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As a vital component of plant cell walls, proteins play important roles in stress response by
modifying the structure of cell walls and involving in the wall integrity signaling pathway.
Recently, we have critically reviewed the predictors, databases, and cross-referencing of
the subcellular locations of possible cell wall proteins (CWPs) in plants (Briefings in
Bioinformatics 2018;19:1130–1140). Here, we briefly introduce strategies for isolating
CWPs during proteomic analysis. Taking maize (Zea mays) as an example, we retrieved
1873 probable maize CWPs recorded in the UniProt KnowledgeBase (UniProtKB). After
curation, 863 maize CWPs were identified and classified into 59 kinds of protein families.
By referring to gene ontology (GO) annotations and gene differential expression in the
Expression Atlas, we have highlighted the potential of CWPs acting in the front line of
defense against biotic and abiotic stresses. Moreover, the analysis results of cis-acting
elements revealed the responsiveness of the genes encoding CWPs toward
phytohormones and various stresses. We suggest that the stress-responsive CWPs
could be promising candidates for applications in developing varieties of stress-
resistant maize.
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INTRODUCTION

Crops, such as maize, wheat, and rice, are cultivated Worldwide as staple food. Under field
conditions, crops are subjected to various abiotic stresses (e.g., drought, cold, salt, and heat) and
biotic stresses (e.g., pests and pathogens) (Baillo et al., 2019), which affect plant growth and crop
yields. Since the demand for food increases as the population grows, developing stress-resistant
crops is recognized as the most efficient way to improve crop yields under stress conditions (Zhang
H. et al., 2018; Eshed and Lippman, 2019).

As a supplement to conventional breeding programs, molecular and transgenic technology is a
promising strategy for developing stress-resistant crops, particularly by engineering multiple
transgenes for the introduction of whole metabolic pathways (Bock, 2013). Thus, it is vital to
discover stress-related genes that can be used for improving the resistance of crops. The resource
for the known stress-related genes is still limited (Zhang H. et al., 2018). For example, in maize,
only a few resistant genes have been identified and modulated to improve resistance and yield
.org September 2020 | Volume 11 | Article 5763851
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(Nelson et al., 2007; Virlouvet et al., 2011; Habben et al., 2014;
Nuccio et al., 2015; Zuo et al., 2015; Wang et al., 2016).

The cell wall is an outermost layer of plant cells exposed to
different environments, and it provides structure, support, and
protection to plants (Houston et al., 2016; Kesten et al., 2017). Its
role is substantially affected by the activity of cell wall proteins
(CWPs) that account for 10% of the dry mass of primary cell
walls (Wolf et al., 2012; Lin et al., 2017). It is usually considered
that CWPs act in the front line of apoplastic defense mechanisms
(Cassab and Varner, 1988). They can modify the structure of cell
walls and are involved in the wall integrity signaling and innate
immunity under stress conditions (Zagorchev et al., 2014; Gust
et al., 2017; Tucker et al., 2018; Vaahtera et al., 2019). However,
the potential of CWPs for improving the resistance of crops has
not yet been discussed on a proteome-wide scale.

In this study (released partly as a pre-print at bioRxiv, Niu
and Wang, 2020), taking the model crop plant maize as an
example, we dig for stress-responsive maize CWPs in the
UniProt KnowledgeBase (UniProtKB). We have highlighted
the potential of CWPs acting in the front line of defense
against biotic and abiotic stresses. The knowledge thus learned
may facilitate the research of identifying novel stress genes/
proteins for developing stress-resistant maize.
DISCOVERING STRESS-RESPONSIVE
CWPS BY PROTEOMIC ANALYSIS

Most of CWPs have basic pI values, with a signal peptide, and are
modified post-translationally, particularly via hydroxylation and
glycosylation (Albenne et al., 2013). After the recognition of the
signal peptide, CWPs synthesized in cytosol are secreted from
endoplasmic reticulum, Golgi apparatus, and plasma membrane
to the cell wall and/or extracellular space (Wu et al., 2018).

CWPs are low abundance proteins in the whole cell proteome
(Jamet et al., 2008). Two different approaches, namely
nondestructive and destructive, are used to isolate loosely
bound CWPs (including those present in the intercellular
space) and tightly bound CWPs, respectively (Lee et al., 2004;
Feiz et al., 2006; Jamet et al., 2008; Albenne et al., 2013). By
performing the nondestructive method based on the vacuum
infiltration-centrifugation technique, water-soluble and loosely
bound CWPs were extracted from maize roots (Zhu et al., 2006;
Zhu et al., 2007). Moreover, different infiltration solutions
extracted different subsets of apoplast proteins from maize
leaves (Witzel et al., 2011). By the destructive method, cell
walls were partially purified from ground plant materials, and
sequentially extracted in buffers with different ionic strengths
(Printz et al., 2015; Canut et al., 2017). As such, the obtained
CWP profiles from different methods were complementary
(Sergeant et al., 2019).

The proteome-wide differential analysis of two tolerant-contrast
varieties, particularly isobaric tags for relative and absolute
quantitation (iTRAQ)-based approaches can provide quantitative
variations in protein abundance under stress conditions (Zhu et al.,
2007; Zhang H. et al., 2018; Jia et al., 2020; Kruse et al., 2020) and
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are widely used to discover stress-responsive proteins for the
improvement of crop resistance. In these studies, only a fewer
number of stress-responsive CWPs have been identified (Bhushan
et al., 2007; Pandey et al., 2010; Hu et al., 2015). This is mainly due
to the following facts: the isolation of wall fractions is often
contaminated by intracellular proteins (Jamet et al., 2008); the
low abundance of CWPs (especially in the extracellular space) may
escape extraction and identification (Zagorchev et al., 2014); and
the post-translational modifications and stress-induced production
of reactive oxygen species (ROS) greatly affect the association of
the extracellular CWPs to the wall. Therefore, it is difficult to
isolate and discover stress-responsive CWPs via conventional
proteomic approaches.

Over the last decade, genome sequencing (Schnable et al.,
2009; Jiao et al., 2017) and high-throughput profiling analysis
(Chivasa et al., 2005; Zhu et al., 2007; Zheng et al., 2009) in maize
have generated huge CWP data, which have been stored in
UniProtKB. Therefore, exploring stress-responsive CWPs from
the sequences stored in UniProtKB will provide a lot of gene
resources that could be used in improving the stress tolerance
of crops.
DIGGING FOR THE STRESS-RESPONSIVE
CWPS IN MAIZE RECORDED IN
UNIPROTKB

UniProtKB is the central hub for the collection of functional
information on proteins, in which the proteins have either been
confirmed via experimental evidence or entirely predicted
(Schneider et al., 2012). GO of CWPs involves cell wall
(GO:0005618) proteins and apoplast (GO:0048046) or secreted
proteins. The apoplast is the extracellular space outside the
plasma membrane consisting of cell wall and intercellular space.
Thus, the apoplast proteins stand for the generalized CWPs. Using
the keywords “Zea mays+ cell wall or apoplast or secreted protein”,
we retrieved 1,873 possible maize CWPs, with only 50 curated
entries, on UniProtKB (March 5, 2020). Many sequences were
redundant in UniProtKB because different maize lines have been
sequenced and submitted separately (Schnable et al., 2009; Jiao et al.,
2017). After deleting redundant and incomplete sequences, the
remaining sequences were evaluated as per the subcellular
locations. Those proteins without location annotation were
predicted on the online server HybridGO-Loc (http://bioinfo.eie.
polyu.edu.hk/HybridGoServer/; Wan et al., 2014), as previously
recommended (Wu et al., 2018). Finally, only those entries with
cell wall or extracellular locations were kept for further analysis.

The maize CWP dataset includes 863 protein sequences,
belonging to 56 kinds of protein families; 70.5% of the protein
sequences (608/863) are annotated with cell wall or extracellular
locations in UniProtKB (Supplementary dataset 1). The top 10
families are expansin (109), pectinesterase (108), xyloglucan
endotransglucosylase/hydrolase (80), peroxidase (82),
polygalacturonase (69), pectin acetylesterase (66), a-L-
arabinofuranosidase (64), pectin lyase (51), germin-like proteins
(42), and galactosidase (27). Clearly, as found in root tips, the
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proteome composition of the maize cell walls shows high diversity
with spatial variations (Zhu et al., 2007). Regarding the subcellular
locations, 32 kinds of CWPs are found only in the cell wall, 11
kinds are found only in the extracellular space, and 13 kinds are
found both in the cell wall and the extracellular space (Figure 1).
Numerous CWPs, such as peroxidase, malate dehydrogenase,
purple acid phosphatase, NADH-cytochrome b5 reductase, and
peroxiredoxin, also have intracellular locations.

Different from the type I cell walls in Arabidopsis, maize and
rice share the type II cell wall of grasses, i.e., the cell walls have a
framework of cellulose microfibrils cross-linked primarily with
glucurono-arabinoxylans (Penning et al., 2009). Therefore, we
compared the cell wall proteome composition of maize and rice
(Table S1). The rice CWPs were searched inWallProtDB (http://
polebio.lrsv.ups-tlse.fr/WallProtDB/), which is a specialized
collection of cell wall proteomic data (San Clemente and
Jamet, 2015) with 2,170 protein sequences from 11 different
plant species (except maize). As a result, 270 rice CWPs were
retrieved, belonging to at least 31 kinds of protein families. Thus,
the number of rice CWPs was less than that of maize CWPs
because rice CWPs were obtained from the proteomic analysis.

The detailed comparison revealed similar functional categories
between maize and rice CWPs: both include proteins acting on cell
wall polysaccharides, oxidoreductases, proteases, structural proteins,
signaling proteins, and miscellaneous proteins, but differed in the
kinds of CWPs (Table S1). Maize had numerous CWPs (e.g., a-L-
arabinofuranosidase, exopolygalacturonase, galactosidase, pectin
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acetylesterase, pectin lyase, and polygalacturonase) involved in the
formation and modification of the wall and in the defense
response toward fungus (e.g., chitinases). Particularly, a-L-
arabinofuranosidase is abundant in the type II cell walls of maize
(Zhu et al., 2006), but it is not recorded in rice CWPs. Similarly,
several rice CWPs had no homologous proteins in maize, such as
thaumatin, and those related to lipid metabolism. This is possibly
due to the differences in physiology and biochemistry of both
species: maize is a typical C4 grass, whereas rice is a typical C3
grass. Moreover, corresponding CWPs of maize and rice shared
high identities, such as aspartyl protease (B4FMW6 vs. Q6F4N5,
89.4%), expansin (A0A1D6HK98 vs. Os02g0744200, 83.9%),
germin (A0A1D6L886 vs. Os03g0804500, 71.4%), glycoside
hydrolase (B6TX01 vs. Os03g0124900, 84.7%), peroxidase
(A5H8G4 vs. Os01g0326000, 71.7%), and purple acid
phosphatase (B4FR72 vs. Os12g0637100, 54.15%).
THE POTENTIAL ROLES OF STRESS-
RESPONSIVE CWPS

To explore the potential roles of maize CWPs in stress responses,
we examined the gene differential expression of maize CWPs in
Expression Atlas (https://www.ebi.ac.uk/gxa/), which reports the
experimentally proven effects of inducers and repressors on the
level of mRNA expression. As a result, 36 kinds of maize CWPs
are found to respond to various stresses, with a distinct set of
FIGURE 1 | Molecular function, subcellular location, and possible roles of representative Maize cell wall proteins (CWPs) in stress responses. The subcellular location
of proteins is asserted according to the annotation in UniProtKB or predicted using the server HybridGO-Loc. The molecular function and involvement of CWPs in a
specific stress were summarized according to the gene ontology (GO) annotation and gene differential expression in Expression Atlas
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CWPs responding to biotic and abiotic stresses (Table S2).
Particularly, 17 kinds of CWPs, such as chitinase, eukaryotic
aspartyl protease, b-fructofuranosidase, germin-like protein, O-
glycosyl hydrolase superfamily protein, NADH-cytochrome b5
reductase, peptidase A1 domain-containing protein, peroxidase
1 and subtilisin-like protease SBT2.6, UDP-arabinopyranose
mutase, and b-D-xylosidase, are potentially involved in
multiple stresses (Figure 1).

Stress-responsive CWPs may have direct roles in stress
resistance, such as anti-pathogen (chitinases), ROS scavenging
(peroxidases), glycoside hydrolase family proteins, and
oxidoreductases. Glycoside hydrolase family proteins (e.g.,
chitinase) hydrolyze chitin (a primary component of a fungus
cell wall) to confer crops resistant toward fungi (Wang et al.,
2019). Oxidoreductases (e.g., peroxidase, L-ascorbate oxidase,
malate dehydrogenase, and polyamine oxidase) can maintain cell
redox homeostasis that may change under stress conditions
(Passardi et al., 2004; Zhu et al., 2007).

CWPs may also have indirect roles in enhancing the cell wall
structure, such as cell wall structural proteins and the enzymes
involved in the organization and modification of the cell wall. The
importance of these CWPs is obvious because polysaccharides are
the largest components of plant cell walls and are constantly
subjected to remodeling during plant development or during
response toward environmental cues (Tenhaken, 2014; Houston
et al., 2016).

CWPs can be stress messengers; for example, leucine-rich repeat
family proteins that can perceive and transduce extracellular stress
signals. The STRING analysis suggested that maize CWPs
participate in mitogen-activated protein kinase (MAPK) and
wingless-related integration site (Wnt) signaling pathways. It is
recognized that MAPK and Wnt signaling pathways may play
pivotal roles in the linking perception of external stimuli with
changes in the cellular organization or gene expression (Taj et al.,
2010). In addition, numerous protein/protein interactions are
expected among CWPs, between CWPs, and those spanned in
the plasma membrane. The STRING analysis revealed that
numerous stress-responsive CWPs, particularly chitinase, b-
hexosaminida se, glycoside hydrolase, a-galactosidase,
pectinesterase, and b-fructofuranosidase, may form strong-
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interaction networks in maize (Figure S1). The stress responsive
CWPs may be involved in the cell signaling process under abiotic
and biotic stresses.

Moreover, numerous CWPs were not found to be involved
in stress responses, such as dirigent protein, expansin,
heparanase-like protein, proline rich cell wall protein, and
exopolygalacturonase. However, the roles of dirigent protein
and expansins in stress responses have been suggested in
Arabidopsis (Marowa et al., 2016). The heparanase activity, a
process that can lead to invasion by tumor cells (Fux et al.,
2009), is strongly implicated in the structural remodeling of the
extracellular matrix of animals.
CIS-ACTING ELEMENTS IN THE GENES
ENCODING MAIZE CWPS

The hormone abscisic acid (ABA) plays the central role in the
adaptation to various stresses (Tuteja, 2007). ABRE element
confers the responsiveness to ABA, and the sensitivity to ABA
also depends on the presence of myeloblastosis (MYB) and
myelocytomatosis (MYC) elements (Kalemba and Pukacka,
2007). Salicylic acid (SA)- and jasmonic acid (JA)-mediated
signaling pathways are essential for a plant’s defense response.
JA primarily mediates induced systemic resistance to herbivores
(Loake and Grant, 2007; Koornneef and Pieterse, 2008), and SA
mediates systemic acquired resistance against biotrophic
pathogens (Glazebrook, 2005; Thaler et al., 2012).

To find the molecular clues of stress-responsiveness of CWPs,
stress- and phytohormone-related cis-acting elements in the
promoter regions of their encoding genes were analyzed using
Plantcare (http://bioinformatics.psb.ugent.be/webtools/plantcare/
html/) and PLACE (http://www.dna.affrc.go.jp/PLACE/
signalscan.html). As a result, numerous well-known cis-elements
were found in the genes encoding maize CWPs, such as MYB-
binding site, ABA responsive element (ABRE), dehydration
responsive element (DRE), SA responsive element (TCA), and
methyl jasmonate (MeJA) responsive elements (Table 1, Table
S3). This may explain why the stress-responsive CWPs take part in
multiple biotic and abiotic stresses.
TABLE 1 | Bioinformatic analysis of cis-acting elements in the genes encoding maize cell wall proteins (CWPs).

Cis-acting element Function Sequence Number of CWPs
involveda

MBS MYB-binding site CAACTG or TAACTG 14
DRE Dehydration responsive element GCCGAC or ACCGAC 9
LTRE Low temperature responsive element CCGAAA 15
WUN Wound-responsive element AAATTTCCT 5
TC-rich repeats Defense and stress responsive element GTTTTCTTAC or ATTTTCTTCA 6
ABRE ABA-responsive element CACGTG or TACGTG 34
TCA-element Salicylic acid responsive element CAGAAAAGGA or GAGAAGAATA 14
TGACG MeJA responsive element TGACG 33
CGTCA MeJA responsive element CGTCA 35
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POTENTIAL APPLICATIONS OF CWPS
IN DEVELOPING STRESS-RESISTANT
CROPS
As the interface with the environment, CWPs face intense
selection pressure to develop new functions or recruit new
proteins to the apoplast through gene duplication and
retargeting (Rose and Lee, 2010). CWPs present in the cell
wall, such as structural proteins, may interact with other wall
components via noncovalent linkages to form insoluble
networks (Spadoni et al., 2006). It is recognized that
hydroxyproline-rich glycoproteins (HRGPs) among other
CWPs play major roles in a plant’s defense against abiotic and
pathogen attacks (Deepak et al., 2010). CWPs present in the
extracellular space, particularly between the cell plasma
membrane and the cuticle in aerial organs or the suberin layer
in roots, may endow the plant surface with waterproof qualities
and protection against biotic and abiotic stresses (Thomas et al.,
2007; Javelle et al., 2010). The identification and cloning of
resistant genes are important prerequisites for the targeted
breeding of stress-resistant crops, particularly through gene
transfer and genome editing technologies. Almost all known
resistant genes encode intracellular proteins (Wu and Wang,
2016), while CWPs have not yet been targeted for the
improvement of stress tolerance in crops.

The roles of some CWPs in abiotic stresses have been proved
in maize, Arabidopsis, and other plant species. Here, we just
referred some examples because we did not aim to
comprehensively review earlier studies. In maize root tips,
many CWPs, such as a-L-arabinofuranosidase, b-D-
glucosidase, b-galactosidase, b-D-xylosidase, and xyloglucan
endotransglucosylase/hydrolase (Zhu et al., 2007), in the
category of hydrolases respond to water deficit. In Arabidopsis,
pectinesterase1 acts as a negative regulator of genes involved in
salt stress response (Creighton et al., 2017); pectin methylesterase
is required for guarding the cell function in response to heat (Wu
et al., 2017); purple acid phosphatase 17 is reducible by ABA,
H2O2, senescence, phosphate starvation, and salt stress (Del Pozo
et al., 1999). In rice, b-galactosidase gene responds to ABA and
water-stress (Mundy and Chua, 1988) and germin-like proteins
are associated with salt stress (Banerjee et al., 2017). In other
plants, b-galactosidase is found to be related to heavy metals
(Atrooz and Abukhalil, 2016); glycine-rich proteins (Ringli et al.,
2001; Mangeon et al., 2010) and cell wall invertase (copper stress,
Xu et al., 2017) are stress-induced. Stress upregulates the
expression of expansins and xyloglucan-modifying enzymes
that can remodel the wall under abiotic stresses (Tenhaken,
2014). InMedicago truncatula, xyloglucan endotransglucosylase/
hydrolase respond to heavy metal mercury, salinity, and drought
stresses (Xuan et al., 2016) through incorporating newly
deposited xyloglucan to strengthen cell walls. However, the
role of similar maize CWPs under abiotic stresses needs to
be characterized.

The role of some CWPs in biotic stresses have been studied in
different plant species. Proteomic analysis in Arabidopsis
revealed that CWPs such as endochitinase A (ECA),
Frontiers in Plant Science | www.frontiersin.org 5
pectinesterase, peroxidase, polygalacturonase, and xyloglucan
endotransglucosylase/hydrolase were significantly changed in
infected plants by Pseudomonas syringae, resulting in enhanced
resistance (Jia et al., 2018). Chitinases have antifungal activity
against chitin-containing fungal pathogens (Huynh et al.,
1992; Volpicella et al., 2017). Overexpressing extensin
enhanced the resistance of Arabidopsis toward Pseudomonas
syringae by promoting cell wall stiffness (Wei and Shirsat, 2006).
Particularly, plants respond to pathogen attacks with a wide
range of protein inhibitors of cell wall polysaccharide-degrading
enzymes (Chivasa et al., 2005; Juge, 2006). In fruits,
polygalacturonases and pectatelyases contribute to the
softening of fruit. The suppression of these enzymes delays
fruit softening and simultaneously confers enhanced resistance
to pathogens such as Botrytis (Cantu et al., 2008; Liu et al.,
2014). In maize, some CWPs are found to play a role in
response of the plant toward biotic stress, e.g., pectinesterase/
pectinesterase inhibitor (A0A1D6KNZ1) and xylanase
inhibitor protein (Chivasa et al., 2005). Maize aspartyl protease
AED3 (B4FMW6) may be involved in the systemic acquired
resistance against fungal invasion, and its transcript (Zm0000
1d027965) was increased by a log2-fold change of 4.3 in maize
infected with Ustilago maydis. A few studies have proved that
maize ECA has a key role in several biotic stresses due to fungi,
bacteria and insect herbivory (Huynh et al., 1992; Moore et al.,
2004; Doehlemann et al., 2008; Peethambaran et al., 2010;
Mohammadi et al., 2011; Ray et al., 2016), particularly having
direct antifungal activity via the degradation of fungal cell walls
(Wang et al., 2019).
CONCLUSION AND FUTURE
PERSPECTIVES

Currently, only limited stress-related genes/proteins are
available, and there are no reports on the use of CWPs for
enhancing the stress resistance of crops. This study summarizes
available knowledge on the proven and predicted functions of
maize CWPs by mining information from existing databases.
The functions of the highlighted maize CWPs in various stresses,
particularly those involved in multiple stresses, should be of
special interest in improving stress-resistant maize.

A growing body of evidence support that CWPs are
associated with cell wall remodeling during abiotic stresses
and pathogen attacks (Houston et al., 2016). Despite their
potential roles, the abundance of stress-responsive CWPs may not
be sufficient to have substantial effects on crop resistance under
severe stresses or multiple stresses. Modifying CWPs with gene
transfer and genome editing will be a straightforward approach to
develop stress-smart crops, particularly targeting the CWPs
common to multiple stresses. The effects of the altered
accumulation of these CWPs on plant growth, wall properties,
resistance, and other agronomic traits also need to be clarified.

Finally, digging for stress-responsive CWPs will help
for developing stress-resistant crops. The in-depth link of
September 2020 | Volume 11 | Article 576385
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proteomics with other omics (particularly metabolomics) and
bioinformatics will help the discovery and characterization of
stress-tolerant functional genes/CWPs that can be used for the
improvement of maize resistance.
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