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The Rhizotrons method is an important means of detecting dynamic growth and
development phenotypes of plant roots. However, the segmentation of root images
is a critical obstacle restricting further development of this method. At present,
researchers mostly use direct manual drawings or software-assisted manual drawings to
segment root systems for analysis. Root systems can be segmented from root images
obtained by the Rhizotrons method, and then, root system lengths and diameters
can be obtained with software. This type of image segmentation method is extremely
inefficient and very prone to human error. Here, we investigate the effectiveness of
an automated image segmentation method based on the DeepLabv3+ convolutional
neural network (CNN) architecture to streamline such measurements. We have improved
the upsampling portion of the DeepLabv3+ network and validated it using in situ
images of cotton roots obtained with a micro root window root system monitoring
system. Segmentation performance of the proposed method utilizing WinRHIZO Tron
MF analysis was assessed using these images. After 80 epochs of training, the final
verification set F1-score, recall, and precision were 0.9773, 0.9847, and 0.9702,
respectively. The Spearman rank correlation between the manually obtained Rhizotrons
manual segmentation root length and automated root length was 0.9667 (p < 10−8),
with r2 = 0.9449. Based on the comparison of our segmentation results with those
of traditional manual and U-net segmentation methods, this novel method can more
accurately segment root systems in complex soil environments. Thus, using the
improved DeepLabv3+ to segment root systems based on micro-root images is an
effective method for accurately and quickly segmenting root systems in a homogeneous
soil environment and has clear advantages over traditional manual segmentation.

Keywords: root systems, rhizotrons, convolutional neural network, image segmentation, deep-learning

INTRODUCTION

The growth environment of plant roots within the soil is extremely complex. However, soil is a
non-transparent medium, so it is difficult to quickly and accurately obtain phenotypic information,
which is a critical obstacle to research on root development. Traditional root phenotype research
methods mostly use the root drilling and soil column methods as well as other excavation
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methods (Joslin and Wolfe, 1999; Wasson et al., 2016), followed
by washing, screening, dyeing, scanning, and other necessary
steps. Accordingly, these destructive sampling methods do not
enable phenotypic observations of dynamic root systems in situ.
To address this limitation, non-destructive observation methods
such as X-ray computed tomography (CT) (Mairhofer et al., 2012,
2013; Mooney et al., 2012), nuclear magnetic resonance (NMR)
imaging technology (Pflugfelder et al., 2017), laser scanning
(Fang et al., 2009), and 3D imaging (Iyer-Pascuzzi et al., 2010;
Clark et al., 2011; Topp et al., 2013) have been applied. Although
these methods can obtain in situ non-destructive images of roots
by adjusting and combining different imaging parameters, they
cannot enable the observation of larger plants, owing to expense
and technical difficulty. The Minirhizotrons method is a relatively
balanced method in terms of cost, throughput, and accuracy, and
it has the advantages of causing little degradation, enabling in situ
dynamic visualization, accurate root positioning, and digitization
(Liao and Liu, 2008). This method receives more and more
information by acquiring in situ root images and observing the
dynamics of changes in the in situ root phenotype in order to
systematically study the birth, growth, death, and decomposition
processes of roots (Kage et al., 2004; Vamerali et al., 2012).
However, the quality of in situ image segmentation underlies the
quality of the root phenotype results.

Traditionally, root segmentation is performed manually or by
semi-automatic interactive segmentation. Manual segmentation
relies on researchers visually inspecting all images to identify
each root within the intricate soil background, resulting in very
low segmentation efficiency, with the additional problem of
visual fatigue, which can cause substantial segmentation errors
(Abramoff et al., 2004; Le Bot et al., 2010). To improve the
efficiency of root segmentation, semi-automatic segmentation
combines an automated segmentation algorithm with guidance
through human–computer interactions. In this approach,
researchers assist auxiliary software in image segmentation based
on their own visual observations. For example, GT-Roots requires
researchers to specify the segmentation area and selection
method (Borianne et al., 2018). Split or WinRHIZO Tron MF
requires users to draw a perimeter around a root system in
an image with a cursor and manually adjust the perimeter
to the diameter of the root system in the picture. Over the
course of clicking, the root system is detected by the algorithm
and automatically generated, and finally, root segmentation
is completed (Lobet et al., 2013; Cai et al., 2015). However,
these methods rely on the subjective ability of the personnel
to distinguish root systems, introducing the element of visual
fatigue, the accompanying proneness to errors, and the inherent
difficulty in segmenting large-scale in situ root images.

Although Minirhizotrons can help researchers obtain high-
definition root images from complex soils, the opacity of
soil particles usually poses a challenge for further automation
of segmenting root morphology. Traditional image processing
methods, such as support vector machine (SVM) (Wilf et al.,
2016), and random forest techniques (Breiman, 2001), have
improved crop root detection (Singh et al., 2016), were adopted
in computer vision. However, some operators and thresholds set
by traditional computer vision methods, such as edge detection,

morphological filtering, and region growing algorithms, can
only segment specific objects and backgrounds and are not
practical for all situations. When there are many root coefficients
and the background is complex, such artificial target features
cannot provide valuable information for subsequent feature
learning. Under these conditions, it is difficult to achieve
the segmentation accuracy necessary for a fully automated
system. With the development of computer vision imaging
technology and analytical algorithms, many researches on crop
root phenotype data have been deepened in recent years. For
example, Falk et al. (2020) proposed a plant root segmentation
method based on a computer vision imaging platform and
ML and provided biologically relevant time series data on
root growth and development for plant breeding applications.
González et al. (2020) developed MyROOT 2.0, which uses an
automatic and efficient algorithm to detect the root regions of
images; this improved the previous version MyROOT, which
required manual intervention by the user to define the root
area pattern (Betegón-Putze et al., 2019), and also improved the
efficiency of batch root detection. Colmer et al. (2020) proposed
the SeedGerm system, which integrates automatic seed imaging
and machine learning-based phenotype analysis, thus providing a
wide range of applications for large-scale phenotype analysis and
detection of plant seeds.

Convolutional neural networks (CNNs) are an effective
method for replacing traditionally tedious manual target feature
extraction. It combines deep learning and computer vision
technology to directly extract target features from an input
image (LeCun et al., 2015), creating a rich feature hierarchy that
can be used for classification without any prior knowledge or
cumbersome artificial feature design.

For example, the encoder–decoder-based CNN system
RootNav 2.0 (Yasrab et al., 2019) for root image analysis replaces
the previous manual and semi-automatic feature extraction
system with a very deep multi-task CNN architecture RootNav
(Pound et al., 2013). RootNav 2.0 can extract accurate root
structures without user interaction, and its speed is increased
by 10 times relative to its predecessor. Ruiz-Munoz et al. (2020)
designed a framework for the application of deep learning-based
SR models to enhance plant root images and demonstrated
that the SR model based on deep learning is better than basic
bicubic interpolation. AirSurf-Lettuce combines computer vision
algorithms and deep learning classifiers to automatically measure
the distribution of field iceberg lettuce using super-scale NDVI
aerial images, and it has been used to demonstrate the high
value of this method in field crop segmentation (Bauer et al.,
2019). Wang et al. (2019) proposed a fully automatic root feature
extraction method based on CNN called SegRoot and validated
its segmentation performance on soybean root images using
transfer learning.

Semantic segmentation comprises an important branch of
CNNs used for image segmentation, and it is used to measure
and segment complex target features on a finer scale. The
first application of pixel-level semantic segmentation tasks is
the fully convolutional network (FCN) approach (Long et al.,
2014), which uses an encoder-decoder structure to automatically
extract target features and classify all pixels in an image one
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by one. In research on root image segmentation based on
deep learning, Smith et al. (2020) proposed a U-Net-based root
segmentation system; this proposed network architecture is also
composed of an encoder–decoder structure. Compared with
the traditional machine learning method using Frangi vessel
enhancement filter (Frangi et al., 1998), U-net can segment
the root morphology in soil images with higher accuracy.
However, the above image segmentation method is inadequate
for original root images with complex backgrounds, necessitating
its continued improvement. The DeepLab series is currently
the most effective semantic segmentation network tool, and it
serves to further enhance the theoretical depth of the network
model structure (Chen et al., 2014, 2017, 2018a,b). Among
this series, DeepLabv3+ combines the advantages of encoder–
decoder architecture and atrous spatial pyramid pooling (ASPP),
which can capture rich contextual information from plant root
images at various resolutions and segment clear root loci.
Ayhan and Kwan (2020) proposed a DeepLabv3+ network
improvement based on a weighting strategy, which is used to
segment three vegetation cover types: trees, shrubs, and grasses.
They showed that DeepLabv3+ is superior to the most advanced
machine learning algorithms, i.e., SVM and random forests, in
spatial information extraction and pixel segmentation.

In addition, in medical imaging (Guo et al., 2019),
remote sensing images (Zhang et al., 2018), road scenes
(Badrinarayanan et al., 2015), electrical equipment (Lin et al.,
2019), and other high-pixel image segmentation applications,
deep learning-based semantic segmentation networks are also
used to improve the efficiency and throughput of traditional
segmentation methods. Therefore, we think that a semantic
segmentation method combined with the Minirhizotrons system
and DeepLabv3+ network may offer a better approach to
segmenting in situ plant root images, facilitating further research
involving in situ root phenotypes.

Improving the efficiency and accuracy of in situ root
image segmentation and exploring high-throughput automated
methods for root phenotype analysis are of great significance
for research pertaining to root phenotypes. This study proposes
an improved and effective method for segmenting in situ root
images from the Minirhizotron system, which was employed
to obtain high-resolution images of cotton root systems. To
improve the performance of segmentation of root images, a
network design based on the encoder–decoder architecture of
DeepLabv3+ was adopted, and the final upsampling part of
the model was improved. This study evaluated the qualitative
use of the network segmentation performance according to its
accuracy, recall, and F1 score, and the segmentation results were
compared with those of Rhizotrons manual segmentation and
U-Net network, respectively.

MATERIALS AND METHODS

Image Collection
The experiment was conducted in 2019 at the experimental
station of Hebei Agricultural University in Baoding District
(38.85◦N, 115.30◦E), Hebei Province, China, which is located

in the Yellow River basin. The experimental site has a
temperate climate.

Minirhizotron Installation
Eighteen Minirhizotron tubes were installed at a 45◦ angle,
parallel to the plant rows, and at a distance of 25 cm from the
cotton plants (halfway between rows). The tubes were made of
plastic, and their bottoms were sealed. The total length of each
tube was 200 cm, and the tubes reached a total depth of 150 cm
(with 15–20 cm protruding from the soil). Light was restricted
from the aboveground section of each tube by a black cover. The
Minirhizotron tubes were installed during the winter of 2016 to
ensure that the soil would be well distributed around the tubes
and prevent roots from growing around the tubes. The device is
shown in Figure 1A.

Root Image Acquisition
To measure root growth characteristics, images were recorded
with a CI-600 scanner (CID Bio-Science, Inc., Camas, WA,
United States). The scanner was connected to a laptop computer
and was able to penetrate deep into the micro-root tubes and
close to the inner wall to enable circular scanning. Images were
captured at 20-cm intervals at nine positions along the tube with
the aid of a connecting rod. The positions of the nine pictures are
arranged in order from the deepest to the shallowest. The images
were saved in the “bmp” file format.

Root Image Segmentation
In the method based on manual inputs, the images were analyzed
with WinRHIZO Tron MF, which provided values for root length,
projected root area, root surface area, and root volume based on
users tracing the boundaries of each root using a mouse.

Annotation
We conducted the screening and classification of a collection of
cotton root images one by one. In the process, some incomplete
or blurred images were removed, ultimately leaving 200 complete
and clear in situ images of cotton roots. Among them, 20 selected
root images were manually annotated for network training, and
the remaining 180 were left as unexamined root samples that were
used to evaluate network segmentation performance.

Image annotation was completed by experienced agronomy
experts using the Adobe Photoshop CC (Adobe Inc., San Jose,
CA, United States) lasso tool. All pixels considered to be roots
were marked white and saved in a new layer, ultimately leaving
the remaining pixels marked black (Figures 1B,C). Each root
image was saved at 10,200 × 14,039 dpi resolution, and the
annotation time for each image was approximately 4.5 h.

Segmentation Model
DeepLabv3+ utilizes an encoder–decoder structure based on a
fully convolutional neural network (FCN) (Chen et al., 2018b)
and uses its previous model (DeepLabv3) as its own encoder
and Xception as its backbone (Dai et al., 2017). In the root
image segmentation task, the encoder is mainly used to extract
the characteristics of the root morphology distribution. In
the encoder portion, DeepLabv3+ does not blindly perform
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FIGURE 1 | Minirhizotron installation and image annotation. (A) Minirhizotron tubes were installed at a 45◦ angle, parallel to the plant rows, and at a distance of
25 cm from the cotton plants in adjacent rows (halfway between rows), (B) Original image, (C) annotation image.

convolution-pooling operations like FCN. Instead, it uses the
ASPP structure (Yang et al., 2018), which contains three parallel
atrous convolutions with dilation rates of 6, 12, and 18 (Yu
and Koltun, 2014), providing it a larger receptive field that
can capture more root context information. Based on this
approach, DeepLabv3+ also introduces the idea of depthwise
separable convolution (Howard et al., 2017), which reduces the
number of parameters while improving both running speed
and classification performance. In order to fuse the multi-scale
spatial information output by ASPP, feature concatenation is
conducted using the concat approach, and channel compression
is performed through a 1 × 1 convolution operation, which
further reduces the network dimensionality and computation
time. Finally, the encoder outputs a total root feature map that
is 16 times smaller than the input image.

The main function of the decoder is to upsample the root
feature map and to restore the details and boundary information
for the root morphology distribution. In the decoder part, first,
bilinear upsampling by a factor of 4 was used to change the
encoding feature from output stride = 16 to output stride = 4, and
then, the feature layer with the same spatial resolution (low-level)
as in the encoder was extracted for skip connection. Then a 3× 3
convolution kernel was used to fuse the combined total feature
information, and finally, a 4-fold bilinear upsampling operation
was performed on the fused feature to gradually restore the spatial
size of the target root system and achieve semantic segmentation
of the plant root morphology distribution. The improved model
structure is shown in Figure 2.

Model Improvement
The standard DeepLabv3+ network used the bilinear
interpolation upsampling method to expand the size of the
root fusion features in the final stage of the decoder output
segmentation image (Chen et al., 2018b). As an interpolation
algorithm in numerical analysis, bilinear interpolation is

widely used in digital image processing. In deep learning
tasks, bilinear interpolation is a common method for restoring
image resolution (upsampling), which essentially performs two
linear transformation operations. First, the x coordinate of the
target pixel is linearly transformed, and the pixel values for the
point R1 =

(
x, y1

)
and the point R2 =

(
x, y2

)
are, respectively,

obtained. Then, another linear interpolation is performed on the
pair of points R1, R2 to obtain the pixel value RP at the point
P = (x, y). This is summarized in Eqs. 1–3.

f (R1) ≈
x2 − x
x2 − x1

f (Q11)+
x− x1

x2 − x1
f (Q11)

where R1 =
(
x, y1

)
(1)

f (R2) ≈
x2 − x
x2 − x1

f (Q12)+
x− x1

x2 − x1
f (Q22)

where R2 =
(
x, y2

)
(2)

f (P) ≈
y− y1

y2 − y1
f (R2)+

y2 − y
y2 − y1

f (R1) (3)

In Eqs. 1–3, pointsQ11 =
(
x1, y1

)
, Q12 =

(
x1, y2

)
, Q21 =(

x2, y1
)
, Q22 =

(
x2, y2

)
are known coordinates. Assuming that

each pixel value along the coordinate axes satisfies the function
Rα = f (Qα), then RP is the calculated pixel value at point P =
(x, y).

Although DeepLabv3+ uses bilinear interpolation
upsampling to generate smooth segmented images, however,
because the bilinear interpolation method only considers the
influence of the gray value of the four direct neighboring points
around the sample point to be tested, it does not consider the
influence of the gray value change rate between each neighboring
point. Thus, it has the properties of a low-pass filter, high-
frequency components are degraded. Therefore, when the root
features are restored to their original spatial size, the pixels at
the edge of a root system will become blurry. To some extent,
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there are problems such as impaired image quality and low
calculation accuracy that are caused by improper design of the
interpolation function.

This article introduces the idea of the PixelShuffle algorithm
(Shi et al., 2016) to perform pixel enhancement on the fusion
features before the decoder output, replacing the second bilinear
upsampling operation in the original DeepLabv3+ network,
as shown in the red box in Figure 2. Sub-pixel convolution
is an efficient upsampling method based on deep learning.
In most cases, the convolution operation will extract target
features and obtain low-resolution feature maps. However, when
stride = 1/r(for r > 1), the length and width of the feature layer
after the convolution operation will necessarily become larger,
that is, the resolution will increase. This operation is called sub-
pixel convolution (Aitken et al., 2017). Its initial definition is
shown in Eq. 4:

ISR
= f L (

ILR)
= PS

(
WL ∗ f L−1 (

ILR)
+ bL

)
(4)

here, ISR refers to the finally restored high-resolution RGB image,
ILR refers to the low-resolution RGB image before restoration,
f L−1 refers to a neural network with L - 1 layers, WL and bL are
parameters of layer L, and PS(·) represents a shuffling operator
that rearranges the elements of an H ×W ×

(
C · r2) tensor to a

tensor of the shape rH × rW × C, where r is the upscaling factor.
In this article, r = 2.

The implementation of the PixelShuffle algorithm is
summarized in Figure 3. The main concept of PixelShuffle
focuses on the sub-pixel convolutional layer, which can convert a

low-resolution input image of size H ×W into a high-resolution
image of rH × rW through sub-pixel convolution. In the whole
process, there is no direct way to improve the resolution of target
features through interpolation and other methods. Instead, first,
a sub-pixel image is created from the original input image using
fractional indices, and then, the feature map of r2 channels is
generated by convolution (the feature map size is the same as
the input low-resolution image), and finally, this high-resolution
image is obtained by periodic shuffling. Such an approach can
enable the network to learn an interpolation method suitable for
the task in the previous convolution layer parameters.

Previous studies have shown that for the problem of image
super-resolution reconstruction based on deep learning, an
upsampling process based on sub-pixel convolution is effective in
improving image quality (Zhao et al., 2019, 2020; Yu et al., 2020).
Therefore, in the root pixel segmentation task, the introduction
of sub-pixel convolution can improve the problem of pixel loss
after bilinear upsampling in the standard DeepLabv3+, thereby
improving the segmentation accuracy of the network for small
root loci and further enhancing the robustness of the model.

Network Training
We randomly selected 10 of the 20 root images with annotations
to form the training and validation sets, respectively. As the
original images used were too large for GPU memory allocation,
we split the 10 root images and their corresponding annotations
into 512 × 512 sub-images. In addition, zero padding was
included for each image to ensure their dimensions would be
divisible by 512.

FIGURE 2 | The proposed network architecture.
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FIGURE 3 | The PixelShuffle algorithm implementation flowchart.

The server environment for all computations used Ubuntu
16.04LTS and Python 3.6.7. The model was trained and tested
under TensorFlow 1.13.1 and CUDA 10.2. The server was
equipped with two NVIDIA GEFORCE RTX 2080Ti graphics
cards for acceleration, and each graphics card had 10 GB
of video memory.

We used three different sampling rates (6, 12, and 18) in
the ASPP module of DeepLabv3+ to obtain multi-scale features
of the target root system. A pixel-by-pixel cross-entropy loss
function and an Adam optimizer (Kingma and Ba, 2015) were
used to train the network. Adam is an efficient stochastic
optimization method with low memory requirements. It can
complete the initial stage of model training by adaptively
adjusting the learning rate and quickly approaching the vicinity of
the optimal solution, avoiding SGD to adopt a constant learning
rate during training to update the weight. In order to improve
the convergence speed of the network during training, after many
tests, the initial learning rate, momentum β1, momentum β2, and
epsilon were set to 7e-4, 0.9, 0.999, and 1e-8, respectively. In order
to prevent the network from overfitting, the weight attenuation
was set to 1e-6. Because a batch size that is too high will result
in insufficient GPU memory, the batch size was set to 24, and 80
epochs were trained.

Evaluation
In order to objectively and reasonably evaluate the effect of the
network in the cotton root morphology segmentation task, this
paper utilized three quantitative indicators, i.e., precision, recall,
and F1-score:

Precision =
TP

TP + FP
× 100% (5)

Recall =
TP

TP + FN
× 100% (6)

F1 = 2× Precision×
Recall

Precision+ Recall
× 100% (7)

In Eqs. 5, 6, TP is the number of pixels of the root distribution
position that is correctly divided, FP is the number of background
pixels that are incorrectly divided into the root distribution
position, and FN is the number of root pixels that are incorrectly
marked as the background. This paper uses precision to evaluate
the global accuracy of the model, reflecting the proportion of
true positive samples in the positive examples of root pixels

determined by the classifier. Recall reflects the proportion of
positive examples that are correctly determined to account for
the total positive examples. F1 can be regarded as the weighted
average of model accuracy and recall. For models with better
segmentation performance, the coefficient is relatively high. In
the model training process, the verification set was used to
calculate the recall, precision, and F1 values of each epoch output
in detail, and then, the model performance was evaluated using
the test set that was not used in the training.

RESULTS

Performance
After each epoch, accuracy and loss values were calculated
on the training set to monitor its ability to generalize and
avoid overfitting. After about 7 h and 8 min of training, the
model accuracy and loss values tended to be flat after the 40th
epoch, and a final accuracy of 0.9978 was obtained by the
80th epoch, with the loss ultimately stabilizing at approximately
0.0051 (Supplementary Figure S1). Table 1 shows the F1-
score, recall, and precision of the proposed model in the
verification stage. DeepLabv3+ ultimately achieved precision
and recall values of 0.9702 and 0.9847, respectively, with the
validation set, which means that the number of pixels in the
model that mistake the soil background for the root is greater
than the number of pixels that mistake the root for the soil
background. Additionally, the overall standard F1-score of the
model segmentation performance evaluation reached 0.9773,
which demonstrates the high accuracy of our method.

Figure 4A illustrates the visual effect of the improved
DeepLabv3+ in extracting root trajectories from in situ images
of cotton roots. The predicted root pixels recovered most of
the original root distribution path, reflecting a high similarity
to the manual labeling conducted. The example image shown
in Figure 4A was the most difficult to distinguish between soil
particles and root pixels among the cotton root image data

TABLE 1 | DeepLabv3+ segmentation performance evaluation on
the validation set.

Accuracy Precision Recall F1 Loss

DeepLabv3+ (Improved) 0.9962 0.9702 0.9847 0.9773 0.0717
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FIGURE 4 | Examples and details of segmentation results. (A) The visual effect of the improved DeepLabv3+ in extracting root trajectories from in situ images of
cotton roots, (B) Comparison of segmentation results of previously unanalyzed images. Red box, neglected root locus; Blue box, background mistaken for root.

set obtained by Minirhizotrons. It has very small and irregular
root trajectories and contains more obstructions by stones. Even
human eyes have difficulty in quickly locating the root shape

distribution in the image, which poses a huge challenge to the
root segmentation task, but our improved DeepLabv3+ network
can still more accurately mark the root distribution position with
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high-contrast contours. To see the results of manual tracking and
the improved DeepLabv3+ prediction more clearly, we inserted
an enlarged image at the same position in all six images in
Figure 4 to show areas with noisy data.

Untrained Root Image Prediction
In order to further evaluate the segmentation performance of
this method for plant roots, we randomly selected 161 out
of 180 root images that were unexamined, and, respectively,
performed Rhizotrons manual segmentation and the improved
DeepLabv3+ network segmentation. Figure 4B shows an
example of images and predictions that have never previously
been analyzed with the improved DeepLabv3+.

In the prediction results of 161 root images, no obvious
performance degradation was observed, which is satisfactory in
the segmentation results of most root shapes. However, there
were still subtle errors, such as the number of brown root
pixels (red box in Figure 4B) in the original image that were
ignored by the network, and some of the highlighted soil stone
particles (blue box in Figure 4B) under the network analysis
were miscategorized as roots. The results show that the improved
DeepLabv3+ has a good general ability to analyze root images
that it has not been trained with. Additionally, thanks to the
ability of Minirhizotrons system to some extent, it is able to
obtain high-quality, high-consistency images.

To further evaluate the segmentation performance of the
proposed method for plant roots, the 161 root images segmented
by the improved DeepLabv3+ and Rhizotrons were analyzed
using WinRHIZO Tron MF to obtain four quantitative indicators
of root length, surface area, volume, and average diameter for
comparative evaluation (Table 2). The root length and average
diameter were measured by WinRHIZO Tron MF, while the root
surface area and volume were calculated from the root length and
average diameter. In addition, a scatterplot and a fitting curve of
the improved DeepLabv3+ and Rhizotrons manual segmentation
of root length were also drawn, as shown in Figure 5. The
Spearman rank correlation between the two measurements was
0.9667 (p < 10−8), with r2 = 0.9449. The comparison reveals
that although the improved DeepLabv3+ and Rhizotrons manual
segmentation have highly correlated root length results, root
surface area, average diameter and total volume results still
include obvious errors between the methods.

Sub-Pixel Convolution Performance
To verify the effectiveness of the improved DeepLabv3+method
on the cotton root data set, we recorded the dice scores of
different segmentation methods (i.e., standard DeepLabv3+,
improved DeepLabv3+, and standard U-Net) on 161 root image
segmentation task that has never been trained, as shown in

TABLE 2 | Comparison of the improved DeepLabv3+ segmentation and manual
segmentation results of 161 root images under WinRHIZO root analysis software.

Phenotypic parameters Length Surf area Avg diam Root volume

Spearman 0.9667 0.8624 0.0808 0.7955

R2 0.9449 0.7119 0.0062 0.5406

FIGURE 5 | Root length estimation results (161 images). The two
measurements have a Spearman rank correlation of 0.9667 and an R2 of
0.9449.

Table 3. We compared the root segmentation results of the
original network’s bilinear interpolation upsampling method and
the sub-pixel convolution upsampling method, for example.
As shown in Figure 6, two root images with different soil
backgrounds were randomly selected from the 180 root images
that had never been subjected to segmentation analysis.

Under interference from two different soil background
particles, the improved network can complete the segmentation
of the original root system images with higher accuracy
(Figures 6C,F),coincides with dice score. For Figure 6A,
with higher contrast between root and soil, the traditional
bilinear interpolation upsampling method functions similarly
to a low-pass filter, such that some deep root features of the
root system are degraded when returning to the original
pixel value (red box in Figure 6B). Additionally, the loss
of part of the main root diameter is visible to the naked
eye (green box in Figure 6B). In situations such as the
one shown in Figure 6D, where the contrast between the
root system and the soil is low, the traditional bilinear
interpolation upsampling method loses the continuity
and brightness of the root system owing to interference
from complex soil particles (red box in Figure 6E). The
improved network can restore the multi-scale root features
visible in the original pixels captured and maintain a high
degree of restoration (Figure 6F). Thus, the improved
DeepLabv3+ method can maintain the integrity of major
roots and the continuity of the outline of the fine root edge,
which can thus highlight the distribution characteristics of the
fine root with higher contrast, thereby achieving improved
segmentation results.

Comparison With U-Net
To further compare the performance of other segmentation
methods with the proposed network, we trained another
network U-net that is widely used to perform segmentation
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TABLE 3 | Performance comparison of different segmentation methods
on the test set.

Network Testing dice score

U-Net 0.5923

DeepLabv3+ 0.6252

DeepLabv3(Improved) 0.6744

(Ronneberger et al., 2015). U-net is a deep learning network
composed of an encoder–decoder structure with jump
connections. Its structure is more inclined to extract the global
features of the input image and generate a new representation
form based on the overall information. To ensure the consistency
of the training process, we used the same 10 annotated in situ
cotton root images as the input of the standard U-net and
also conducted 80 epochs of training. The server training
environment was the same as that used for DeepLabv3+.

Table 4 shows the precision, recall, and F1-score results of
the improved DeepLabv3+ and the standard U-Net method

in the verification stage; the precision, recall, and F1-score of
the improved DeepLabv3+ were 0.9702, 0.9847, and 0.9773,
respectively, while those of U-Net were 0.8413, 0.9489, and
0.8919, respectively. In addition, in the segmentation test of
161 root images, U-Net’s dice score (0.5923) is also lower
than that of the improved DeepLabv3+ (0.6744), as shown in
Table 3. Accordingly, our improved DeepLabv3+ outperformed
the standard U-Net in all three metrics.

To compare the segmentation performance of the two CNN
networks more clearly, part of the root structure was randomly
intercepted from the test images that had never been seen, as
shown in Figure 7. Compared with the improved DeepLabv3+,
U-net’s root trajectory segmentation was too smooth and some
of the visible details were lost (red box in Figures 7B,E).
Additionally, the method we proposed was superior in terms
of detail processing between root pixels and the prediction
effect of the root edge contour. However, we also noticed some
shortcomings; the improved DeepLabv3+, compared to U-net,
had a tendency to mistake individual soil particles as root pixels
(green box in Figures 7C,F).

FIGURE 6 | Example images of the comparison of the bilinear interpolation and subpixel convolution segmentation results of DeepLabv3+. (A,D) Raw image, (B,E)
Original DeepLabv3+ segmentation results, (C,F) Improved DeepLabv3+ segmentation results.
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TABLE 4 | Comparison of performance indicators between the improved
DeepLabv3+ and the standard U-Net network segmentation in the
verification stage.

U-Net DeepLabv3+ (Improved)

Precision 0.8413 0.9702

Recall 0.9489 0.9847

F1 0.8919 0.9773

DISCUSSION

Minirhizotrons visualizes root growth from pictures of soil
profiles obtained by a camera or scanner through a glass or
acrylic tube (Ohashi et al., 2019). It is considered a non-
destructive method that enables monitoring of root growth across
time and seasons (Kirkham et al., 1998). The high-resolution
in situ root images collected by the Rhizotrons method generally
segments roots and obtains root morphological indicators using
WinRHIZO Tron MF software, which is a traditional manual
segmentation method (Munoz-Romero et al., 2010). Further
analysis of root morphological indicators can be used to obtain
the dynamics of root phenotype changes, which is an advantage
of the Rhizotrons method. However, this traditional manual
segmentation method is greatly affected by human subjectivity,
and the segmentation time is longer, approximately 2 to 3 h for

an image, making it an inefficient method. Therefore, a high-
efficiency and high-accuracy in situ root image segmentation
method is needed to support in situ root phenotype research
(Smith et al., 2020).

Improving image quality is the most important issue in in situ
root system research. To improve the image quality, first, we
embedded the micro-root tubes 12 months in advance to make
the outer wall of the micro-root tubes close to the soil; second,
the imaging equipment was protected to prevent scratches on
the inner wall of the micro-root canal; third, before imaging, we
brushed the inner wall of the root canal to reduce the influence of
dust and determine whether there is water leakage.

In this study, a deep convolutional neural network based on
DeepLabv3+ was implemented and tested for the purpose of
automatic segmentation of root trajectories in soil. A micro-root
window root system was used to obtain high-resolution in situ
cotton root images, and WinRHIZO Tron MF was used in a
comparative analysis of the segmentation performance of the
proposed method. The root image segmentation quality obtained
validates the effectiveness of the proposed segmentation method.
Comparisons of the root image segmentation quality between the
proposed methods and more established methods have revealed
the efficiency of the proposed method.

To deeply analyze the segmentation performance
of our proposed method, the results of the improved
DeepLabv3+ network and Rhizotrons manual hand-drawn

FIGURE 7 | Example images used to compare the improved DeepLabv3+ and the standard U-Net segmentation performance. (A,D) Raw image, (B,E)
Segmentation output from U-Net, (C,F) Segmentation output from the improved DeepLabV3+.
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segmentation method were compared. Although the comparison
results verify that the root lengths obtained with the improved
DeepLabv3+ and Rhizotrons hand-segmentation were strongly
correlated (Figure 5), there were still large errors in the root
SurfArea, AvgDiam and RootVolume results (Table 2). The main
explanation for the difference is that the automatic segmentation
results of AvgDiam and the manual segmentation results
of Rhizotrons have lower fitting performance (r2 = 0.0062).
By observing the segmentation statistics of all root images,
we find that the automatic segmentation result of AvgDiam
always remains near 0.3mm, and does not change with roots
of different diameters (Supplementary Table S1). In addition,
the reason for the error of SurfArea and RootVolume is
related to its calculation method:SurfArea and AvgDiam
have a square relationship, while RootVolume and AvgDiam
have a cubic relationship, So the error of AvgDiam will
make the calculation error of SurfArea and RootVolume
bigger. In addition, we believe that another factor that
affects the disparity in root segmentation results is that
the improved DeepLabv3+ can mistake a portion of soil
particles that resemble roots to be root pixels (Figures 4, 7).
Accordingly, our future work will focus on further improving
the accuracy of the model, especially for the measurement of the
average root diameter.

Although the standard U-Net method stitches features
together in the channel dimension to obtain richer features, its
upsampling results are still relatively smooth. For complex root
images, it is easy to lose some details (Figure 7). Additionally,
our improved DeepLabv3+ network introduces the PixelShuffle
algorithm, which enables the network to learn an interpolation
method that adapts to the root segmentation task, and then
performs pixel enhancement on the fusion features before the
decoder output. In the 161 image segmentation experiments that
were never trained, our proposed model also achieved more
accurate results (testing dice score of 0.6744). Therefore, the
improved DeepLabv3+ achieves accurate segmentation of small
branches in the root system with better performance in assessing
new samples outside the training set. These colored boxes in
Figures 4, 6, 7 are just examples to get a clearer contrast of
some of the details.

The traditional Rhizotrons manual segmentation of each
cotton root image takes an average of 4.5 h. In this paper, the
161 root images manually segmented by Rhizotrons required a
total of more than 700 h, which is often not feasible in actual
projects. The improved DeepLabv3+ model takes only 7 h to
train from scratch. For in situ root image prediction, each image
takes only 55 s, and 161 root image predictions take less than 3 h
in total. Compared with Rhizotrons manual segmentation, end-
to-end automatic segmentation saves a lot of time with a small
error range, and we believe this will greatly promote the study of
root morphology segmentation in soil.

Another issue worth discussing in this article is the number
of training samples. The resolution of each in situ cotton
root system image obtained by Minirhizotrons is as high as
10,200 × 14,039 dpi. We selected 20 of the 200 in situ images
of cotton root system as quasi-training images. After many
experiments, we found that if all 20 annotated root images are

used for network training, the final model accuracy does not
objectively improve, but the training time does double. As such,
some of this limited dataset appears to indeed be redundant
for the network learning. To ensure the diversity of the data,
we finally randomly selected 10 of the 20 annotated images
for network training. Another 10 of them were used as spare
images. As the network input size of the improved DeepLabv3+ is
512 × 512, we generated 16,936 sub-images for network training
and 892 sub-images for network verification by cropping portions
of the original images. This method enabled DeepLabv3+ to
successfully converge within 80 epochs of training. Accordingly,
these 10 original root images are sufficient for the network.
Moreover, too much training data is considered to not only be
tedious but also cause models to be overfit.

The performance of CNN-based segmentation methods
partially depends on annotation quality. Owing to the complexity
of plant root systems, even experienced agronomists should be
expected to introduce some errors when annotating thousands of
roots. Obviously, reducing annotation errors as much as possible
can somewhat improve the accuracy of target segmentation,
because any choice of CNN depends on having correct
annotation. Additionally, the process of annotating plant roots
is also a very time-consuming task. In this study, the annotate of
each root image required 300 min. Accordingly, looking for ways
to improve annotation quality and save annotation time will be
an important direction of future research.

Transfer learning is a method that uses existing knowledge
to solve problems in different but related fields. The key goal is
to complete knowledge transfer between related fields (Pan and
Yang, 2010). In this study, the previous method of data labeling
was time-consuming and cumbersome. However, the use of the
DeepLabv3+ network structure proposed in this paper to train
the root system data set must be started from scratch each time.
Therefore, in future research, we intend to use the method of
transfer learning to fine-tune the existing network using root
images from different plants to further transfer our proposed
method to root segmentation in other crops.

Image enhancement technology has proven to be a method
that can improve the performance of CNN models (Perez and
Wang, 2017). Further exploration of the application of image
enhancement methods in data sets will also be a major direction
of our future work. We have recently examined how generative
adversarial network (GAN) based on deep learning can learn
the characteristics of a class of data and generate similar data
(Goodfellow et al., 2014). To solve the problem of randomly
occurring apple diseases leading to insufficient image data sets,
Tian et al. (2019) used CycleGAN to learn the characteristics
of anthracnose apple images and transfer them into healthy
apple images. Notably, the apple lesion images generated by
CycleGAN have new backgrounds, textures, and shapes, which
is very helpful for improving the performance and robustness
of the models used for analysis. Such results show that we can
also use GAN to extract the root soil characteristics of other
crops into the cotton root image. This method is conducive to
being integrated into further improvements of DeepLabv3+ ’s
root segmentation performance and robustness under complex
soil backgrounds.
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CONCLUSION

To improve the efficiency of traditional manual segmentation
of plant root images, we have proposed and validated a
trainable end-to-end deep learning method, a CNN approach
implemented in DeepLabv3+, which can be used to segment
plant roots efficiently. The CNN model proposed in this paper is
based on the encoder–decoder architecture of DeepLabv3+ and
improves the final upsampling operation of the network.
Precision, recall, and F1-score were used to evaluate the
network performance, achieving final verification set scores
of 0.9702, 0.9847, and 0.9773, respectively. Additionally,
WinRHIZO Tron MF was used to analyze data from 161
root images segmented by the improved DeepLabv3+ and
the traditional Rhizotrons method, and four quantitative
indexes, i.e., root length, surface area, volume, and average
diameter, were obtained for comparative evaluation. The
root length results of the improved DeepLabv3+ network
had a higher Spearman rank correlation with the manual
results, i.e., 0.9667 (p < 10−8) with r2 = 0.9449, compared
with the Spearman rank correlation between the root length
results of Rhizotrons and manual segmentation. Thus, the
proposed method significantly improves the efficiency of root
segmentation in soil, making it an efficient alternative to
Rhizotrons manual segmentation. Additionally, compared with
the U-Net network method, the improved DeepLabv3+ achieved
a higher F1-score than U-Net (0.8919) and was observed
to segment the in situ root images with higher pixel
accuracy and quality.
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