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Pathogen infections limit plant growth and productivity, thus contributing to crop
losses. As the site of photosynthesis, the chloroplast is vital for plant productivity.
This organelle, communicating with other cellular compartments challenged by infection
(e.g., apoplast, mitochondria, and peroxisomes), is also a key battlefield in the plant–
pathogen interaction. Here, we focus on the relation between reactive oxygen species
(ROS)—redox signaling, photosynthesis which is governed by redox control, and biotic
stress response. We also discuss the pathogen strategies to weaken the chloroplast-
mediated defense responses and to promote pathogenesis. As in the next decades
crop yield increase may depend on the improvement of photosynthetic efficiency, a
comprehensive understanding of the integration between photosynthesis and plant
immunity is required to meet the future food demand.
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THE IMPLICATION OF CHLOROPLASTS IN PLANT DEFENSE

Plant diseases significantly reduce the yield of agricultural production worldwide (Nelson, 2020). In
plants, there is an antagonistic relationship between immunity and growth, known as the growth—
immunity trade-off. Immune responses temporarily suppress plant growth and vice versa—intense
growth can hinder the defense reactions. A likely mechanism of this trade-off is the diversion of
photosynthesis-derived energy and metabolites to the defense-related pathways instead of growth.
The recognition of pathogen results in downregulation of growth mediated by phytohormones
and upregulation of defense-related genes (Karasov et al., 2017). In Arabidopsis, constitutive
accumulation of salicylic acid (SA) correlates with increased resistance to Peronospora parasitica but
negatively affects growth (Mauch et al., 2001). Other studies also indicate that SA, a plant defense
hormone, contributes to the homeostasis of plant growth and immunity (Ding and Ding, 2020).

Chloroplasts are not only vital for plant productivity, but they are also active sensors of
the environment integrating the cellular response to stress. They significantly participate in the
generation of ROS and NO, play a central role in redox homeostasis and retrograde signaling
regulating nuclear gene expression (Foyer, 2018; Dietz et al., 2019). Their role in immunity
is supported by observations that plant resistance to pathogens differ between light and dark,
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and light and functional chloroplasts are needed for defense
responses (Roden and Ingle, 2009; Kuźniak et al., 2010).

Chloroplasts are also involved in stress hormone signaling
by providing biosynthetic precursors for SA, jasmonic acid (JA),
abscisic acid (ABA), and ethylene (ET) (Baier and Dietz, 2005;
Lu and Yao, 2018).

As a signaling hub for regulating plant stress responses,
chloroplasts are also targets for pathogen effectors and
phytotoxins to suppress host defense, which makes them a
key battlefield in plant–pathogen interactions (Park et al., 2018).

Here, we discuss the contribution of chloroplasts to
plant immunity and their role as a target to pathogen
manipulation weakening plant defense. Considering the
internal redox environment of the chloroplast and the role
of redox regulations in mediating plant responses to stress,
we focus on the processes that directly or indirectly depend
on chloroplast-associated ROS and redox changes. The role
of ROS and redox components in retrograde signaling is
not emphasized as it has recently been extensively reviewed
(Dietz et al., 2019).

THE PTI/ETI MODEL OF PLANT
IMMUNITY

The plant immune system relies on patterns-triggered immunity
(PTI) and effector-triggered immunity (ETI) which are defined
by the recognition mechanism of invading pathogens. PTI,
responsible for the non-host-specific resistance, is activated
following recognition of pathogen-associated molecular patterns
(PAMP) by receptors at the cell surface. PTI initiates defense
responses associated with ROS generation, stomata closure,
activation of mitogen-activated protein kinases (MAPK) and
induction of defense genes. Recognition of the avirulence
(Avr) genes-coded pathogen effector proteins by cytoplasmic
resistance (R) protein receptors triggers ETI which is more
robust than PTI and includes the local hypersensitive response
(HR) often followed by systemic acquired resistance in the host
(Cook et al., 2015). HR is a specialized form of programmed
cell death (PCD) characterized by a rapid cell death at the
point of pathogen penetration that usually leads to or is
linked to resistance associated with Nucleotide Binding Site
and Leucine-Rich Repeat domains (NBS–LRR) R-proteins,
but is not restricted to the ETI. HR is competent against
biotrophs which grow and reproduce in living hosts but it
may be beneficial for necrotrophs feeding on dead tissues
(Balint-Kurti, 2019).

Oxidative burst associated with a biphasic accumulation
of ROS, mainly O2

− and H2O2, is a hallmark of plant
interactions with incompatible pathogens. The first, non-
specific phase of ROS generation is linked to the activity
of NADPH oxidase respiratory burst homolog (RBOH) and
class III cell wall peroxidases in the apoplast whereas the
second one is specifically associated with ETI and occurs
in chloroplasts (Shapiguzov et al., 2012). Apoplastic ROS
accumulation is sensed in all cellular compartments via different
redox-based mechanisms, and ROS produced in the apoplast

and in chloroplasts, mitochondria, and peroxisomes are involved
in interorganellar communication to trigger the immune
response (Mignolet-Spruyt et al., 2016). The oxidative burst
originating in different compartments trigger redox-modulated
SA signaling with NPR1 (non-expressor of pathogenesis-related
gene 1) being the master redox sensor for SA-mediated gene
expression in the defense response (Seyfferth and Tsuda, 2014;
Herrera-Vásquez et al., 2015).

STRUCTURAL PATHWAYS UNDERLYING
CHLOROPLAST SIGNALING

The decrease in the number and size of chloroplasts, the
occurrence of plastoglobules and degradation of thylakoids
were found markers of biotic stress (Gabara et al., 2012;
Zechmann, 2019). In Botrytis cinerea-infected plants these
changes have been attributed to the accumulation of ROS,
especially H2O2 in chloroplasts (Rossi et al., 2017). Chloroplasts
communicate with other organelles via signaling networks and
by establishing physical contact with them (Park et al., 2018).
Activation of PTI, ETI, and PCD-promoting signals such as
H2O2 and SA, trigger chloroplast re-localization, clustering
around the nucleus, and extending stromules, the stroma-filled
tubules (Caplan et al., 2015; Ding et al., 2019). A decline
in photosynthesis, often accompanying plant immunity, and
increase in ROS generation within chloroplasts are likely
pre-requisites for stromule formation (Brunkard et al., 2015;
de Torres Zabala et al., 2015). During HR, chloroplasts are
the major source of H2O2 which is a defense signaling
molecule and induces nuclear gene expression (Yao and
Greenberg, 2006). Stromules could facilitate the direct transfer
of chloroplast-sourced H2O2 to the nucleus. Stromule formation
increases with enhanced ROS generation in chloroplasts and
its frequency is regulated in response to the chloroplast
redox status (Brunkard et al., 2015; Caplan et al., 2015;
Exposito-Rodriguez et al., 2017). Specific sub-sets of chloroplasts
harboring the MSH1 (MUTS HOMOLOG1) protein function
as sensory plastids and participate in epigenetic stress memory
in plants (Foyer, 2018). MSH1 silencing results in differential
expression of biotic stress-related genes and the function of
MSH1 is associated with redox state of these chloroplasts
(Virdi et al., 2015).

THE CHLOROPLASTIC ELECTRON
TRANSPORT CHAIN CARRIERS AND
THEIR LINKS TO PLANT DEFENSE

The chloroplast redox state is determined by electron flow
through the photosynthetic electron transport chain (PETC) with
plastoquinone (PQ) proposed to be the central redox regulator
(Potters et al., 2010; Liu and Lu, 2016). PQ is also involved in plant
immune response. Light-induced redox changes of the PQ pool
regulated HR and defense gene expression (Mühlenbock et al.,
2008). PQ content increased in plants treated with pathogen-
derived elicitor and acting as an antioxidant, PQ mediated
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the ROS balance during oxidative stress induced by elicitation
(Maciejewska et al., 2002). In Mesembryanthemum crystallinum,
the PQ redox state modified the response to B. cinerea by affecting
the activity of antioxidant enzymes and the HR-like response
was promoted when the PQ pool was reduced (Nosek et al.,
2015). PQ is involved in ABA biosynthesis through the oxidative
cleavage of epoxy-carotenoids (Rock and Zeevaart, 1991) and
thus linked with the hormone-regulated defense. As PQ reduces
O2 to O2

·− by semiquinone and O2
·− to H2O2 by hydroquinone,

PQ also regulates defense signaling mediated by these two ROS
(Camejo et al., 2016). In Arabidopsis, 50 nuclear genes is regulated
by the redox state of PQ and the kinases STN7 and CSK1 are
involved in this signaling. PQ may also regulate gene expression
indirectly through the generation of H2O2 (Adamiec et al., 2008;
Pfannschmidt et al., 2009).

Ferredoxin, the most upstream electron acceptor in PETC,
determines the redox status of downstream reductants, e.g.,
NADPH and thioredoxins. NADPH produced in chloroplasts
by ferredoxin-NADP+ reductase is used in defense-related
anabolic processes and in the regeneration of antioxidants by
NADPH-dependent enzymes (Noctor et al., 2006). Ferredoxin
and NADPH are involved in redox signaling via ferredoxin-
and NADPH-dependent thioredoxin reductases localized in
chloroplasts as well as maintenance of redox balance mediated
by ascorbate–glutathione cycle. Both processes are implicated
in regulating disease resistance (Kuźniak and Skłodowska, 2005;
Potters et al., 2010; Hanke and Mulo, 2013). In Arabidopsis,
NADPH-dependent thioredoxin reductase C (NTRC) working
together with H2O2-reducing 2-Cys peroxiredoxin play a role in
innate immunity to non-host Pseudomonas syringae pathogens.
This redox detoxification system regulates H2O2 generated in
chloroplasts and functions as a negative regulator of disease-
associated cell death. The increased susceptibility of Arabidopsis
ntrc mutant to non-host P. syringae correlated with enhanced
JA-dependent signaling (Ishiga et al., 2016).

The main leaf ferredoxin, Fd2 is required for resistance
against pathogens. Fd2 plays a positive role in PTI-mediated
ROS accumulation but negatively regulates the ETI response.
The Fd2-knockout mutants exhibited increased susceptibility to
virulent P. syringae pv. tomato DC3000 and the powdery mildew
Golovinomyces cichoracearum. The Fd2-knockout mutant
accumulated more JA following P. syringae pv. tomato DC3000
infection whereas the SA-mediated defense was compromised
(Wang et al., 2018).

Imbalance in PETC may initiate and modulate defense
responses, e.g., via ROS-mediated chloroplast-to-nucleus
signaling (Karpiński et al., 2013). As activation of
immune responses requires redox-mediated transcriptome
reprogramming, the ferredoxin-dependent availability of
NADPH and redox status of chloroplast thioredoxins may
modify chloroplast retrograde signaling and affect nuclear
gene expression (Rintamäki et al., 2009). In Arabidopsis, 286
nuclear genes were identified to be under the photosynthetic
redox control and 76 of these genes encoded products with
known functions, e.g., stress response (Fey et al., 2005).
Moreover, Fd2 localizes in stromules and therefore it could
reduce the redox-regulated transcription factors (TFs), including

those required for the expression of SA-dependent genes
(Fobert and Després, 2005; Wang et al., 2018).

CAROTENOID, UNSATURATED FATTY
ACIDS, AND TOCOPHEROL DERIVED
SIGNALING

In the chloroplast membranes, unsaturated fatty acids,
carotenoids, and tocopherols act as ROS quenchers and
their oxidation products can regulate defense responses.
Tocopherols transfer the stress signals outside the chloroplast,
possibly by influencing redox signaling in other organelles.
Recently, tocopherols were shown to access endoplasmic
reticulum (ER) via hemifused-membranes at plastid-ER contact
sites (Mehrshahi et al., 2014). Under stress, changes in the
content and composition of tocopherols modulate nuclear gene
expression, the profiles of SA, JA, ABA, and ET as well as the
formation of defense-related lipid peroxidation products. A link
between redox and hormone signaling mediated, respectively,
by γ-tocopherol and Ethylene Response Factors (ERFs) which
integrates ABA, JA, and ET response to infection, found in
vitamin E-deficient Arabidopsis mutant, likely represents a
mechanism of chloroplast to nucleus retrograde signaling
(Müller and Munné-Bosch, 2015; Allu et al., 2017). Altered
tocopherol composition in chloroplasts negatively influenced
Arabidopsis response to B. cinerea through enhanced lipid
peroxidation and delayed defense activation (Cela et al., 2018).

Apocarotenoids are the products of oxidative cleavage of
carotenoids. Interestingly, SA content increase in response to
excess light which inhibits ROS accumulation in chloroplasts is
dependent on apocarotenoid, β-cyclocitral which interferes with
the SA signaling by regulating the localization of NPR1 in the
nucleus (Hou et al., 2016).

Pathogens elicit the accumulation of oxylipins which are
the products of peroxidation of polyunsaturated fatty acids
(PUFA), and those with α,β-unsaturated carbonyls are reactive
electrophilic species (RES). The generation of oxylipins in
chloroplasts can activate defense signaling and has an impact
on gene expression (Farmer and Mueller, 2013). JA originated
form PUFA controls gene expression through CORONATINE-
INSENSITIVE 1 (COI1), JASMONATE-ZIM DOMAIN (JAZ)
proteins, and MYC TFs (Pieterse et al., 2009). RES signal
transduction involves the class II TGA TFs and is enhanced by
SA, known to inhibit JA signaling. Thus, JA and RES play distinct
roles in mediating plant-defense responses (Findling et al., 2018).
Moreover, oxylipins identified as signaling molecules, contribute
to defense as antimicrobial agents inhibiting pathogen spore
germination and growth (Prost et al., 2005).

The production of 1O2, the predominant ROS in chloroplasts,
can increase during pathogenesis favoring oxidative burst. PUFA
in thylakoid membranes may act as structural 1O2 scavengers
(Farmer and Mueller, 2013). The protective role of PUFA during
pathogenesis was shown in Arabidopsis where genetic removal
of triunsaturated fatty acids led to increased susceptibility to
B. cinerea (Mène-Saffrané et al., 2009). Moreover, in Arabidopsis–
P. syringae interaction, massive lipid oxidation is confined to
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Kuźniak and Kopczewski Chloroplasts in Defense Against Pathogens

plastid lipids and the HR-related PCD is preceded by 1O2-
dependent lipid peroxidation (Zoeller et al., 2012).

There is compelling evidence that tetrapyrrole signaling
contributes to abiotic stress tolerance (Larkin, 2016) but to the
best of our knowledge there are no data directly indicating its role
in plant–pathogen interactions.

CHLOROPLAST-GENERATED ROS IN
PLANT–PATHOGEN INTERACTIONS

Chloroplasts can perceive and propagate PTI signals generated
in the apoplast following pathogen recognition. Application of
flg22, a conserved peptide of bacterial flagellin, to Arabidopsis
leaves induces CAS (Calcium-Sensing Sensor)-mediated calcium
signaling in the chloroplast stroma. CAS mediated both the basal
defense responses (PTI) and HR (ETI) leading to downregulation
of photosynthesis-related genes and upregulation of the defensive
genes (Nomura et al., 2012). ROS production in chloroplasts was
linked to PAMP-induced downregulation of non-photochemical
quenching (NPQ) due to weaker accumulation of PSII protein
subunits. These PAMP-induced changes in redox balance prime
chloroplasts to respond with massive ROS burst upon recognition
of effectors during ETI (Göhre et al., 2012). Increased ETI-
related ROS contribute to HR-like cell death mediated by MAPK
and light-dependent ROS generation in chloroplasts is preceded
by inhibition of photosynthetic CO2 fixation (Liu et al., 2007;
Zurbriggen et al., 2009). Moreover, Arabidopsis plants in which
H2O2 generation at PSI was abolished were more susceptible to
P. syringae pv tomato mutant which lacks the ability to secrete
effectors, and so only elicits PTI. In this system the pathogenicity
of the mutant was rescued (Göhre et al., 2012).

The level of ferredoxin decreases under stress and functional
replacement of ferredoxin by a cyanobacterial flavodoxin confer
resistance to biotic stress in tobacco. These plants infected
with B. cinerea showed sustained photosynthetic electron flow,
decreased ROS accumulation and enhanced resistance to this
necrotroph which invasion is known to be facilitated by HR and
oxidative processes mediated by ROS (Govrin and Levine, 2000;
Rossi et al., 2017).

ROS-related signaling and the expression of defense require
fine-tuning of the prooxidant-antioxidant balance in chloroplasts
(Das and Roychoudhury, 2014). Pathogens could activate abiotic
stress tolerance mechanisms related to ROS managements to
promote virulence and plants defective in these systems and
overproducing ROS show increased resistance to pathogens
(Sowden et al., 2018). However, the effects depend on ROS
amount, timing, and the plant–pathogen interaction. For
example, during a non-host interaction of tobacco-Xanthomonas
campestris pv vesicatoria, ROS generated in chloroplasts were
essential for the development of HR but not for the induction
of pathogenesis-related (PR) genes, and JA and SA accumulation
(Zurbriggen et al., 2009). Moreover, the ROS homeostasis is
coordinated by NO and the interplay of H2O2 and NO affects
the immune response. The interaction of these redox molecules
is required for HR, NO inhibits NADPH oxidase and PCD,
and NO-mediated modifications of ascorbate peroxidase and
other antioxidant enzymes have regulatory functions under biotic

stress (Frederickson Matika and Loake, 2014; Saxena et al.,
2016). Moreover, nitrosoglutathione (GSNO), a NO-derived
molecule, facilitates the oligomerization of NPR1 through thiol
S-nitrosylation (Lindermayr et al., 2010; Corpas et al., 2013).

Infected plants experience episodes of reduced CO2
availability to photosynthesis because both foliar pathogenesis
and resistance responses can result in stomata closure
(Melotto et al., 2008; Grimmer et al., 2012). Consequently,
photorespiration is increased and the metabolic integration
of chloroplasts with mitochondria and peroxisomes via
this pathway contributes to defense (Sørhagen et al., 2013).
Photorespiration provides photoprotection by dissipating excess
excitation energy in the absence of sufficient CO2 as an electron
acceptor and reducing ROS generation as well as contributes
to redox homeostasis during biotic challenge (Reumann and
Corpas, 2010; Eisenhut et al., 2017). Elevated activity of the
photorespiratory enzyme, serine:glyoxylate aminotransferase
likely confers pathogen resistance in melon by stimulating
glycolate oxidase and the intraperoxisomal production of H2O2,
and thereby activating the immune response (Taler et al., 2004).
Moreover, H2O2 originated in chloroplasts and peroxisomes
can elicit different responses, and H2O2 from peroxisomes
stimulates stress tolerance whereas that from chloroplasts
induces early defense signaling (Sewelam et al., 2014). In
Arabidopsis overexpressing glycolate oxidase in chloroplasts
and the peroxisomal catalase deficient mutant cat2-2, producing
increased amounts of H2O2 from the respective organelles, only
signals generated by H2O2 in chloroplasts enhanced resistance to
Colletotrichum higginssianum (Schmidt et al., 2020).

CHLOROPLASTS AS TARGETS FOR
PATHOGEN MANIPULATION

Pathogens modify chloroplast functions for their benefit. During
interactions with hemibiotrophs, this mechanism often relays
on suppressing redox-linked SA pathway by activating the
antagonistic JA signaling (Robert-Seilaniantz et al., 2011).
Ralstonia solanacearum uses type III effector proteins called
Rips (Ralstonia-injected protein) to induce JA accumulation by
releasing linolenic acid with its lipase activity. Simultaneously,
Rips promote bacterial pathogen growth by suppressing SA
and SA-dependent signaling in infected cells (Nakano and
Mukaihara, 2018). Coronatine, P. syringae phytotoxin with
structural similarity to JA which promotes bacterial entry and
growth, targets photosynthesis and modulates ROS balance in
chloroplasts (Ishiga et al., 2009). The P. syringae toxin syringolin
and the Xanthomonas campestris effector XopJ interfere with
the degradation of NPR1 which redox-dependent turnover is
required for SA signaling (Büttner, 2016).

Sclerotinia sclerotiorum induces stomata opening at the
early stages of infection. Oxalic acid secreted by this fungus
acidifies the infected tissues, stimulates NPQ by enhancing the
conversion of violaxanthin to zeaxanthin and attenuates ROS
generation, affecting chloroplast redox status. The dysfunction
of the xanthophyll cycle limits ABA biosynthesis by decreasing
the violaxanthin precursor for ABA synthesis in chloroplasts.
This affects defense responses such as ROS induction and callose
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TABLE 1 | Chloroplast factors involved in plant immune response.

Factor Role in plant immunity References

Photosynthesis-
derived reactive
oxygen species
(ROS)

Contribute to pattern-triggered immunity (PTI) and effector triggered immunity (ETI) and chloroplasts are
the main source of ROS during hypersensitive response. Chloroplast ROS-mediated retrograde
signaling leads to the induction of defense gene expression. ROS generation and signaling in
chloroplasts follows ROS bursts in the apoplast triggered by pathogen recognition. The signaling
specificity of ROS depends on the chemical characteristics and the ROS-antioxidants balance in
chloroplast

Zurbriggen et al., 2009; Göhre et al.,
2012; Nomura et al., 2012;
Mignolet-Spruyt et al., 2016

Plastoquinone Regulates defense signaling and gene expression through O2
− and H2O2 generation. Mediates ROS

balance and affects the activities of antioxidant enzymes. Is linked with abscisic acid (ABA)-regulated
defense by contributing to ABA biosynthesis

Rock and Zeevaart, 1991;
Maciejewska et al., 2002;
Adamiec et al., 2008; Pfannschmidt
et al., 2009; Nosek et al., 2015;
Camejo et al., 2016

Ferredoxin Determines the redox status of NADPH and ferredoxin-dependent thioredoxins involved in defense
signaling. The increased susceptibility to biotrophic and hemibiotrophic pathogens of
ferredoxin-knockout mutants relays on suppressing salicylic acid (SA) pathway and activating the
antagonistic jasmonic acid (JA) signaling; Ferredoxin localized in stromules could be involved in
redox-mediated transcriptome reprogramming required for activation of immune response

Robert-Seilaniantz et al., 2011; Wang
et al., 2018

NADPH Chloroplast-produced NADPH is involved in redox signaling via NTRC and used in the regeneration of
ascorbate and glutathione by NADPH-dependent enzymes in the ascorbate-glutathione cycle which is
implicated in regulating disease resistance

Kuźniak and Skłodowska, 2005;
Potters et al., 2010; Hanke and Mulo,
2013

NADPH-dependent
thioredoxin
reductase (NTRC)

The importance of the NTRC in plant immunity is shown by elevated JA signaling and enhanced
susceptibility of the ntrc Arabidopsis mutant to non-host pathogens

Ishiga et al., 2016

Thioredoxin Trx-h NtTRXh3 protein localized in chloroplasts is involved in tobacco resistance to viruses by contributing to
ROS scavenging and cellular reducing conditions. The redox status of thioredoxins affects nuclear gene
expression by modifying chloroplasts retrograde signaling

Rintamäki et al., 2009; Sun et al., 2010

Tocopherols Involved in the antioxidant protection of chloroplast membranes and in the transfer of stress signals
outside the chloroplast via plastid- endoplasmic reticulum contact sites
Tocopherols content and composition modulate nuclear gene expression, the profiles of defense
hormones and PUFA-derived defense products

Mehrshahi et al., 2014; Müller and
Munné-Bosch, 2015; Allu et al., 2017;
Cela et al., 2018

Apocarotenoids Chloroplast-generated signaling molecules produced by carotenoid cleavage link chloroplast activity
and nuclear gene expression. They interfere with SA signaling by regulating the localization of NPR1, a
redox-sensitive transcription co-activator, in the nucleus

Bobik and Burch-Smith, 2015;
Brunkard et al., 2015; Hou et al., 2016

Polyunsaturated
fatty acids (PUFA)

Biosynthetic precursors of JA which is central to modulating defense against necrotrophs, participates
in systemic acquired resistance and usually antagonizes SA-mediated defense
Independently of being the precursors of JA, PUFA are sinks for ROS in chloroplasts

Mène-Saffrané et al., 2009; Farmer
and Mueller, 2013

Oxylipins Reactive electrophilic species signaling molecules interfering with TGA transcription factors-mediated
SA pathway which also exhibit antimicrobial activity

Prost et al., 2005; Findling et al., 2018

Calcium sensor
protein (CAS)

Thylakoid-localized calcium-binding protein which connects chloroplasts to immune responses
triggered during PTI and ETI and regulates the biosynthesis of SA via the chloroplast isochorismate
pathway. CAS is involved in PAMP-induced defense gene expression, including SA biosynthesis genes,
through 1O2-mediated retrograde signaling. SA generally mediates defense against
biotrophic/hemibiotrophic pathogens and systemic acquired resistance

Nomura et al., 2012; Bobik and
Burch-Smith, 2015

deposition which increases plant susceptibility to Sclerotinia
(Zhou et al., 2015; Zeng et al., 2020).

P. syringae effector HopN1 targets the oxygen-evolving
complex of PSII, suppresses cell death, attenuates ROS
production, callose deposition, and the formation of defense
signals in Arabidopsis chloroplasts (Rodríguez-Herva et al.,
2012). HopI1, the P. syringae pv maculicola effector localizes to
chloroplasts, suppresses SA accumulation, and affects thylakoid
stacking (Jelenska et al., 2007). It also recruits cytosolic Hsp70 to
chloroplasts suppressing the function of cytosolic Hsp70 in basal
defense (Jelenska et al., 2010). Chloroplast proteins identified
as targets of virus effectors are components of the PETC (e.g.,
ferredoxin, Rieske Fe–S), the PSII oxygen-evolving complex and
Rubisco, which supports the chloroplast role in plant defense
(Bobik and Burch-Smith, 2015).

CONCLUSION

The organelle–organelle contacts and inter-compartment
communication initiated at the plasma membrane on pathogen
recognition are essential for defense. Chloroplasts have emerged
as regulatory hubs connecting the primary metabolism and
plant defense. They participate in PTI and ETI through
ROS/redox systems, retrograde signaling, and phytohormones
(Table 1). Chloroplasts are the source and the target of redox
regulations which are integrated to the interorganellar signaling
network and contribute to the outcome of the plant immune
response. Therefore, our integrated understanding of the redox-
mediated functions of chloroplasts in photosynthesis and plant
immunity will be highly relevant in developing new crops with
broad-spectrum resistance to pathogens.
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