PeNAC036, and PeNAC045.
PeNAC036 is induced, while PeNAC034 and PeNAC045 are
repressed by drought stress. Consequently, overexpression of
PeNAC036 in Arabidopsis enhances drought tolerance, while
overexpression of PeNAC034 in Arabidopsis reduces drought
tolerance. Poplar plants overexpressing PeNAC045 also showed
a drought-sensitive phenotype (Lu et al., 2018). It was proposed
that P. euphratica may adapt to a drought environment
by activating and repressing different sets of NAC genes
(Lu et al., 2018). PtrNAC006, PtrNAC007, and PtrNAC120,
regulated by PtrAREB1, were shown to be positive regulators
in drought response (Li et al., 2019). In grapevine, several
NAC TFs, including VvNAC26, VvNAC08, VvNAC17, and
VaNAC17, were reported to enhance drought tolerance in
Arabidopsis (Fang et al., 2016; Su et al., 2020; Ju et al.,
2020a,b; Table 1). A novel CCCH zinc finger TF, PdC3H17,
was found to positively regulate drought response in poplar.
Overexpression of PdC3H17 confers drought tolerance by
enhancing the ROS-scavenging abilities, as well as maintaining
water potential in stem (Zhuang et al., 2020). A homeodomain
leucine zipper (HD-Zip) TF, EcHB1, identified from Eucalyptus
camaldulensis, was shown to enhance drought tolerance by
increasing photosynthetic efficiency, while reducing leaf area
in Eucalyptus (Sasaki et al., 2019). MdHB-7, another HD-
Zip TF from Malus domestica, promoted drought tolerance
by enhancing ABA content, stomatal closure, and ROS
detoxification (Zhao S. et al., 2020).
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EPIGENETIC REGULATION OF
DROUGHT RESPONSE

Epigenetic regulations, including DNA methylation, histone
modifications, chromatin remodeling, and small RNA, contribute
to abiotic stress responses (Chang et al., 2019). Increasing
evidence has demonstrated the role of histone modification
and DNA methylation in response to drought stress. A histone
demethylase, JMJ17, demethylates H3K4 under dehydration
conditions (Huang et al., 2019). The jmj17 mutant shows high
H3K4me3 levels in drought-responsive genes, such as OST1
and ABF3, and enhances target gene expression and drought
tolerance (Huang et al., 2019). LIKE HETEROCHROMATIN
PROTEIN 1 (LHP1) belongs to the PRC1 complex, which
mediates transcriptional repression of drought-related TF genes,
such as ANAC019 and ANAC055. The lhp1 mutant enhances
drought tolerance by promoting the expression of drought-
responsive genes (Ramirez-Prado et al., 2019). HISTONE
DEACETYLASE 9 (HDA9) positively regulates drought response
by interacting with ABI4 and maintaining ABA homeostasis in
response to drought stress (Baek et al., 2020b).

Populus methylome studies revealed that drought stress
changed the DNA methylation level of TF coding genes and
further altered their expression pattern (Liang et al., 2014).
An RNA m6A methyltransferase coding gene from poplar,
MTA, was shown to enhance drought tolerance by promoting
trichome and root development (Lu et al., 2020). As mentioned
above, several histone modification enzymes, such as AtHDA15
and PtrADA2b-PtrGCN5, were found to interact with key
TFs, such as AtMYB96 and PtrAREB1-2, to regulate drought
response in Arabidopsis and poplar (Lee and Seo, 2019; Li
et al., 2019). Epigenetic regulation is also involved in stress
memory by regulating gene expression, in which TFs may
also participate. Using periodically combined drought and heat
treatments, several stress-related memory genes were identified
through tissue-specific transcriptomic profiling studies in poplar.
Among them, the homologs of Arabidopsis HOMEOBOX7 (HB7)
were proposed as the most prominent candidates enhancing
plant photosynthesis during stress recovery (Georgii et al.,
2019). In conclusion, epigenetic regulation and stress memory
play important roles in drought response and tolerance, but
their regulatory roles have not been well defined and deserve
further investigations.

CROSSTALK BETWEEN
ABA-DEPENDENT AND
ABA-INDEPENDENT DROUGHT
RESPONSE PATHWAYS

Plants respond to drought stress through complex regulatory
networks. TFs play key roles by regulating large numbers
of downstream genes, as well as interacting with other TFs.
Transcriptional regulatory networks in drought response can
be predicted by analyzing transcriptome data (Zhang C. et al.,
2018). Crosstalks between the ABA pathway and other pathways

have been revealed to regulate drought response. For example,
SMXLs from SL signaling are negatively involved in drought
response by regulating both SL-responsive genes and ABA-
responsive genes (Yang T. et al., 2020). Accumulated evidence
supports the physical interactions among TFs from ABA-
dependent and ABA-independent pathways. ABA-dependent
AREBs/ABFs were found to interact with DREB2A, leading
to synergistic activation of the drought-responsive genes such
as RD29A (Lee et al., 2010). AREB1 and AREB2 were also
found to interact with ABA-independent ANAC096, and their
interactions enhance transcriptional activities of the AREBs (Xu
et al., 2013). JA-regulated MYC2 was found to interact with
the ABA-responsive ABF3, supporting the crosstalk between
JA signaling and ABA signaling in response to drought stress
(Liu et al., 2018). BES1 from BR signaling regulates drought
response by interacting with WRKY, AP2/ERF, and NAC TFs
(Nolan et al., 2020). Collectively, drought response is regulated
by the interplay between ABA-dependent and ABA-independent
pathways (Yoshida et al., 2014).

COMPLEXITIES AND RESEARCH
STRATEGIES OF DROUGHT RESPONSE
IN WOODY PLANTS

Long-lived trees experience drought stress together with other
biotic and abiotic stresses. High temperatures are the most
common stress occurring simultaneously with drought in the
field, and trees can respond differently to a single stress versus
combined stresses (Zandalinas et al., 2017). Jia et al. (2017)
reported that heat and drought stresses shared responsive genes
in Populus simonii. The hierarchical genetic regulatory networks
involving several TF, such as ERF1 and RD26, were formed
during these combined stress treatments. It was proposed
that the co-expression networks contributed to single and/or
combined stress responses by regulating hormone biosynthesis
and ROS production (Jia et al., 2017). Ozone (O3) is another
phytotoxic air pollutant. Combined effects of high ozone
and drought stresses were investigated in poplar through
transcriptome analysis. Twelve core TFs were predicted to be
master regulators in response to the combination of high O3
and drought stresses. Further analysis on differentially-expressed
genes (DEGs) indicated that Populus plants respond to O3
and/or drought by regulating isoprene biosynthesis and the
ABA-dependent pathways (Zhang J. et al., 2019). The molecular
response of combined drought and low nitrogen stress has also
been studied in Populus. RNA-seq analyses of Populus simonii
roots in response to drought and low nitrogen stresses revealed
that drought positively regulates ammonium uptake and amino
acid metabolism, which, in turn, promote drought tolerance
(Zhang C. et al., 2018).

The roles of different microbes and endophytes in drought
tolerance have also been revealed in poplar recently. Khan
et al. (2016) reported that combined application of endophytes
greatly enhanced plant biomass in Populus deltoides × P. nigra
clone OP-367 in response to drought. Further analyses revealed
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that phytohormone production of these endophytes and ROS
detoxification of inoculated plants contributed to drought
tolerance (Khan et al., 2016). Using an RNA-seq approach, it was
found that cyclic drought treatment increased the phytobiome
in taxa which could benefit the host P. deltoides plants in
terms of disease response, ROS metabolism, and photosynthesis
(Garcia et al., 2018).

Transcriptome studies, such as RNA-seq, have been used
to explore the complexities of drought stress combined with
other environment factors in woody plants (Estravis-Barcala
et al., 2019). The advantage of transcriptome study is that
it not only unravels the transcriptional regulatory networks
under any stress combination but also provides detailed
transcriptional events in genotype-, tissue-, and developmental
stage-specific bases (Cohen et al., 2010). Transcriptomic analyses
can become more effective when combined with other omics
approaches, such as metabolomics, since metabolite profiling can
provide additional insights by integrating diverse transcriptomic
responses (Hamanishi et al., 2015). The large number of key TFs
and transcriptional regulatory networks identified from RNA-seq
studies can deepen our understanding of drought response and
tolerance in woody plants.

FUTURE PERSPECTIVES

The transcriptional regulatory network of drought response
was built extensively in the model plant Arabidopsis during
the last few decades. In comparison with model plants,
knowledge of drought response in woody species is still
limited. Drought response varies with species and genotypes.
Recently developed high-throughput omics strategies shed light
on the poplar response to drought and the transcriptional
regulation underlying drought tolerance. For example, genome-
wide association mapping studies (GWAS) and Expression
Quantitative Trait Locus (eQTL) mapping have become effective
tools to identify the genetic loci underlying variation in
economically important phenotypic traits and transcriptional
regulation (Muchero et al., 2018; Zhang J. et al., 2018). Systems
biology approaches including genomics, transcriptomics,
proteomics, metabolomics, and phenomics may help facilitate the
identification and functional characterization of TFs regulating
drought response in woody plants (De Ollas et al., 2019). The
adoption of CRISPR/Cas9 technique in trees provides the power
of precisely editing the genomic loci to uncover genes in the
drought response pathway (Bewg et al., 2018).

Most studies have been conducted with single-stress studies
conducted in laboratory conditions. Forest trees often endure
multiple stresses, such as heat and drought in field. It is
imperative to verify the function of drought-related TFs and
observe their impact on phenotypic expression under field
conditions. The models generated from multistress studies will
deepen our understanding on drought stress response and
provide genetic engineering targets to create drought-tolerant
and high-yield woody plants.
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