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Biostimulants (BSs) are probably one of the most promising alternatives nowadays
to cope with yield losses caused by plant stress, which are intensified by climate
change. Biostimulants comprise many different compounds with positive effects on
plants, excluding pesticides and chemical fertilisers. Usually mixtures such as lixiviates
from proteins or algal extracts have been used, but currently companies are interested in
more specific compounds that are capable of increasing tolerance against abiotic stress.
Individual application of a pure active compound offers researchers the opportunity to
better standarise formulations, learn more about the plant defence process itself and
assist the agrochemical industry in the development of new products. This review
attempts to summarise the state of the art regarding various families of organic
compounds and their mode/mechanism of action as BSs, and how they can help
maximise agricultural yields under stress conditions aggravated by climate change.

Keywords: Biostimulant, abiotic stress, amino acid, polyamine, biopolymer, vitamin, melatonin

INTRODUCTION

The United Nations has set 17 goals for sustainable development worldwide, number two being to
reach zero hunger by 2030. To achieve it, one of the suggested strategies is to double agricultural
production. Food demand is expected to increase by 100–110% by 2050 (Tilman et al., 2011), but
some studies indicate that yield trends are insufficient to reach this goal (Ray et al., 2013). One
of the reasons is climate change. According to the IPPC report, a major drop in crop yields is
expected worldwide with a global warming of 2◦C, with a high confidence level (Hoegh-Guldberg
et al., 2018). This report also points to a reduction in the nutritional quality of cereal crops as the
temperature rises. In fact, one of the most important challenges is feeding a growing population that
will reach 9 billion by 2050 (Tilman et al., 2011) in a climate change scenario. Furthermore, during
the 21st century, heat waves, heavy precipitations and sea-level rises are forecast, with subsequent
droughts, floods and salinity among the most critical direct consequences affecting food production
(Mba et al., 2012). These are already having serious effects on human health and social well-being.
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Nowadays, abiotic stresses in plants are the main cause of severe
yield losses of 50–80%, depending on the crop and geographical
location (Zhang et al., 2018).

This daunting situation provides an excellent opportunity for
plant scientists to apply their knowledge in the agricultural field,
in the attempt to increase productivity under abiotic stress. In
this regard, a promising strategy is the use of biostimulants
(BSs; Bulgari et al., 2019), since they promote plant growth
and improve crop productivity without negative impacts on the
environment (Figure 1), therefore allowing the reduction in the
use of chemical fertilisers (Singh et al., 2018; Xu and Geelen,
2018). It should be pointed out that BSs act solely as triggers for
plant natural defenses, and furthermore, only small amounts are
needed to increase tolerance against various stresses (Figure 1),
which is quite interesting for commercial purposes.

The concept of BSs has evolved over time (European
Biostimulants Industry Council [EBIC], 2020; du Jardin, 2012,
2015; Traon et al., 2014; Halpern et al., 2015; Yakhin et al., 2017).
The current definition of plant BSs by the EU regulation (2019) is:
“A product that stimulates plant nutrition processes independently
of the product’s nutrient content, with the sole aim of improving
one or more of the following characteristics of the plant or the plant
rhizosphere: (a) nutrient use efficiency; (b) tolerance to abiotic
stress; (c) quality traits; or (d) availability of confined nutrients in
the soil or rhizosphere.”

On the other hand, du Jardin (2015) defined it as
any compound or microorganism used to enhance plant
growth, stress response and/or crop quality, regardless of its
nutrients content. Later, the same author pointed out that
academic, regulatory and corporative entities agree that BSs are
modulators of life processes in plants that enhance growth and
resource use efficiency, under stress or non-stress conditions
(du Jardin et al., 2020).

BSs comprise a wide range of compounds, from amino
acids or amines to biopolymers. Therefore, there are different
proposals to classify these compounds, as discussed in the review
by Yakhin et al. (2017). However, the current classification
was introduced by du Jardin (2015) and is based on the
source of the biostimulant, even if this approach does not
always provide adequate information on its biological activity
(Bulgari et al., 2019). Thus, du Jardin established seven
categories: humic and fulvic acids, seaweed and botanical
extracts, protein hydrolysates and N-containing compounds,
chitosan and other biopolymers, inorganic compounds and
beneficial fungi and bacteria.

Most of the work in this field has been carried out with
complex product mixtures, such as plant or seaweed extracts,
recycled waste products, protein hydrolysates and so on. In
part, this is due to the fact that a combination of several
useful compounds (polymers, amino acids, vitamins, minerals)
with different modes of action can be more effective than the
use of a pure active principle, especially if the compounds
act in a synergistic way (Bulgari et al., 2019). Another reason
is the “circular-economy,” since the processing of low-cost
natural resources or waste usually produces mixtures (du Jardin
et al., 2020), from which the identification and isolation of
active principles is costly, in time and material resources,

particularly because these active principles are usually present
in small amounts.

However, the use of mixtures presents some problems, as
commented by Yakhin et al. (2017). The first is the homogeneity
of different batches, which can affect the interaction of the
product with the environment and, therefore, the results in
the crops. For instance, plants and seaweeds used as source
of biostimulants may vary in their contents according to their
development stage, period of the year, environmental conditions,
and even competition or interactions with other organisms.
To overcome this problem, many companies attempt to collect
and process natural resources (or waste by-products) under
carefully controlled conditions, and also to analyse the final
products. However, it is not always possible to guarantee a
perfectly standardised production protocol, and if the active
principles are scarce or partially unknown, the analysis is
problematic (Yakhin et al., 2017). Even when the active ingredient
is difficult to isolate, efforts are being made to find the
purest active fractions. Thus, in the area of humic substances,
it is noteworthy that recently quantitative QSAR for humic
substances has been reported (Savy et al., 2020), but at the
moment effects in plants have not been explored, remaining out
of the aim of this review.

Moreover, products with a pure active compound present
advantages over extracts and other mixtures, since it is easier
to determine not only their physiological effect and mode of
action but also their mechanism of action, thus simplifying the
certification and registration processes (Yakhin et al., 2017). For
this reason, different companies are trying to develop new BSs
based on the most effective active molecules (Bulgari et al., 2019).
Among the pure compounds found as the basis of formulations
to promote plant growth under stress are melatonin (Arnao and
Hernández-Ruiz, 2019), GABA (Li et al., 2017a), or menadione
sodium bisulphite (MSB; Borges et al., 2014), among others.

Comparing with the DuJardin classification (Figure 2),
humic acids are not treated in this review either because the
exact chemical structures were not provided, or because the
compounds in the purified fractions were not described for
protection against abiotic stresses. Protein hydrolysates and
extracts from seaweed, terrestrial plants or microorganisms,
as well as recycled waste, are complex mixtures outside
the scope of this review, but many individual components
isolated from these mixtures are described herein. Commercial
formulations based on many ingredients, or with poorly
described composition (industrial secret) are not covered either.
Although whole microorganisms (beneficial fungi and bacteria)
are not included for the same reason, pure compounds of
microbial origin, such as vitamins, amino acids, melatonin
or biopolymers, are discussed in detail. For the interested
reader, there are reviews on microbial biostimulats to face
abiotic stress (Woo and Pepe, 2018; Van Oosten et al., 2017;
Calvo et al., 2014) and the challenges posed by climate change
(Sangiorgio et al., 2020; Naamala and Smith, 2020). Since
the performance of microbial biostimulants can be affected
by environmental variables, in the latter review and also in
(Yakhin et al., 2017), the use of microbial-derived compounds is
presented as an alternative.
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FIGURE 1 | Plant response against stress. Without (A) and with biostimulant (B).

Thus, the sections developed in this review are (Figure 3):
amino acids and other N-compounds (proteinogenic
and no-proteinogenic amino acids, and polyamines),
biopolymers, vitamins (including the natural-product derivatives
S-methylmethionine salicylate and MSB), and melatonin.

Finally, it should be noted that biostimulant research is clearly
a hot field, as evidenced by the large growth in publications
reported by du Jardin et al. (2020). Moreover, global market for
BSs is expected to reach 4.14 billion USD by 2025 (Madende and
Hayes, 2020). We hope that this review will highlight the changes
towards new formulations based on pure products (or purified

fractions) and the use of increasingly standardised formulations
in crop management, particularly to cope with abiotic stresses.

AMINO ACIDS AND OTHER
N-CONTAINING COMPOUNDS

Amino acids are among the compounds most used as
biostimulants. Commercial formulations based on these
compounds are obtained from both plant and animal sources
by chemical and enzymatic hydrolysis, their separate activity
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FIGURE 2 | Pure organic active compounds and their relationship with biostimulants classified by du Jardin (2015).

being unknown in many cases (Calvo et al., 2014; du Jardin,
2015; Popko et al., 2018). Their exogenous application allows
the plant to save energy in their synthesis, thus increasing
its capacity to use its resources for growth or to cope with
stresses (Popko et al., 2018). The positive effects of amino
acid-based BSs are well known, and these products are
widely marketed (Botta, 2013; Cerdán et al., 2013; Popko
et al., 2018; Kocira, 2019; Tadros et al., 2019). Most of
the amino acids used are the 20 proteinogenic ones, but
non-proteinogenic amino acids (npaa) can also be found.
There are thousands of the latter, of which 250 are found
in plants (Vranova et al., 2011). Here we take a look at
some interesting research on plant treatment using a pure
compound as an elicitor.

Proteinogenic Amino Acids
Essential amino acids (leucine, isoleucine, methionine,
phenylalanine, arginine, histidine, tryptophan, valine,
threonine, and lysine) are synthesised only by plants, while
non-essential amino acids (alanine, β-alanine, asparagine,
cysteine, glutamine, aspartic acid, glycine, proline, serine, and
tyrosine) are synthesised by both plants and humans (Kumar
et al., 2017). However, little information is available on the effect
of pure proteinogenic amino acids (Teixeira et al., 2017).

Methionine (Met) is part of stress-related proteins, among
others. In fact, the foliar application of 4 mM methionine
improved the yield of cowpea (Vigna unguiculata) under
stress due to water-deficit, as well as the physiological and

morphological features of the plant (Merwad et al., 2018). In a
recent study (Alfosea-Simón et al., 2020). Met alone is capable
of increasing tolerance to salt stress in tomatoes (Solanum
lycopersicum) grown in hydroponic conditions. Met showed
better results than other aminoacids alone or in mixtures.
Another study (Akram et al., 2020) demonstrates that the
application of Met is able to regulate the plant redox state
and improve growth under stress, by increasing the compatible
osmolite contents. Exposed Met residues in proteins can defend
the macromolecule against oxidants, preventing damage to other
protein residues (Luo and Levine, 2009). Met can be easily
oxidised by different types of oxidizing agents (Weissbach et al.,
2005; Boschi-Muller et al., 2008). The oxidation products can be
reconverted into Met by methionine sulfoxide reductase (MSR;
Vieira Dos Santos et al., 2005), an enzyme that controls Met
redox state and is involved in defense mechanisms against stress
(Rey and Tarrago, 2018).

Glutamate (Glu) was found to be effective against cold stress in
rice (Oryza sativa) (Jia et al., 2017). However, the authors pointed
out that combinations of Glu with CaCl2 or γ- aminobutyric acid
(GABA) were more effective than glutamate alone. In addition,
the foliar treatment of onion (Allium cepa L. cv. “Giza 20”) with
Glu increased the yield and quality of the crop, but the benefits
improved in combination with putrescine treatment (Amin
et al., 2011). The protective effects of Glu are due to increased
antioxidant protection, as shown in soybeans (Glycine max),
where the activity of superoxide dismutase (SOD) and catalase
(CAT) increased (Teixeira et al., 2017). Moreover, La et al. (2020)
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FIGURE 3 | Summary of pure organic active compounds addressed in this review.

demonstrated that Glu improved tolerance to drought in Canola
by increasing the concentration of compatible osmolites, and the
levels of proline biosynthesis genes.

Proline (Pro) is probably the most widely used amino acid to
prevent losses due to abiotic stress. There are several research
studies that support the exogenous application of proline to
improve stress tolerance. In water-stressed maize (Zea mays L.),
a foliar spray with Pro improved plant growth and ameliorated
the negative effects of water deficit (Ali et al., 2007, 2008).
The exogenous application of proline was capable of mitigating

the negative effects of drought in barley (Hordeum vulgare) in
vegetative state (Abdelaal et al., 2020a), reaching higher levels
of relative water content under stress conditions. In a previous
work (Abdelaal et al., 2020b) studied salinity stress in sweet
pepper (Capsicum annuum), showing that Pro was capable of
doubling production in saline conditions. Furthermore, pre-
sowing wheat seeds (Triticum aestivum L.) with 40 mM proline
was the most effective treatment to enhance growth and yield
under water stress (Kamran et al., 2009). Proline also improved
salt tolerance with both foliar spray and root treatment in Vigna
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radiata (Hossain et al., 2011), rice (O. sativa L.) (Roy et al.,
1993), Vicia faba L. (Gadallah, 1999) and tomato (Lycopersicon
esculentum L.) (Heuer, 2003). It was also effective against freezing
damage in spinach (Spinacia oleraceae) (Shin et al., 2018)
and against oxidative stress in Vitis vinifera L. (Ozden et al.,
2009). Several authors reported that the exogenous application
of Pro improved growth and photosynthetic capacity, and Ali
et al. (2008) observed that it promoted the uptake of essential
nutrients. In a recent study (Hanif et al., 2020) showed that
a foliar spray with Pro increased the activities of antioxidant
enzymes, enhancing tolerance to drought and heat stress. Hoque
et al. (2007) described a similar effect in tobacco cells. However,
the protective action was observed only at low concentrations,
since higher doses had toxic effects (Hayat et al., 2012).

Arginine (Arg) application has been shown to alleviate the
harmful effects of salt stress in mung beans and canola plants
(Qados, 2010; Nasibi et al., 2014), as well as oxidative stress
caused by nickel accumulation in black henbane (Hyoscyamus
niger; Nasibi et al., 2013) and by drought stress in tomato
(Nasibi et al., 2011). Arg treatments are beneficial for the growth
and development of maize plants, especially under cold stress
conditions (Matysiak et al., 2020).

Cysteine (Cys) is capable of increasing soybean production
after daily watering with sea water (Sadak et al., 2020b). Cys is
a key precursor of the antioxidant tripeptide glutathione (GSH),

which has an important role in protection against oxidative
stress and heavy metal detoxification (Romero et al., 2014;
Teixeira et al., 2017).

In addition to the effects mentioned before, amino acids
can act in plants as precursors of other amino acids or other
defense compounds (Figure 4). Glu is a precursor of the
antioxidant peptide glutathione, and also of other stress-related
amino acids, such as proline. Proline biosynthesis from Glu
involves a high consumption rate of NADH and NADPH.
When energy is needed, proline oxidation would yield 30
ATP molecules. Therefore, proline reserves would be valuable
either in acclimation to stress or for recovery after stress
relief (Kaur and Asthir, 2015). In another example, Arg is
an important amino acid for nitrogen storage in plants, and
its catabolism mobilises stored nitrogen, which is involved
in the production of NO, polyamines and potentially proline
(Winter et al., 2015).

Amino acids seem to be effective in protecting plant growth
under stress. The presented proteinogenic amino acids (Met, Glu,
Pro, Arg, Cys) were the most referenced, since research on the
other 15 was scarce or non-existent. Therefore, more studies are
required on the others to verify their effectiveness. Furthermore,
most of the studies reporting the effects of pure amino acids
do not describe production results, with the exception of the
studies with proline (Abdelaal et al., 2020b). Therefore, more

FIGURE 4 | Relationships between proteinogenic/non-proteinogenic amino acids and polyamines in plants. 3PLP, 3-phosphoserine aminotranferase; 3PS, P-serine
phospatase; 5O, oxoprolinase; A, arginase; ADC, arginine decarboxylase; AS, argininosuccinate synthase; BAD, betaine aldehide deshidrogenase; CBL,
cystathionine β-lyase; CM, choline monooxigenase; CS, cysteine synthase; CGL, cysthathionine-y.-lyase; CGS, cystathionine y.-synthase;CBS, cystathionine
β-synthase; DAO, diamine oxidase; y.-GCS, y.-glutamylcysteine synthetase; GAD, glutamate decarboxylase; GS, glutamine synthetase; G5K, glutamate 5-kinase;
MAT, methionine adenosine transferase; MTS, methionine synthase; MTR, methyonine reductase; NAGK, N-acetylglutamate kinase; NAGPR,
N-acetylglutamate-5-phosphate reductase; NAGS,N-acetylglutamate synthase; NAOAT, N-acetylornithine aminotransferase; NAOD, N-acetylornithine deacetylase;
OAT, ornithine δ-aminotransferase; ODC, ornithine decarboxylase; OTC, ornithine transcarbamoylase; ProDH, proline dehydrogenase; P5CDH,
11-pyrroline-5-carboxylate dehydrogenase; P5CR, 11-pyrroline-5-carboxylate reductase; P5CS, 11-pyrroline-5-carboxylate synthetase; PNM,
phosphoethanolamine N-methyltransferase; SAMDC, S-adenosylmethionine decarboxylase; SAT, Serine O-cetyltranserase; SPDS, spermidine synthase; SPS,
serine-phosphoethanolamine synthase; PAO, polyamine oxidase; SPMS, spermine synthase.
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production trials would be needed to fine-tune new commercial
BS formulations.

Non-protein Amino Acids
In addition to the amino acids found in proteins, plants contain
other non-proteinogenic amino acids known as npaa, which are
widely distributed in the Plant Kingdom. It has been reported
that a large number of stresses can trigger the biosynthesis of
npaa in Monocots and Eudicots. Among them, stresses induced
by UV-radiation, salinity, hypoxia, heat, cold, drought, and
heavy metals (Rodrigues-Corrêa and Fett-Neto, 2019). The npaa
improve plant stress tolerance through cellular osmoregulation,
enhancement of antioxidant defense systems, protection of
membrane integrity, and enzyme/protein stabilisation (Yancey,
1994; Bohnert and Jensen, 1996; Ashraf and Foolad, 2007;
Hayat et al., 2012).

Glycine-betaine (GB) is probably the main compatible
osmolyte other than proline. Foliar and root treatment with this
molecule has counteracted the effect of salt and drought stress
in different species such as kidney bean (Phaseolus vulgaris L;
Sofy et al., 2020), barley (Hordeum vulgare L.; Wang N. et al.,
2019), broadbean (V. faba L.; Gadallah, 1999), corn (Zea mays,
Ali and Ashraf, 2011), tomato (S. lycopersicum, Heuer, 2003)
and lettuce (Lactuca sativa; Shams et al., 2016). Additionally, Ali
and Ashraf (2011) obtained better quality and yield of maize
seed and oil after applying GB. Furthermore, in cotton plants
(Gossypium sp.) subjected to drought stress, GB application
did not affect yield components, physiological processes, or
endogenous GB levels (Meek et al., 2003). However, there are
a few reports that describe counterproductive or no effects of
GB on plant growth under stress conditions. This is the case
of tomatoes, where 1 and 5 mM GB counteracted the effects
of salt stress but inhibited plant growth (Heuer, 2003). This
emphasises the need to understand GB mechanism of action,
its effect on different plant species and phenological state, and
dose-dependent effect.

γ-Aminobutiric acid (GABA) is ubiquitous in the plant
kingdom and accumulates rapidly when plants are exposed
to stress conditions (Bown and Shelp, 2016). Under drought
stress, sprayed GABA increased drought tolerance in creeping
bentgrass (Agrostis stolonifera) by enhancing the osmoregulatory
metabolism, energy production and synthesis of secondary
metabolites (Li et al., 2017a). It was also effective in maize
subjected to salt stress, increasing photosynthesis, chlorophyll
fluorescence, antioxidant activity and proline accumulation
(Wang et al., 2017). Exogenous treatment with GABA increased
muskmelon (Cucumis melo) tolerance to saline-alkaline
stress (Jin et al., 2019), reducing the Na+/K+ ratio and
increasing the concentration of free polyamines. Besides, GABA
conferred tolerance to chromium stress on brown mustard
(Brassica juncea L.), by enhancing its antioxidant defences
(Mahmud et al., 2017).

β-aminobutyric acid (BABA) is a molecule related to GABA,
which was initially considered as a synthetic priming agent.
However, Thevenet et al. (2017) found that BABA is naturally
generated in Arabidopsis thaliana under stress. BABA has been
extensively studied, since it can induce resistance to several

types of stress. Abid et al. (2020) demonstrated that BABA
treatment is capable of inducing drought tolerance in V. faba L.
by increasing the transcription of appropriate genes. In addition,
seed priming of V. radiata enhanced its tolerance to salt and
polyethylene glycol (PEG) stress, by increasing photosynthetic
activities, antioxidant defences, and proline accumulation, and
by reducing malondialdehyde content (Jisha and Puthur, 2016).
BABA-enhanced tolerance to drought stress in maize is effected
through the jasmonic acid (JA) pathway through the activation
of antioxidant defences; abscisic acid (ABA) is also involved
(Shaw et al., 2016). This is in agreement with Baccelli and
Mauch-Mani (2016), who summarised the various defence
signalling pathways potentiated by BABA, depending on the
plant and stress applied. Interestingly, even though BABA
increased wheat tolerance to soil drying, it did not affect grain
yield (Du et al., 2012). This effect could be related to the
microbial metabolism of BABA, and the resulting increase in
abscisid acid.

Interestingly, although there are 10 times more npaa than
proteinogenic amino acids, only a few npaa have been studied
as BSs against abiotic stress (Rodrigues-Corrêa and Fett-Neto,
2019). This group of organic compounds could be a great
source of new BSs. However, to assess their effectiveness,
production measures should be carried out. As mentioned before
for GB, Ali and Ashraf (2011) with maize and (Meek et al.,
2003) with cotton, studied BS performance in crop production,
reporting opposite results. On the other hand, Du et al. (2012)
reported that BABA treatment increased tolerance to desiccation
and decreased water use in spring wheat cultivars, but did
not improve grain yield. However, other crops could provide
different production results, and thus research on this topic
should be promoted.

Polyamines
Polyamines are biogenic amines involved in several functions
in plants, such as growth, seed germination, flower and fruit
development, cell division and elongation, membrane and cell
wall stabilisation, and processes of replication, transcription
and translation (Hussain et al., 2011). Putrescine (Put),
spermidine (Spd), and spermine (Spm) are the main examples
in plants (Berberich et al., 2015). These polyamines are
osmoprotectors and potent BSs that activate the response to
biotic and abiotic stress.

Foliar treatment with Put in common thyme plants (Thymus
vulgaris L.) improved growth and oil yield under water stress
(Abd Elbar et al., 2019). Furthermore, it showed protection
against drought in wheat (Arslan et al., 2019) and lettuce
(Zhu et al., 2019). In addition, foliar treatment of salt-tolerant
rice under salt stress increased shoot growth, grain yield and
proline content, inhibited Na+ and Cl− uptake, and prevented
chlorophyll degradation (Krishnamurthy, 1991). It also improved
salt tolerance of yellow guava seedlings (Psidium guajava L.)
(Esfandiari Ghalati et al., 2020). The exogenous application
of Put also proved to be very effective in increasing the
growth, photosynthetic pigments, yield and quality of onions
(Allium cepa), offering better results than the application of Glu.
However, it should be noted that the combination of Put and
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Glu gave the best results (Amin et al., 2011). Moreover, (Kim
et al., 2002) reported the protective role of putrescine under cold
stress. Thus, tomato plants treated with an inhibitor of putrescine
synthesis increased their electrolyte leakage under cold stress, but
exogenous application of putrescine reduced it.

Spermine (Spm) was used in foliar treatments to protect
wheat from drought, providing slightly better results than
Put (Hassan et al., 2020). However, the authors found that
the combination of both polyamines was the most effective
treatment, achieving protection through ROS removal, activation
of the CAT enzyme, and improvement of the Na+/K+ ratio.
Also, Spm improved the fresh weight and protein content
of soybean pods and seeds under osmotic stress, as well
as their antioxidant defences, and induced changes in ABA
synthesis (Radhakrishnan and Lee, 2013). This polyamine also
increased protection against salt stress in tomato seedlings
by increasing the accumulation of osmolytes and secondary
metabolites, as well as the activity of antioxidant system
(Ahanger et al., 2019).

Exogenous Spd protected against drought and promoted grain
filling in wheat, regulating its starch and antioxidant systems (Li
et al., 2020). Furthermore, foliar treatment with Spd improved
tolerance to moderate salt stress in pecan-grafted seedlings by
increasing the activity of antioxidant enzymes, reducing the
Na+/K+ ratio, and suppressing the induction of ABA and
ethylene (Wu Z. et al., 2020). In a previous work, Roy et al.
(2005) found that it protected against salt stress by impeding the
inhibition of plasma membrane-bound H+-ATPase, which acts
as a pump involved in K+/H+ exchange. In addition, the authors
found higher levels of plasma membrane-bound Spd and Spm,
as well as H+-ATPase pumps in salt-tolerant rice, which appear
to stabilise the plasma membrane by keeping endogenous Na+
levels low and K+ levels high.

In the polyamine biosynthesis pathway, there are two amino
acids involved. Arg is the precursor to Put in three biogenic
routes, and then Met provides aminopropyl residues to produce
Spd and Spm from Put (Chen et al., 2019). The catabolism
of polyamines is also interesting, since it produces H2O2
which at low concentrations can act as a stress signalling
molecule that induces a ROS-dependent protective pathway
(Wang W. et al., 2019).

Therefore, the protective roles of polyamines have been
studied extensively, including: (i) as osmoprotectans; (ii) acting
as ROS scavengers and increasing the production of antioxidant
enzymes; (iii) Interact with DNA, RNA and the transcriptional
complex, as well as with cell and organellar membranes; (iv) as
signal molecules by themselves or through the production of
H2O2 in ABA-regulated stress response pathway; (v) regulation
of ion channels and (vi) role in programmed cell death (Minocha
et al., 2014). This knowledge facilitates progress toward field trials
to discover how Pas can increase production.

Biopolymers
Biopolymers are polymers synthesised by living organisms.
There are some interesting groups, such as polypeptides
or polysaccharides (polymeric carbohydrates). Some of these

polymers can be used as pure organic active compounds against
abiotic stress, and are commented below.

Chitosan, the most abundant polymer after cellulose, and
its oligomers (oligochitosan), are linear polysaccharides formed
by β-(1-4)-linked D-glucosamine and N-acetyl-D-glucosamine.
Chitosan elicited much interest due to its effect against biotic
and abiotic stress, besides being environmentally friendly and
inexpensive (Katiyar et al., 2015). Regarding stress tolerance,
(Rabêlo et al., 2019) reported that chitosan is capable of
increasing tolerance to stress due to water deficit in maize.
Interestingly, this treatment improved antioxidant systems,
photosynthesis and grain yield. In barley, chitosan also improved
the response to drought stress (Hafez et al., 2020).

Zeng and Luo (2012) found that coating wheat seedlings
with chitosan improved drought tolerance by influencing
physiological mechanisms, such as increasing antioxidant
defences and improving chlorophyll content. This allowed for
better plant growth and root development. The authors also
found that the treatment enhanced seed germination and
yield. The study by Li et al. (2017b) should be highlighted,
since a metabolomic analysis of white clover treated with
chitosan under drought stress revealed that this biopolymer
increased the accumulation of several osmoprotectants related
to antioxidant defence and stress signalling. Chitosan was also
effective against water stress in Thymus daenensis Celak (Bistgani
et al., 2017) and two species of basil (Ocimum ciliatum and
Ocimum basilicum) (Pirbalouti et al., 2017). In the same way,
it protected against cadmium (Cd) toxicity in Brassica rapa L.
plants (Zong et al., 2017a,b) and against the effects of ozone in
rice (Phothi and Theerakarunwong, 2017).

Alginate oligosaccharides (AOS), polymers that are obtained
from marine brown algae, present advantages such as relative
low cost, low toxicity, mild gelation, and biocompatibility (Lee
and Mooney, 2012). They have proved to be promising BSs to
increase plant stress tolerance. Indeed, AOS enhanced tolerance
to PEG-induced drought stress in wheat (Liu et al., 2013),
tomato seedlings (Liu et al., 2009), and to drought stress in
potted cucumber (Li et al., 2018) and also Cd tolerance in
wheat (Ma et al., 2010). In the PEG-induced stresses, AOS
increased biomass and antioxidant enzymes. Liu et al. (2013)
reported an increase in proline and chlorophyll content, and
recently, Li et al. (2018) commented that alginates promoted
expression of drought resistance genes and regulated ABA-
dependent signal transduction.

Poly (γ-glutamic acid) (γ-PGA) is a polypeptide composed
of D- and L-glutamic acid monomers which is generated by
microbial fermentation (Shih and Van, 2001). The polypeptide
has promising properties, such as its biodegradability, non-
toxicity, water solubility and low production cost (Chen et al.,
2005). Xu et al. (2020) define γ-PGA as an anti-drought agent
that can efficiently alleviate damage to plants under drought
stress by promoting the accumulation of abscisic acid in rape
(Brassica napus L.) as well as increasing enzymatic antioxidant
activity and accumulation of proline. In addition, the polymer
is also effective against salt and cold stress in rape (Lei et al.,
2016; Xu et al., 2017), by enhancing proline accumulation.
Besides, (Xu et al., 2017) reported that pretreatment with
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γ-PGA induced cross-talk between Ca2+, H2O2, brassinolide and
jasmonic acid, resulting in the accumulation of proline and the
improvement of the antioxidant machinery. On the other hand,
in wheat seedlings, γ-PGA increased antioxidant defences and
modulated ionic balance (Guo et al., 2017). It also protected
garden cucumber (Cucumis sativus L.) seedlings against Cd and
Pb toxicity (Pang et al., 2018). The effect of the polypeptide
γ-PGA on soil moisture and microbial communities has recently
been reported. It improved drought resistance of maize seedlings
by improving soil moisture and nutrient levels, stimulating
plant growth-promoting bacteria, and reducing pathogenic fungi
(Yin et al., 2018).

Some microbial biopolymers also deserve attention (for uses
other than abiotic stress, see the review by Naamala and Smith,
2020). Thus, direct inoculation of lipochitooligosaccharides
(LCOs) and/or thuricin-17 peptide, compounds described as
bacterial signals, can protect plants against different abiotic
stresses (Nazari and Smith, 2020). For instance, when soybean
seeds were treated with both compounds, they were more

resistant to high salt stress (Subramanian et al., 2016). Moreover,
in experiments in growth chambers (Prudent et al., 2015)
showed that when soybean plants associated with N2-fixing
B. japonicum received a root application of thuricin17, their
resistance to drought increased. However, more studies and
specific field trials are needed to assess their effectiveness for
crop production.

Finally, it should be pointed out that alginates and also
chitosan, are used to encapsulate pesticides and fertilisers,
but this issue has not been well studied with BSs (Jiménez-
Arias et al., 2020). However, Juárez-Maldonado et al. (2019)
proposed nanoparticles and nanomaterials as a new category
of biostimulant. Both individual polymers and nanoparticle
derivatives with encapsulated products would open up promising
strategies to improve field production (Figure 5).

Vitamins
Vitamins are classified as fat-soluble or water-soluble. While
the former display important antioxidant properties, the latter

FIGURE 5 | Benefits of nanoencapsulation of biopolymers.
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normally serve as enzyme cofactors (Hanson et al., 2016). Both
types have important functions in plants and their exogenous
application can enable a greater tolerance to several stresses.

A notable case is ascorbic acid (vitamin C), which is an
important metabolite in plants with several functions, such
as co-factor of enzymes or modulator of plant defences by
detoxification of hydrogen peroxide (Hemavathi et al., 2011;
Zhang et al., 2012; Mostofa et al., 2015; Akram et al., 2017).
For this reason, exogenous application of vitamin C proved
to be effective in protecting several plant species against
drought stress. The assays were carried out in the grass
“tall fescue” (Festuca arundinacea Schreb, Xu et al., 2015),
in wheat (T. aestivum L., Hafez and Gharib, 2016) and
safflower (Carthamus tinctorius L., Farooq et al., 2020). The
findings of Aziz et al. (2018) are also interesting, since they
tested the effects of pure synthetic ascorbic acid and natural
sweet orange juice extract as a natural source of vitamin
C, in quinoa (Chenopodium quinoa) under drought stress.
They found that both treatments were effective in improving
tolerance to this stress, although in some cases orange juice
was more effective. The authors supposed that this result
was due to the variety of molecules and nutrients present
in orange juice that may enhance the stress response more
than ascorbic acid alone. Treatment with ascorbic acid was
also found to increase the growth and seed yield of common
bean (Phaseoulus vulgaris, Gaafar et al., 2020) and broadbean
(V. faba L., Desoky et al., 2020) under water stress. In
another study, the tolerance to drought stress of pepper plants
(C. annuum L) increased with ascorbic acid treatment, by
increasing the activity of antioxidant enzymes, but growth and
yield were affected compared to those achieved with full irrigation
(Khazaei et al., 2020).

Vitamin C was also reported to be effective against salt stress
in tomato, and its protective role is probably related to its
antioxidant properties, since it reduced lipid peroxidation but
not sodium uptake and plasma membrane leakiness (Shalata
and Neumann, 2001). A field experiment with sugar beet (Beta
vulgaris var. saccharifera, L.) under salt stress showed that
soaking the seeds plus foliar spraying with ascorbic acid increased
the enzymatic activity of CAT and SOD, as well as root yield and
sugar content (Abdel Fatah and Sadek, 2020). In another work,
both vitamin C and B3 alleviated the effects of salt stress, but
vitamin B3 was more effective, and in combination they were
synergistic (Azooz et al., 2013).

α-Tocopherol is the most abundant vitamin E compound
in photosynthetic tissues. It protects the lipid membranes
by preventing the propagation of lipid peroxidation by
quenching/scavenging of reactive oxygen species (ROS; Miret
and Munné-Bosch, 2015). Treatment with vitamin E of chinese
rye grass (Leymus chinensi) seedlings subjected to PEG stress
enhanced the activity of the peroxidases SOD and POD. It
also increased proline content, and reduced lipid peroxidation
(Gu et al., 2008). In another study, the foliar application of
α-tocopherol was effective in increasing wheat tolerance to
drought, by improving antioxidant defence mechanisms, water
use, photosynthetic efficiency and the content of photosynthetic
pigments (Ali et al., 2019). The authors also found that the

treatment increased wheat biomass, as well as the yield and
nutritional quality of the seeds.

A scarcely studied vitamin is S-methylmethionine (vitamin
U). It is produced by all angiosperms, since it is involved in their
sulphur metabolism (Ludmerszki et al., 2014; Fodorpataki et al.,
2019). In fact, its role in the biosynthesis of sulfopropionates
(osmoprotectants) and polyamines is valuable for plant resistance
(Ludmerszki et al., 2014). It was highly effective in protecting
maize against cold stress, by stimulating the phenylpropanoid
pathway, increasing the content of phenol derivatives and
anthocyanins, and protecting the photosynthetic apparatus
(Páldi et al., 2014). Priming lettuce with this vitamin resulted
in a greater tolerance to cold, improving its germination,
photosynthetic efficiency, and content of carotenoids and vitamin
C (Fodorpataki et al., 2019).

S-methylmethionine-salicylate (MMS) has been synthesised
from vitamin U and salicylic acid, and benefits from both
protective roles. It was tested in wheat plants under salt stress, and
compared with vitamin U and salicylic acid (Janda et al., 2018).
All three compounds were harmful at 0.5 mM but at a lower
concentration (0.1 mM) they were innocuous, while protecting
against stress. In this study, the protective action of MMS did
not correspond to a synergistic effect of vitamin U and salicylic
acid, since they presented similar modes of action. Other results
that support this hypothesis were obtained with maize under cold
stress (Páldi et al., 2014; Oláh et al., 2018).

Menadione sodium bisulphite is a chemical modification
of vitamin K3 which increases tolerance to salt stress in
Arabidopsis after seed treatment (Jiménez-Arias et al., 2015b)
and in tomato plants by root treatment (Jiménez-Arias et al.,
2019b). Thus, the authors found that MSB produces a slight
oxidative burst that triggers plant defences, facilitating a
higher relative growth rate, photosynthesis and other gas-
exchange parameters. It also produced epigenetic changes in
the promoter region involved in proline metabolism, increasing
the proline content (Jiménez-Arias et al., 2015a). Menadione
sodium bisulphite was also able to enhance antioxidant defences
and the expression of proteins regulating Na+ and K+
levels, which improved the ionic homeostasis under salt stress
(Jiménez-Arias et al., 2019b).

Most of the work on the exogenous application of vitamins
focuses on ascorbic acid, and studies on its performance are
increasing. On the other hand, the protective role of α-tocopherol
in plants is well known, but there is little work on its exogenous
application. Due to their properties, vitamins are excellent
options for research on crop protection and productivity. In
addition, new studies are being carried out on vitamin derivatives.

Melatonin
This compound is a multifunctional molecule distributed in
different parts of plants and involved in several physiological
processes: the circadian rhythm, photosynthesis, biomass
production, root development, seed germination, fruit
ripening, foliar senescence, membrane integrity, redox network,
osmoregulation and response to abiotic stress (Khan et al.,
2020). Several works have shown that exogenous application
of melatonin can increase plant growth and resistance to
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stress. Therefore, melatonin has been proposed as a natural
biostimulant for a sustainable and eco-friendly agriculture.

The exogenous application of melatonin to maize seedlings
under drought stress reduced the accumulation of hydrogen
peroxide and malondialdehyde, and increased photosynthesis,
transpiration and stomatal conductance (Ye et al., 2016). Xia
et al. (2020) found that treatment with melatonin alleviated
drought stress in kiwi seedlings, by increasing the level of mRNA
expression of the enzymes SOD, CAT, and peroxidase, and
enhancing their activity. Moreover, three pathways implicated in
melatonin protection were reported: the ascorbate and aldarate
metabolism, glutathione metabolism and carotenoid metabolism.
These pathways were involved in higher levels of ascorbic acid,
glutathione and carotenoids. Melatonin also alleviated oxidative
stress caused by water stress in two species of Salvia and increased
the essential oil production (Bidabadi et al., 2020). In addition,
the foliar application of melatonin in moringa trees (Moringa
oleifera L.) under both normal irrigation and drought in a
field trial, increased tree growth and its oil yield and quality
(Sadak et al., 2020a).

Melatonin was also effective in protecting cucumber seedlings
against salt stress, by enhancing the activity of antioxidant
enzymes, inducing gene expression related with salt stress, and
protecting the photosynthesis (Zhang et al., 2020). Treatment
with melatonin also increased the fruit yield and quality
in strawberry (Fragaria x ananassa Duch.), especially in
plants under salt stress (Zahedi et al., 2020). The study

found that melatonin boosted the activity of leaf antioxidant
enzymes, as well as ABA and melatonin contents in leaf
and fruits. Therefore, it was proposed that melatonin induced
antioxidant defences by ABA-dependent and independent
signalling pathways.

Melatonin also effectively protected melon roots against
cooper stress (Hu et al., 2020), strawberry seedlings against
Cd stress (Wu S. et al., 2020), and tomato seedlings against
nickel stress (Jahan et al., 2020). In addition, it protected
cherry radish (Raphanus sativus L.) against high temperature
(Jia et al., 2020), and tomato plants (S. lycopersicum) against
chilling (Wang M. et al., 2020). It was suggested that the
protective role of melatonin is due to the regulation of the
antioxidant defence system, from direct ROS scavenging by
reaction with H2O2, O2

−, and OH·, to an increase in the
activity of antioxidant enzymes (CAT, SOD, and GPX), as
well as enzymes of the ascorbate-glutathione cycle (ascorbate
peroxidase, monodehydroascorbate reductase, dehydroascorbate
reductase, and glutathione reductase). It is also involved in the
effects of non-enzymatic antioxidants (carotenoids, tocopherols,
ascorbate, reduced glutathione, and phenolic compounds)
(Khan et al., 2020).

Although the positive effects of melatonin application are well
established, most studies have been conducted under controlled
conditions. Therefore, Khan et al. (2020) highlighted the need
for more field trials and transcriptomics analysis. On the
other hand, Wang S.-Y. et al. (2020) reported an increasing

FIGURE 6 | Map of terms of the publications on biostimulants. The words “biostimulant” and “plant” were searched in the titles, abstracts and keywords, during the
period from 2010 to 2020. The analysis is based on all the publications that are classified as Articles. The distance between terms indicates how strong their
relationship is. The colour represents the normalised citation average, where blue is a low citation average and yellow is a high citation average. The size indicates
the number of publications in which the term appears. References taken from WoS and Scopus.
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trend in studies to improve fruit yield and quality, and to
enhance resistance.

CONCLUSION AND FUTURE
PERSPECTIVES

Pure organic active compounds offer several benefits, such as
better standardisation and quality control of formulations, and
a better understanding of their protective action, including not
only the mode but also the mechanism of action. This will
allow a better design of new formulations, either with a pure
active principle or with a precisely dosed mixture of synergistic
compounds. Additionally, pure compounds or carefully selected
combinations can shed light on many effects of BSs, aided
by molecular biology techniques (including transcriptomics,
metabolomics, proteomics, and genomics) and ever-growing
bioinformatic analyses (Bulgari et al., 2019).

Some interesting data on the impact of biostimulant research
can be drawn from the analysis of titles and abstracts of
publications, using the VOSviewer software (Figure 6). The terms
that appeared most frequently were: “height,” “grain yield,” “field
experiment,” and “harvest,” of which the latter two were closely
related. However, these terms had low-medium average citations.
The high incidence of the term “height” highlights that it is a fairly
common measure in BSs studies. On the other hand, “marketable
yield” and “fresh yield” were also highly cited, while “fruit quality”
and “fruit yield” presented medium averages of citations, but low
occurrence in the studies. In contrast, studies on cereal/grain
yield are common but had less average citations.

Thus, it seems that there is a need for more field trials as well
as studies on the yield and quality of crops, particularly fruits. As
can be seen from the Table in the Supporting Information, most
studies have been carried out in culture chambers or greenhouses.
The reason is that field experiments present challenges because
they require more space, time, and resources. In addition, variable
weather conditions make it compulsory to repeat farming cycles
to guarantee reproducible results. Nevertheless, it is necessary
to confirm in field trials that the BS (as a pure organic active
compound or as a product mixture) increases crop yield without
loss of nutritional value, since the laboratory studies carried out
in vegetative growth stage do not provide information on these
key issues. Therefore, field results and impact on production
could be a wellcome addition to the preliminary (and often
promising) results.

Furthermore, several studies have applied severe stress in
both laboratory and field conditions. Although these studies are
useful for identifying individual compounds with a significant
protective effect, as mentioned before, Serraj and Sinclair (2002)
emphasise that many of these results have little practical value for
farmers. This is because studies carried out under severe stress
focus on plant survival, even though the yields thus obtained
are too low to be viable for the industry. To address this
problem, some authors use more moderate conditions, closer to
real scenarios. Thus, a recent study on drought-stressed lettuce
only reduced normal irrigation by 30%, with promising results
(Jiménez-Arias et al., 2019a). Lettuce is an excellent model

for this stress since it is sensitive to drought and the yield
is based on vegetative growth. Similar studies with fruit crops
would be desirable.

It is interesting to compare the costs and benefits of
using pure organic active compounds to increase yield under
stress conditions. Thus, from 1983 to 2009, three-quarters of
harvested areas globally suffered yield losses caused by drought,
entailing 166 billion US dollars of cumulative production losses
(Kim et al., 2019). However, the application of α-tocopherol
increased 556.5 kg/ha of wheat yield under water deficit,
which means a benefit of US $ 231.80 (Ali et al., 2019).
This highlights that a pure organic active compound could be
a sustainable solution to face losses caused by abiotic stress
and increase economic benefits in agriculture. In addition,
BSs could be valuable to achieve better nutritional and
organoleptic qualities of crop products, that increase their
value. The potential in this issue of pure compounds, alone
or in carefully designed combinations, should receive more
attention in future.
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