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To achieve rapid, accurate, and non-destructive diagnoses of nitrogen deficiency in
cold land japonica rice, hyperspectral data were collected from field experiments to
investigate the relationship between the nitrogen (N) content and the difference in the
spectral reflectance relationship and to establish the hyperspectral reflectance difference
inversion model of differences in the N content of rice. In this study, the hyperspectral
reflectance difference was used to invert the nitrogen deficiency of rice and provide
a method for the implementation of precision fertilization without reducing the yield of
chemical fertilizer. For the purpose of constructing the standard N content and standard
spectral reflectance the principle of minimum fertilizer application at maximum yield was
used as a reference standard, and the acquired rice leaf nitrogen content and leaf
spectral reflectance were differenced from the standard N content and standard spectral
reflectance to obtain N content. The difference and spectral reflectance differential were
then subjected to discrete wavelet multiscale decomposition, successive projections
algorithm, principal component analysis, and iteratively retaining informative variables
(IRIVs); the results were treated as partial least squares (PLSR), extreme learning
machine (ELM), and genetic algorithm-extreme learning machine (GA-ELM). The results
of hyperspectral dimensionality reduction were used as input to establish the inverse
model of N content differential in japonica rice. The results showed that the GA-ELM
inversion model established by discrete wavelet multi-scale decomposition obtained the
optimal results in data set modeling and training. Both the R2 of the training data set
and the validation data set were above 0.68, and the root mean square errors (RMSEs)
were <0.6 mg/g and were more predictive, stable, and generalizable than the PLSR and
ELM predictive models.

Keywords: rice, hyperspectral reflectance difference, nitrogen deficiency, data downscaling, ELM

INTRODUCTION

Rice is one of the world’s three major food crops, ranking second in terms of cultivated area
and production. Nearly half of the world’s population depends on rice for food. Globally, Asia,
Africa, and Latin America account for 98% of the world’s rice cultivation (Dong et al., 2020).
Asia is responsible for 90% of the world’s rice production, and China is the world’s largest rice
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producer (Wan et al., 2020). As one of China’s major food crops,
rice has a wide distribution and large cultivation area (Luo et al.,
2020). The use of modern scientific and technological means
to achieve high, stable rice yields to ensure food security has
become a hotspot of scholarly research (Kawamura et al., 2018;
Nutini et al., 2018).

Nitrogen is an important nutrient that affects rice yield
(Jiang et al., 2020). The proper application and testing of
nitrogen fertilizer to improve fertilizer utilization can improve
rice yield and reduce the negative effects of fertilizer on the
environment (Zhou et al., 2020). With the development of
science and technology, an increasing amount of nitrogen
nutrition testing methods have been developed. It is of
strategic importance for agricultural development to choose an
efficient, non-destructive, and accurate nitrogen nutrition testing
method to guide the science-based and reasonable application
of fertilizer in rice production systems (Asai et al., 2009;
Peng et al., 2009).

Cold land japonica rice is characterized by a slow nutrient
release due to low temperatures in the early spring and low
ambient and soil temperatures after rice planting. Among the
various nutrients, nitrogen has the greatest impact on the growth,
development, and yield of rice; it also plays a multifaceted
role in maintaining and regulating the physiological functions
of rice (Alam et al., 2020; Ding et al., 2020; Sun et al.,
2020). Nitrogen deficiency in rice hinders the synthesis of
chlorophyll and proteins, thus reducing photosynthesis and
affecting dry matter production (Wang et al., 2020). When
rice has too much nitrogen, ineffective cuttings increase and
the population is prone to overgrowth, resulting in poor
light transmission, reduced fruiting rate, delayed maturation,
and the increased occurrence of pests, disease, and late fall
(Ali et al., 2017).

In recent years, with the development and application of
hyperspectral technology, there have been great strides in
agricultural information technology for monitoring crop growth
and estimating yields, significantly improving the scientific
nature of crop production dynamic detection and management
decisions (Zhang et al., 2011, 2015, 2016). During crop
development, changes in nitrogen nutrient levels cause changes
in leaf color, chlorophyll level, and moisture content that lead
to hyperspectral changes, which is the theoretical basis for
nitrogen estimation using hyperspectral technology. Yu et al.
(2016) combined the radiative transfer model and Gaussian
process regression model to determine the crop leaf chlorophyll
content and effectively monitored the nitrogen nutrition of
rice. Due to the high data dimension of the hyperspectral
information, it is usually necessary to perform a downscaling
of the hyperspectral data before using the downscaled results
to build a quantitative inversion model with the nitrogen
content (Chu et al., 2014). In order to accurately estimate
the vertical distribution of nitrogen in the leaves of rice
plants, He et al. (2020) constructed a vertical distribution
model of leaf nitrogen content using hyperspectral data by
the vegetation index method combined with the height of rice
plants to provide a technical basis for the vertical distribution of
nitrogen in rice.

Due to the special soil background, climate conditions, and
growth period in cold regions, it is necessary to find adaptable
models to assess rice growth and nutrient availability (Yu et al.,
2017; Sun et al., 2020). The support vector regression based
on the binary particle swarm optimization algorithm (BPSO-
SVR) method was used to estimate the nitrogen content of
rice at different growth stages using the cold land japonica
rice canopy hyperspectral reflectance, which can be effectively
used to monitor the nitrogen status of rice (Tan et al., 2018).
Artificial neural networks (ANNs) are learning, fault-tolerant,
and real-time, and have unparalleled advantages for fitting non-
linear problems. ANNs can provide effective technical and
theoretical support for many fields. Current research on ANNs in
hyperspectral inversion of crop nitrogen is also increasing (Zhu
et al., 2017; Li et al., 2018; Wen et al., 2019; Yang et al., 2019).

Many researchers have studied the inversion of rice nitrogen
content using hyperspectral techniques, but the nitrogen content
alone cannot directly guide the quantitative and accurate
fertilization of rice in the production process (Din et al., 2019; Ge
et al., 2019; Li et al., 2019; Zhang et al., 2019; Liu et al., 2020; Wang
et al., 2020). Ulrich (1952) was the first to introduce the concept
of critical nitrogen concentration, or the minimum nitrogen
concentration required for a crop to reach maximum dry matter,
and developed a dilution model of critical nitrogen concentration
as a power function using plant dry matter and plant nitrogen
concentration (Linquist et al., 2013; Zhao et al., 2016). With the
development of research on rice growth and nitrogen nutrition,
some researchers have shown that the nitrogen content of plants
decreases gradually as the plants grow and develop, even at
adequate nitrogen levels, and that this trend eventually affects rice
yield (Jalloh et al., 2009; Zhang et al., 2009; Ye et al., 2013). In
the early reproductive stage, rice plants are independent of each
other and there is no competition for light between rice plants.
With the increase of plant biomass, the decrease of nitrogen
concentration is not obvious, so the nitrogen concentration in
the early reproductive stage of rice is relatively stable. However,
as the amount of nitrogen applied increases, the leaf area index,
biomass, and other indicators related to nitrogen uptake in rice
also increase, which results in a situation where the nitrogen
content varies with biomass while the nitrogen concentration is
the same (Prasanna et al., 2012; Aasen et al., 2014; Arai-Sanoh
et al., 2014; Pittelkow et al., 2014; Geng et al., 2015). Some
studies have guided rice fertilization by constructing different
nitrogen concentration curves, but different regions and varieties
all need to construct separate critical nitrogen concentration
dilution curves to better guide rice fertilization, and critical
nitrogen concentration curves are cumbersome to construct and
require strong agricultural knowledge to establish (Matsunami
et al., 2009; Zeng et al., 2012; Qin et al., 2013; Zhao et al., 2015;
Wang and Peng, 2017).

To address the current scientific need, we used hyperspectral
reflectance information to construct a model and theoretical
reference for the difference in hyperspectral reflectance of
different rice leaves and the corresponding difference in the
nitrogen content to establish a rice nitrogen difference inversion
model that will support improved implementation of accurate
fertilization practices in rice cultivation in cold regions.
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MATERIALS AND METHODS

Study Area and Experimental Details
The experiments were conducted in June−September 2018 and
2019 at Liutianhe Village (123◦63′E, 42◦01′N), Qingshuitai Town,
Shenyang New District, Shenyang, Liaoning Province, China.
The tested rice variety was “Gengyou 653.” There were four
nitrogen (N) fertilizer gradient treatments in the test field: N0,
N1, N2, and N3. N2 was the local standard N application rate;
the N3 and N1 experimental application rates were increased
and decreased by 50% of N2, respectively. The four different
N application rates were N0 (without N), N1 (50 kg/ha), N2
(100 kg/ha), and N3 (150 kg/ha). Each treatment was replicated
four times for a total of 16 test plots. The mass fractions of total
N and quick-acting N in 0–0.5 m tillage soil in the test field were
154 and 104.032 mg/kg, respectively, and the rest of the field is
managed under high-yield cultivation. Data were collected at the
rejuvenation, tillering, and tasseling stages. A total of 259 valid
samples were obtained, of which 189 groups were training sets
and 79 groups were validation sets (as shown in Table 1).

Data Acquisition
Measurement of Hyperspectral Reflectance of Rice
Leaves
We used a leaf clip (model A122325, manufacturer ASD
Inc.). The incidence angle of light was 0◦ from normal. The
main measurement was the middle position of the leaf, and
10 measurements per leaf were averaged as the hyperspectral
reflectance of that leaf. The hyperspectral reflectance calibration
was performed every 5 min during the measurement. The blade
clips were on a black background to ensure reproducibility in the
acquisition of hyperspectral reflectance data from rice leaves.

Measurement of N Deficiency in Rice Leaves
Rice was destructively sampled in each plot, brought back to the
laboratory, and all of the fresh leaves from the point were cut
off and placed in an oven at 105◦C for 30 min and dried to a
constant amount at 65◦C. The rice was weighed and crushed, and
the ground powder was placed into a labeled self-sealing bag for
testing the N content of the blades (N, mg/g) using the traditional
Kjeldahl method for N determination.

The inversion model of N deficiency in cold land japonica rice
is based on the construction of a database of differential spectral
reflectance and differential N content, and the formulation of
standard spectral reflectance and standard N content is key to the
construction of the database. Since the objective of this study was
to provide a reference for accurate fertilizer application without
yield loss, the model is based on the principle of applying a
critical amount of N fertilizer that is constant with increasing N

fertilizer application, using the standard hyperspectral reflectance
to ascertain the standard plant N content.

During rice harvest, a square frame made of PVC pipe with
a side length of 1 m was randomly placed into the plot to be
measured to calculate the total number of holes of rice within
1 m2, and then calculate the effective panicle number of rice
per hole, and finally calculate the grain number per ear and the
mass of 1,000 grains. As shown in Table 2, the rice fields with
N2 application had the highest yield with 387.15 kg/667 m2.
According to the principle of highest yield, the plots with N2
application were defined as standard fields, the average of all of
the spectra collected in the plots was defined as standard spectra,
and the average N content in the plots was defined as the standard
N content. The difference between the N content of rice leaves
collected from non-standard plots and the standard N content
was calculated to determine the N deficiency in the rice leaves.

Obtaining the Difference of Hyperspectral
Reflectance
After acquiring the hyperspectral reflectance of rice leaves,
the difference between the spectral reflectance and the
standard spectral reflectance of rice leaves collected from
non-standard plots was used to determine the difference in
the spectral reflectance. The spectral reflectance difference is
shown in Figure 1.

Hyperspectral Differential Data Reduction Method
The full-band hyperspectral differential data contain a lot of
redundant information. If the full hyperspectral differential was
used as the input in the modeling process, the model error
increased and the inversion was not effective. Therefore, feature
extraction of hyperspectral difference information was needed
to reduce the data dimension and extract useful hyperspectral
difference feature data from the high-dimensional information as
input data for building inverse models.

In this study, we used the discrete wavelet multi-scale
decomposition (DWMD), principal component analysis
(PCA), successive projections algorithm (SPA), and iteratively
retaining informative variables (IRIV) for spectral reduction.
Hyperspectral data reduction mainly includes hyperspectral
feature extraction and feature band selection. The PCA is a
commonly used method for hyperspectral feature selection.
The DWMD discretizes the scales and displacements in the
continuous wavelet transform and combines them with the
distribution of the wavelet signal energy on each scale to
compress the spectral signal dimensions, reduce the number
of characteristic bands, and highlight the spectral profile
information. The SPA and IRIV are commonly used methods for
hyperspectral feature band selection.

TABLE 1 | Statistical table of N content in rice leaves.

Sample set Samples no. Minimum value (mg·g−1) Maximum value (mg·g−1) Mean value (mg·g−1) Standard deviation (mg·g−1)

Total 259 1.060 4.874 2.897 0.926

Training set 189 1.060 4.874 2.926 0.935

Validation set 70 1.125 4.689 2.822 0.899
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TABLE 2 | Statistical table of rice yield.

Nitrogen level (kg·hm−2) Total Effective number of spikes Effective number of grains Yield (kg·667 m−2)

0 15.8 11.00 90.4 261.99

50 16.2 12.85 102.4 342.66

100 16.0 14.60 104.4 387.15

150 15.9 13.46 102.5 333.60

FIGURE 1 | Spectral reflectance difference.

Discrete Wavelet Multi-Scale Decomposition Method
The DWMD can accurately decompose the spectral signal in
the time domain and frequency. The domain for leaf spectral
information, or the transformation of the signal in the time
domain, is equivalent to the transformation of the spectral data
in the spectral band. Thus, the wavelet basis function can be
expressed as a degree decomposition:

φa,b (λ) =
1
√
a
φ

(
λ− b
a

)
a, b ∈ R; a > 0;∫

+∞

−∞

φ (λ) dλ = 0 (1)

where a is the telescoping factor, b is the panning factor, λ is an
independent variable, and the function mean is 0.

The discrete wavelet transformation is the discrete form of the
decomposition scale and panning, and it is a one-dimensional
input signal. The discrete wavelet transform coefficient Wj,k is
the approximation of the base function to the signal after discrete
scaling and panning, and can be expressed by Eq. 2:

Wj,k =
(
f (λ) , φj,k (λ)

)
(2)

where the wavelet function φj,k (λ) can be calculated by Eq. 3:

φj,k (λ) = 2
−j
2 φ

(
2−jλ− K

)
(3)

where j and k are the jth decomposition and kth wavelet
coefficients, respectively, and the scale of discrete wavelet

variation is usually taken as a binary sequence where j = 2,4,8. . . to
make the calculation more efficient. Multi-scale decomposition
of the signal is based on a discrete wavelet transform algorithm,
the decomposed wavelet coefficients are the approximate
coefficients for recording low frequency signals, and the detail
coefficients are for recording high frequency detail signals.
The wavelet approximation coefficient results in the input to
the inverse model.

Successive Projections Algorithm
A successive projections algorithm is a forward variable selection
algorithm that minimizes the co-linearity of vector space and is
now widely used in biomedical imaging, computed tomography,
signal processing, and spectroscopy. The SPA algorithm is
divided into three stages. In the first stage, several subsets of
alternative wavelength variables with the smallest covariance are
screened out. Assuming that the initial variable position, k(0), and
the number of variables, or N, have been given, the specific steps
of this stage are as follows:

Step 1: Before the first iteration (n = 1), assign column j of
the training set spectral matrix Xcal to j = 1. . . , J.
Step 2: Make S the set of all unselected wavelength variables,
that is, S = {j| 1 ≤ j ≤ J and j {k(0). . . , k(n−1)}}.
Step 3: For all j ∈ S, compute the projection on the subspace
orthogonal to Xk(n−1):

PXj = Xj −
(
XT
j Xk (n−1)

)
X(n−1)

(
XT
k Xk (n−1)

)
Xk (n−1))

−1

(4)
where P is the projection operator.
Step 4: Record the position of the wavelength with the
largest paradigm of projected value:

k (n) = arg
(
max

∣∣∣∣PXj
∣∣∣∣ , j ∈ S

)
(5)

Step 5: Make Xj = PXj, j ∈ S.
Step 6: Make n = n+ 1If n < N then return to step 2.
End: Obtain N alternative wavelength positions: {k(n); n =
0, . . . , N − 1} .

The number of projection operations performed during the
selection process is (N − 1)( J − N/2).

In the second stage, multivariable linear regression models
were built using variables from each subset separately,
and the smallest subset of the root mean square error
(RMSE) was selected.

In the third stage, stepwise regression modeling was
performed on the subset selected in the second stage to obtain a
set with a smaller number of variables, that is, one with minimal
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loss of predictive accuracy. The wavelength variable in this set is
the selected effective wavelength.

Principal Component Analysis
Principal component analysis recombines the original variables
into a new set of several unrelated composite variables summed
to reflect as much information as the original variables for
the possible statistical method. PCA is an attempt to replace
the original variables with a new set of unrelated composite
indicators by regrouping the original set of indicators with
a certain degree of correlation (e.g., P indicators). The usual
mathematical treatment is to combine the original P indicators
in a linear fashion as a new composite indicator. The most
classic approach is to express this in terms of the variance of F1
(the first linear combination selected, that is, the first composite
indicator); thus, the larger the Va (rF1), the more information
that F1 contains. Therefore, the F1 selected in all of the linear
combinations should be the one with the highest variance, so
F1 is called the first principal component. If the first principal
component is not enough to represent the information of the
original P indicator, then F2 may be used to choose the second
linear combination, in order to effectively reflect the original
information. The existing F1 information does not need to appear
in F2 again; expressed in mathematical language this is the
requirement of Cov (F1,F2) = 0, then F2 is called the second
principal component, and so on can be used to construct the
third, fourth,. . . , P, or principal component.

Iteratively Retaining Informative Variables
The IRIV algorithm uses random combinations of variables
and takes full account of the interactions between variables
while generating a binary matrix of random combinations of all
of the variables (random combinations of behavioral variables,
listed as number of variables) on the basis of a binary matrix
rearrangement filter. A partial least squares model is then built
based on each row of the matrix (i.e., random combinations of
variables) separately, and evaluates the model effect of different
random variable combinations using a cross-validation root
mean square error (RMSECV). Based on the model clustering
analysis method, the RMSECV averages for each wavelength
variable are calculated with and without this variable, and the
difference in mean values between the difference of mean values
and the non-parametric Mann-Whitney U test P-values are
obtained to determine the importance of this variable.

Inverse Modeling Methods
In this study, we used three methods to test the accuracy and
reliability of the model and to select the optimal inverse model
of rice leaf N deficiency based on the decision coefficient R2 and
RMSE of the model: the partial least squares regression (PLSR),
extreme learning machine (ELM), and genetic algorithm-extreme
learning machine (GA-ELM).

ELM is widely used in many fields due to its fast learning
speed and small training error. However, the algorithm randomly
generates the connection weights between the input and implicit
layers and the thresholds of the implicit layer neurons, and no
adjustment is required during the training process, resulting

in poor stability and generalization of the inverse model built
by the algorithm. In this study, a genetic algorithm based on
the principles of evolutionary superiority, natural selection, and
survival of the fittest was used to optimize the ELM.

Specific implementation steps for genetic algorithm
optimization training are detailed below.

(1) An initial population is generated randomly Xm×l, where
m is the initial population number, individual length l represents
both the number of gene values for each individual and the initial
weight of a neural network, and the gene values in an individual
correspond to the initial weight of the neural network one to
one. In this study, real number coding was used to encode the
gene values, which avoids the decoding process and improves the
training efficiency:

l = s1s2 + s2s3 + s2 + s3 (6)

where l is the individual length, s1 is the number of input layer
nodes, s2 is the number of implicit layer nodes, and s3 is the
number of output layer nodes.

(2) The genetic algorithm sorts individuals in the initial
population with larger adaptation values into subpopulations to
continue optimization training by calculating the output error
value Ei and the adaptation value fi for each individual in
the initial population, and evaluating the size of the individual
adaptation value fi:

fi =
1

1+ Ei
(7)

(3) In each subpopulation, the probability that the i individual
selected will perform a crossover or mutation operation is pi, and
whether this individual needs to perform crossover or genetic
operation is judged by the adaptive function of crossover rate pc
and mutation rate pm, and the value of pc and pm will change
adaptively according to the size of the adaptive value fi of the
individual. This avoids the problems of search randomization,
slower search speed, loss of important genes of antibodies, and
reduced probability of generating new individuals caused by pc
and pm values that are too high or too low, keeping the population
perpetually diverse:

pi = fi/
m∑
i=1

fi (8)

pc =


kc
(
fmax − fc

)(
fmax − f̄

) , fc ≥ f̄

kc, fc < f̄

(9)

pm =


km
(
fmax − fm

)(
fmax − f̄

) , fm ≥ f̄

km, fm < f̄

(10)

where kc and km are all real numbers <1, fc is the individual fit
value to be crossed, fm is the individual fit value to be mutated,
fmax is the upper bound of the fit value fi, and f̄ is the mean of
the fit value fi. The ELM flowchart based on the genetic algorithm
(GA) optimization is shown in Figure 2.
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FIGURE 2 | Flow chart optimization of ELM based on GA.

In this study, the RMSE and coefficient of determination (R2)
were used as evaluation criteria for assessing the accuracy of the
hyperspectral remote sensing inversion model.

RESULTS AND ANALYSIS

Selection of Hyperspectral Features and
Characteristic Bands
PCA Extracts Hyperspectral Difference Features
In this study, five principal components of hyperspectral
reflectance difference were extracted by PCA in the range of
400–1,000 nm. These five principal components were the input
variables of the model.

Extraction of Hyperspectral Difference Features by
DWMD
The determination of the wavelet master function and the
optimal decomposition scale is one of the key aspects of the
wavelet transform for feature extraction. If the decomposed
wavelet information can both reflect the profile characteristics of
the spectrum and achieve the purpose of data compression, then
the wavelet master function and the decomposition scale can be
considered the best choice.

For the difference spectra, discrete wavelet transformations
were applied to the db10, coif5, and sym8 wavelet functions on
two j (j = 1,2,. . . ,12) scales and were recorded as scales 1 − 12
(levels 1 − 12). After 12 levels of DWMD of the spectra, the
number of approximation coefficients obtained from each layer
classification was extracted, and the curve of the proportion of
the number of decompositions with the number of layers was
obtained, as shown in Figure 3A. The wavelet approximation
signal characterized the profile of the spectrum, the signal
reconstruction of each layer of approximation coefficients under
different wavelet parent functions was performed, and the
correlation coefficients of each reconstructed spectral signal with
the original spectral signal were calculated as shown in Figure 3B
and Table 3.

As shown in Figure 3, in the decomposition of the three
wavelet mother functions in the 7–12 layers, the correlation
coefficient change law was consistent with the other two
types of wavelet mother functions as a whole. When the
number of decomposed layers reached 10, the number of
approximate coefficients eventually stabilized. Compared with
the other two classes of parent functions, coif5 had the
highest number of wavelet approximation coefficients and
the weakest data compression, while sym8 had the strongest
wavelet parent function data compression. As can be seen
in Table 3, the sym8 wavelet parent function had the
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FIGURE 3 | Compression ratio and correlation coefficient under different wavelet generating functions. (A) Variation of compression ratio with the number of
decomposed layers. (B) Variation of correlation with the number of decomposition layers.

TABLE 3 | Number of decomposition level under different wavelet generating functions.

db10 coif5 sym8

Decomposition
level

Relevance Approximate
number

Compression
ratio

Relevance Approximate
number

Compression
ratio

Relevance Approximate
number

Compression
ratio

1 0.952 309 51.500 0.864 314 52.333 0.848 307 51.167

2 0.804 164 27.333 0.760 171 28.500 0.769 161 26.833

3 0.686 91 15.167 0.631 100 16.667 0.687 88 14.667

4 0.639 55 9.167 0.625 64 10.667 0.638 51 8.500

5 0.609 37 6.167 0.611 46 7.667 0.614 33 5.500

6 0.560 28 4.667 0.569 37 6.167 0.568 24 4.000

7 0.397 23 3.833 0.435 33 5.500 0.437 19 3.167

8 0.340 21 3.500 0.305 31 5.167 0.269 17 2.833

9 0.291 20 3.333 0.294 30 5.000 0.318 16 2.667

10 0.278 19 3.167 0.286 29 4.833 0.306 15 2.500

11 0.279 19 3.167 0.280 29 4.833 −0.171 15 2.500

12 0.277 19 3.167 0.277 29 4.833 −0.266 15 2.500

FIGURE 4 | Corresponding spectral band.

lowest number of approximation coefficients and the highest
correlation coefficients after decomposition at the 10th level.
Therefore, considering the data compression and the ability

to preserve the original spectrum, we determined that the
sym8 wavelet master function works best when decomposed at
layer 10.

SPA Selection of Valid Feature Bands
A continuous projection algorithm was used for the selection
of spectral signature bands for rice leaf hyperspectral difference
calculation. As shown in Figure 4, the optimal number of spectral
bands was determined to be five based on the internal cross-
validation RMSECV values of the correction set.

As can be seen in Figure 3, five characteristic bands were
selected from the 400- to 1,000-nm bands using SPA: 421, 431,
729, 796, and 950 nm. The difference in reflectance at the selected
feature band was used as an input to the inverse model.

IRIV Selection of Valid Feature Bands
In this study, 599 spectral variables of the whole band were
divided into 30 intervals according to 20 bands using a synergy
interval PLS method. Four interval combinations were set, the
RMSE minimum value was selected by 10-fold cross validation
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FIGURE 5 | IRIV characteristic band interval.

to determine the optimal joint interval, and the combination of
the 5th, 9th, 10th, and 16th intervals was finally determined as
the optimal joint interval with corresponding wavelength regions
of 481–500 nm, 561–580 nm, 581–600 nm, and 701–720 nm,
respectively. Figure 5 shows the position of m in the full band
spectrum. Full-band spectra were reduced from 599 to 80 spectral
variables by the synergy interval PLS method, and then reduced
to 44 variables by five iterations of IRIV and the elimination of
8 variables in reverse, resulting in 36 characteristic variables. The
characteristic wavelengths are as follows: 481, 482, 484, 485, 486,
487, 488, 489, 492, 493, 494, 497, 498, 499, 500, 562, 564, 566, 581,
583, 585, 587, 589, 590, 594, 595, 596, 599, 600, 712, 713, 714, 716,
717, 719, and 720 nm.

Several of the above 36 variables belonged to adjacent bands,
and band was highly significant in a correlation test (P = 0.01;
correlation coefficients were all >0.9). One goal of this study was
to remove wavelengths that are correlated with low differences in
N concentration; we ultimately retained the wavelengths of 500,
566, 600, and 712 nm as those that are strongly correlated with N
concentration in the modeling process.

GA-ELM Inversion Model for Rice N Deficiency
We downscaled the obtained spectral reflectance of the difference
using SPA, PCA, DWMD, and IRIV. The results of the four
methods were used as the input to the model, with the
actual measured N deficiency of rice leaves as the output. The
parameters of GA-ELM were determined by repeated tests: the
activation function is Sigmoid, the output function is Purelin, the
practice function is trainlm, the crossover probability = 0.5, the
variance probability = 0.5, and the decision coefficient R2 and
the RMSE were used as evaluation criteria for the model. The
modeling results are shown in Figure 6.

As shown in Figure 6, the results obtained from the four
dimension-reduction methods were used as an input in GA-
ELM inversion modeling, and the inversion modeling results
were consistent. The R2 of training set and verification set
were both above 0.555, and RMSE was below 0.8 mg/g. Among
them, the GA-ELM model with the approximation coefficients of

wavelet decomposition obtained by discrete wavelet multiscale
decomposition had the highest accuracy with an R2 for the
training set and verification set of 0.7106 and 0.6828, respectively,
while the RMSE was 0.5096 and 0.55591 mg/g, respectively. The
accuracy of the GA-ELM model established using the result of
dimension reduction of IRIV was good. The R2 of the training
set and validation set was 0.6543 and 0.5739, respectively, and
the RMSE was 0.6543 and 0.5066 mg/g, respectively. The GA-
ELM model built with PCA dimension reduction results had the
lowest accuracy. The R2 of the training set and validation set
was 0.5523 and 0.3794, respectively, and the RMSE was 0.6267
and 0.7100 mg/g, respectively. The precision of the GA-ELM
model built with the results of dimension reduction of SPA was
between the two; the R2 of the training set and validation set was
0.6052 and 0.5969, respectively, and the RMSE was 0.5863 and
0.5972 mg/g, respectively. Thus, GA-ELM improves the stability
and prediction ability of the model.

Comparison With Other Inversion Models
We compared the GA-ELM with the PLSR and ELM models,
which are all widely used in hyperspectral inversion models.
The results are shown in Figures 7, 8. The same characteristic
parameters as the GA-ELM model were selected as inputs, and
the model parameters were adjusted to the optimal state.

From Figures 7, 8, it can be seen that among the PLSR
prediction model test results of different dimension reduction
methods, the PLSR prediction model built with the result of
multiscale decomposition of the discrete wavelet had the highest
accuracy; the R2 of the training set and the verification set
was 0.6994 and 0.5588, respectively, and the RMSE was 0.4832
and 0.6838 mg/g, respectively. Among the ELM prediction
model test results of different dimension reduction methods, the
ELM prediction model built with the result of discrete wavelet
multiscale decomposition had the highest accuracy. Overall, the
R2 of the ELM training set and validation set were better than
those obtained using the PLSR prediction model, but compared
with the GA-ELM prediction model, the decision coefficient
R2 of the GA-ELM prediction model was the highest and the
RMSE was the lowest. By comparative analysis, the predictive
ability and model stability of the GA-ELM prediction model
were better than those of the inversion model established by the
other two methods.

DISCUSSION

The use of hyperspectral technology for rice N nutrition
monitoring is one of the important methods to guide the precise
fertilization of rice and is also the focus of research in precision
agriculture (Prasanna et al., 2012). We established a mathematical
model of the quantitative relationship between hyperspectral
reflectance and the N content of rice leaves so that when using
spectral information as an input, an inversion model can be used
to obtain the N content of rice in an area and thus provide a
method to evaluate the nutritional status of the rice (Ata-Ul-
Karim et al., 2017; Du et al., 2018). When using the inversion N
content of rice leaves to guide field fertilization, the standard N
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FIGURE 6 | GA-ELM modeling results.

content of rice in the same period is also needed as a reference
for evaluating the N nutrition deficit in the rice (Tsujimoto
et al., 2019). Choosing a suitable reference standard is of great
significance for the rapid and accurate determination of the
proper fertilization for rice fields.

The combination of the critical N concentration curve and
target yields was used as a reference value for standard N content
in some related studies (Feng et al., 2016). The advantage of this
method is that it has a strong agronomic mechanism and only
requires precise inversion of rice N concentration and rice dry
matter mass (Din et al., 2017). The method used in this study
was based on the construction of a demonstration field of the
standard rice cultivation pattern; the rice N content in the same
period in the demonstration field was used as the evaluation
criterion (Maes and Steppe, 2019). Although the critical N
concentration method has a strong agronomic mechanism, the
critical N concentration curves for different rice varieties and
different growing areas need to be constructed uniquely, which
is difficult for researchers who lack basic agricultural background

information (Aasen et al., 2014). In this study, the quantitative
relationship between the hyperspectral profile and the N content
of the rice was modeled by collecting the hyperspectral and N
content of both standard and experimental fields and calculating
the difference between the hyperspectral reflectance and the N
content of the two. The calculated difference in the hyperspectral
reflectance was the input in an inversion model used to obtain the
scarcity value of N content.

The method for obtaining a standard hyperspectral reflectance
and N content as used in this study is relatively easy in
practice. However, compared with the reference standard values
established by the critical N concentration method, there
are certain shortcomings in the determination of standard
hyperspectral reflectance and standard N content, and the
selection of standards is more based on statistical methods. In
future research, we must focus on how to combine the critical N
concentration method with the standard rice production model
to collect the reference hyperspectral reflectance and reference
N content of rice at different reproductive stages in order to
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FIGURE 7 | PLSR modeling results.

evaluate the N nutrient deficit of rice more simply, quickly,
and accurately.

In this study, we established an inversion model of N content
differential in rice leaves. In terms of data reduction, this study
used discrete wavelet multiscale decomposition, continuous
projection, principal component analysis, and IRIV methods
to downscale the spectra. When the results of these four
downscaling methods were used as modeling inputs for ELM
and GA-ELM, the wavelet approximation coefficients obtained
based on discrete wavelet multiscale decomposition had the
highest modeling accuracy. The discrete wavelet multiscale
decomposition discretizes the scales and displacements in the
continuous wavelet transform and combines the distribution of
the wavelet signal energy on each scale, thus compressing the
spectral signal dimensions, reducing the number of characteristic
bands, and highlighting the spectral profile information. The
wavelet approximation coefficient is used to reconstruct the

signal, and the reconstructed spectral signal retains the original
spectral information to the maximum extent. In building the
model, since the relationship between the wavelet approximation
coefficient and leaf N deficiency is more suitable to be fitted
by a non-linear exponential model, the high value of leaf N
content was severely underestimated when using PLSR for the
linear regression of leaf N content, thus reducing the overall
prediction accuracy of the model and resulting in a large RMSE
error. Therefore, when modeling by ELM and GA-ELM methods,
the modeling accuracy of wavelet approximation coefficients
based on discrete wavelet multiscale decomposition was the
highest, while the modeling accuracy of wavelet approximation
coefficients based on wavelet multiscale decomposition was the
lowest when modeling by the PLSR methods. The modeling
accuracy of ELM and GA-ELM was higher than that of PLSR.

The GA-ELM models were better than the PLSR and ELM
models because the GA-ELM and ELM models train neural

Frontiers in Plant Science | www.frontiersin.org 10 December 2020 | Volume 11 | Article 573272

https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles


fpls-11-573272 November 26, 2020 Time: 20:44 # 11

Yu et al. Hyperspectral Inversion of Nitrogen Deficiency

FIGURE 8 | ELM modeling results.

networks with non-linear function input and output data so
that the trained network can predict the non-linear function
output, which can effectively explain the non-linear problem. The
inversion accuracy of the GA-ELM models was better than that
of the ELM models because the optimization training of GA can
assign the initial weights of the ELM and thus reduce the problem
of randomly generating weights for the ELM, which improves the
model accuracy, stability, and generalization.

This study proposed a hyperspectral detection method
for the diagnosis of nitrogen deficiency in rice fields. Spot-
application of fertilizer in the field is very important for rice
production, and existing studies mainly focus on nitrogen
content testing, which can only obtain the current nitrogen level
in the rice and does not indicate whether there is a nitrogen
deficiency in the rice. By introducing the concept of standard
nitrogen content and standard hyperspectral reflectance, this
study established the difference between standard nitrogen
content and sample nitrogen content, and calculated the

difference between the corresponding hyperspectral reflectance.
We established a quantitative relationship model between
the nitrogen difference and hyperspectral difference that can
be used to calculate the nitrogen deficiency of rice by
obtaining hyperspectral reflectance. This can be used as a
basis for decision making for field fertilizer spot-application
based on nitrogen deficiencies in rice. The standard spectra
and standard nitrogen content established in this study were
obtained based on a statistical approach that has some
shortcomings. However, this method can be used as a basis
for further research. We believe that this manuscript is of
practical significance.

CONCLUSION

In this study, hyperspectral reflectance was determined by
disruption sampling of rice crop stage japonica leaves, and
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the N content was measured in the laboratory after “greening-
drying-grinding.” A database of differential spectral reflectance
and differential N content data was constructed for the
determination of the standard spectral reflectance and standard
N content based on the principle of the highest yield. The
spectral reflectance difference was treated by four methods:
SPA, DWMD, PCA, and IRIV. The downscaled results were
modeled using the PLSR, ELM, and GA-ELM methods. The
results showed that the GA-ELM prediction model using the
wavelet approximation coefficients obtained from the DWMD
was the most accurate, with the training and validation sets >0.68
and the RMSE < 0.6 mg/g. The present study was carried out
to provide a new approach to assess N scarcity during the rice
reproductive period.
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