
OPINION
published: 30 October 2020

doi: 10.3389/fpls.2020.576971

Frontiers in Plant Science | www.frontiersin.org 1 October 2020 | Volume 11 | Article 576971

Edited by:

Benoit Schoefs,

Le Mans Université, France

Reviewed by:

John P. Bucci,

University of New Hampshire,

United States

Julio Turrens,

University of South Alabama,

United States

*Correspondence:

Susana Puntarulo

susanap@ffyb.uba.ar

Specialty section:

This article was submitted to

Marine and Freshwater Plants,

a section of the journal

Frontiers in Plant Science

Received: 28 June 2020

Accepted: 18 September 2020

Published: 30 October 2020

Citation:

Cabrera J, González PM and

Puntarulo S (2020) The Phycotoxin

Domoic Acid as a Potential Factor for

Oxidative Alterations Enhanced by

Climate Change.

Front. Plant Sci. 11:576971.

doi: 10.3389/fpls.2020.576971

The Phycotoxin Domoic Acid as a
Potential Factor for Oxidative
Alterations Enhanced by Climate
Change

Joaquin Cabrera 1,2, Paula Mariela González 1,2 and Susana Puntarulo 1,2*

1Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Fisicoquímica, Buenos Aires, Argentina, 2 Instituto de

Bioquímica y Medicina Molecular (IBIMOL), Consejo Nacional de Investigaciones Científicas y Técnicas

(CONICET)-Universidad de Buenos Aires, Buenos Aires, Argentina

Keywords: domoic acid, harmful marine toxins, oxidative stress, photosynthetic organisms, climate change

INTRODUCTION

The climate change affects water quality and sustainable development; therefore, security of the
aquatic communities is altered (World Meteorological Organization, 2020). However, data on
water resources are patchy and incomplete. Exceptional global heat, retreating ice, and high sea
level records driven by greenhouse gases from human activities were described over the last decade.
Average temperatures for the 5-year (2015–2019) and 10-year (2010–2019) periods are almost
certain to be the highest on record. The scenario is the same in each point of the planet because the
heating induced by human activities is affecting the scale and intensity of extreme meteorological
phenomena. Levels of heat-trapping greenhouse gases in the atmosphere have reached another high
new record in 2018 [37,000 tons of carbon dioxide (CO2)], and threat to ocean life is huge because
more than 90% of excess heat caused by global change ends up affecting water and aquatic life. Over
the last decades, oceans have becomemore acid (0.1 pH unit) because the increase in dissolved CO2

causes this effect (IPCC Intergovernmental Panel on Climate Change, 2007).
Phytoplankton productivity, specifically that of diatoms with a relatively large cell size, is limited

by iron (Fe) availability in the high-nutrient, low-chlorophyll (HNLC) region of the ocean (de Baar
et al., 2005). Fe availability will change with the increasing contribution of ferrous to ferric Fe
(Millero et al., 2009) and the conditional stability constant of Fe-ligand complex (Shi et al., 2010) in
response to the increase in the acidity of seawater. Other human perturbations, such as land use and
SO2 and NOx emissions, will also alter the Fe distribution and bioavailability in the open oceans
(Mahowald et al., 2009). The interactive effects of the ocean acidification and the Fe availability
are expected to play crucial roles in the biogeochemical cycling of nutrients in the HNLC regions.
The elemental composition of unialgal culture of Pseudo-nitzschia pseudodelicatissima changed in
response to alterations in both CO2 levels and bioavailable dissolved inorganic Fe concentrations
(Sugie and Yoshimura, 2013). Sugie et al. (2013) reported that high CO2 affects nutrient dynamics
in Fe-limited phytoplankton communities.

In marine environments, some microalgae (diatoms, dinophyceae, rhodophyte, dinoflagellates),
ciliates, and cyanobacteria species synthetize toxins (Reguera, 2002) that diffuse out of the
organisms and reach other aquatic systems directly from the water or through the trophic transfer.
Continued acidification of the ocean inhibits the growth of phytoplankton species that have shells
of calcium carbonate, which dissolve in acidic conditions, and the growth of organisms without
calcium carbonate shells is favored (Moore et al., 2008). During harmful algal blooms (HABs),
bloom-forming diatom species tend to be more flexible in the use of different carbon sources, and
these abilities may provide a competitive advantage, especially under changing conditions as they
occur during a bloom. The ocean acidification during blooms favored organisms that fix CO2 such
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as some diatoms (Hansen, 2002). It has been reported that
Pseudo-nitszchia australis (Wingert, 2017), P. pseudodelicatissima
(Sugie and Yoshimura, 2013), and Pseudo-nitszchia subcurvata
increase their growth rate under these conditions. Even more,
Pseudo-nitzschia multiseries increase the production of the
biotoxin domoic acid (DA) (Trimborn et al., 2008). Degraded
water quality from nutrient pollution, physical, biological, and
other chemical factors contribute to the growth and persistence
of many HABs (Cabrera et al., 2019a). The most severe
consequences of HABs include effects on fish, bird, and mammal
mortalities, by respiratory or digestive tract problems, memory
loss, seizures, lesions, and skin irritation (Sellner et al., 2003).
Fluctuating seasonally, temperature, oxygen (O2) consumption,
availability of food, endogenous rhythms, and HABs are among
the important potential stressors studied for aquatic organisms.

The community composition and toxigenicity of the diatom
Pseudo-nitzschia in the open South Atlantic Ocean were
characterized during the austral spring of 2007 by Guannel
et al. (2015). Multiple morphological types of Pseudo-nitzschia
were detected in coastal and in open-ocean waters. The toxin
produced by Pseudo-nitzschia, DA, was present in at least 10
species in the South Atlantic (Gayoso, 2001; Reguera, 2002).
Even though Pseudo-nitzschia sp. blooms occur in different
environmental conditions, Marchetti et al. (2004) andWells et al.,
2005) showed a positive correlation between these blooming
events and high levels of Fe(III) and NO−

3 , and low levels

of PO3−
4 and SiO4−

4 . Even more, differences in temperature,
salinity, pH, high irradiance, and long-term photoperiod can
affect the formation of Pseudo-nitzschia blooms (Lelong et al.,
2012). Woods (2016) suggested a possible photo-oxidative stress
regulation on DA’s higher production under high irradiance.
Cellular stress produced by these conditions may favor the
production of toxins during HAB events. The main objective
of this opinion article is to briefly report the toxicological
implications of the harmful marine phycotoxin DA and its
intrinsic properties. Special focus will be made on the reported
oxidative stress status in marine algae in relation to the exposure
to DA. Moreover, because Fe presence is known to be implicated
in oxidative stress generation, and its occurrence seems to be a
fundamental factor in the production of DA, the oxidative effects
of the biotoxin will be discussed in relation to its capacity to
bind Fe.

CHEMICAL, BIOLOGICAL, AND
PRODUCTION FEATURES OF DA

DA is a tricarboxylic amino acid belonging to the category
of cainoids (Wright and Quilliam, 1995). The main chemical
features of DA (C15H21NO6) are as follows: average mass of
311.330 Da and percent composition of 57.87% C, 6.80% H,
4.50% N, and 30.83% O (Merck online index). Pure DA appears
as colorless crystal needles. It is heat-stable and soluble in water,
dilute mineral acids, and alkali solutions. It is slightly soluble
in methanol and ethanol and insoluble in petroleum ether and
benzene (Jenkins, 1996).

Even though DA was identified in 1975 as being produced
from the Mediterranean macroalgae Alsidium corallinum, it was
first isolated from the red alga Chondria armata. Its extracts
have been used as an ascaricidal medication (Daigo, 1959) and
as insecticide (Iverson and Truelove, 1994). DA was later found
in either microalgae species (diatoms) or macroalgae species
(red algae) (Ravn, 1995). This biotoxin was identified as a
public health risk toxin after an incident occurred in 1987 on
Prince Edward Island, Canada (Wright and Quilliam, 1995). It
is recognized that mussels contaminated with high levels of DA
from algae, when are consumed by humans, produce a severe
disorder known as amnesic shellfish poisoning (ASP), which
could even lead to the patient death (Pulido, 2008). However, no
systematic information is known up to now about DA actions in
photosynthetic organisms.

DA is an excitatory amino acid containing the structure
of glutamic acid and resembles kainic acid (Todd, 1989). DA
binds at the same receptor site in the central nervous system
than kainic and glutamic acid (Mok et al., 2009), and its
coexisting natural chemical analogs act as a potent excitatory
neurotransmitter. Transmembrane absorption and biological
barriers interaction with DA were reported. According to
data provided by Preston and Hynie (1991), the blood–brain
barrier greatly limits the amount of toxin that enters the brain
in vertebrates. Kimura et al. (2011) studied the transcellular
transport and intestinal absorption mechanism of DA through
intestinal Caco-2 cellular monolayers. Their results suggested
that the apical and basolateral transport of DA through these cells
is mediated by anion transporters.

The biosynthesis pathway of the DA is not fully elucidated,
but it is known that large amounts of ATP are required for its
production (Pan et al., 1998; Thessen, 2007). Recently, Brunson
et al. (2018) established a biosynthesis model by finding a cluster
of genes related to recombinant DA biosynthetic enzymes and
linked their mechanisms to the construction of a pyrrolidine
skeleton. Moreover, Sobrinho et al. (2017) determined that DA
concentrations of P. multiseries significantly increased under
high Fe concentration, suggesting that Fe is required for the toxin
synthesis. Extracellular DA in water undergoes photodegradation
or biodegradation and does not accumulate in the water column
(Bejarano et al., 2008; Zabaglo et al., 2016). However, the
adsorption of AD in the sediment can have a long-term impact
on the trophic web due to its transfer through benthic organisms
(Burns and Ferry, 2007; Zabaglo et al., 2016).

GENERAL CHARACTERISTICS OF DA ON
THE OXIDATIVE METABOLISM

Algal Ecology
Even though physiological and ecological roles for some marine
toxins produced during HABs were postulated, the matter
is not fully understood. Ding et al. (2007) suggested that
responses of marine plants to adverse environmental conditions
involve excess production of reactive O2 species (ROS). A
cellular signaling, generated by the effects of the phycotoxins,
results in a free radical cascade and activation of enzymatic
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processes. Consequently, an extensive damage of cell structures
and ultimate cell death has been described (Aarts and Tymianski,
2004). Phytoplankton is responsible for the 50% of global primary
production in the ocean, sustaining the pelagic food chains in the
aquatic ecosystems (Roig, 2000), and for the substantial sink for
CO2 inmarine ecosystems. Then, if these organisms are adversely
affected, the surrounding ecosystem may also feel the effects,
either directly or indirectly, from the lack of a food source (Wang
and Zheng, 2008).

Hypotheses of DA Actions
Several hypotheses were presented to explain the potential roles
for DA in the toxin productive algae: (1) Doucette et al. (2008)
and Jackson et al. (1992) postulated that it could serve as an
osmolyte under conditions of increasing salinity; (2) Tammilehto
et al. (2015) suggested that it may act as a long sighted protection
of the algae against the action of consumers such as copepods; (3)
Trick et al. (2010) and Rue and Bruland (2001) proposed that DA
could be a binding ligand for trace nutrients such as transition
metals; (4) Xu et al. (2015) suggested that it may have allelopathic
effects in other members of the phytoplankton community,
stimulating changes in the dynamics and composition of this
algae. Besides the possible combination of several of these actions,
the DA effect on the rest of the photosynthetic community is an
interesting point to investigate because its effect on non–toxin-
productive aquatic organisms is not clear.

New Methods of Inquiry
Allelopathic interactions between plants and other
photosynthetic organisms showed both positive (hormesis)
and negative (oxidative stress) effects, through the release of
chemicals into the environment. These toxic effects include
inhibition of growth of various organs and delay or restriction of
seed germination (Abrahim et al., 2000). Oxidative stress could
participate in the allelopathic response due to overproduction
of ROS and alterations in the cellular antioxidant system
(Abrahim et al., 2003; Bai et al., 2009). Pseudo-nitzschia cells
can have allelopathic effects in sympathetic species (Granéli and
Hansen, 2006). Lundholm et al. (2005) examined the potential
allelopathic effect of pure DA additions to cultures of different
phytoplankton species. In this study, the tested species were
selected in order to represent different algal classes that occur
in natural environments together with P. multiseries. The lack
of allelopathic effects of the DA-producing marine diatom was
reported under those experimental conditions. However, recent
studies (Xu et al., 2015) have shown possible allelopathic effects
in Fe-enrichment conditions in laboratory cultures (Prince et al.,
2013; Sobrinho et al., 2017). Even more, Bates et al. (2018)
suggested that DA could indirectly improve the competitive
ability of Pseudo-nitzschia sp. on a phytoplankton community,
and Fe is likely to be involved in this effect. Olson and Lessard
(2010) argued that high concentrations of DA located within the
diffusion zone of a cell can also affect microzooplankton grazing.

Oxidative Effects Produced by DA
The generation of oxidative stress due to the exposure to
DA has been reported in a large number of animal species,

such as bivalves, fish, and aquatic and terrestrial mammals,
as a secondary effect of its neurotoxicity (Zabaglo et al.,
2016). Increased ROS formation was also observed in the
nematode Caenorhabditis elegans when it was exposed to DA
(Tian and Zhang, 2019). Moreover, an antioxidant treatment
suppressed the toxic effects of the DA on the locomotion
behavior of the nematodes, suggesting that oxidative stress
is possibly involved in the mechanism of DA toxicity. In
photosynthetic organism, the oxidative condition of the pennate
diatom Phaeodactilum tricornutum, a non–toxin-producing
microalgae, was characterized during the exposure to DA under
laboratory conditions. The reported evidence suggested that
when P. tricornutum was exposed to DA, (a) the reactive species
generation rate was increased in the intracellular environment
(Cabrera et al., 2019a), and (b) the reactive species were
released to the extracellular medium (Cabrera et al., 2019b,c).
Cabrera et al. (2019a) reported DA effects in terms of oxidative
status of P. tricornutum during the exponential (EXP) phase,
incubated in the presence of 64µM DA. The generation of
active species was measured following the oxidation rate of 2′,7′-
dichlorofluorescein diacetate (DCFH-DA). The linear increase
in the production of reactive species from both control and
exposed algae homogenates was significantly higher in cells
incubated in the presence of DA, as compared to control
ones. Also, the reaction rate was measured in the presence of
scavengers, suggesting a similar contribution of several active
species (H2O2, Fe, and O−

2 ). To study the effects on the
extracellular environment, P. tricornutum cells were exposed to
DA, washed with buffer, and incubated with DCFH-DA. After
isolation of the cells by centrifugation, the release of reactive
species to the supernatant was assessed by the oxidation rate of
DCFH-DA using either control or cells previously exposed to
DA. An increase by three-fold was reported in treated cells in
the EXP phase of development, as compared to control ones.
This oxidation rate was decreased in the presence of superoxide
dismutase, catalase, dimethyl sulfoxide, desferroxamine, and
glutathione (Cabrera et al., 2019b,c). Similar profiles were
observed in either LAG or stationary (ST) phases of growth of
the cells previously incubated with DA. Moreover, many studies
reported dissolved DA in seawater (de la Iglesia et al., 2008; Mafra
et al., 2009; Vera-Avila et al., 2011; Wang et al., 2012; Godinho
et al., 2018) showed that during blooms of P. multiseries dissolved
DA could be detected in the culture medium. These results could
suggest that waterborne exposure of marine organism should
be considered in a macroscale situation such as algal blooms.
Taking into consideration this possible scenario, the enhanced
production of DA during HABs could increase the release of
DA to the aquatic environment, and the effects on oxidative
stress conditions on other members of the community could
be affected.

DISCUSSION

Alterations of the nutrient influx in marine water due to climate
change could modify HAB frequency and magnitude, increasing
its impacts. The diagram shown in Figure 1 briefly describes
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FIGURE 1 | Schematic diagram showing the possible interactions between the phycotoxin-producing microalgae and the web community in aquatic environments.

a possible scenario in the aquatic environment. On the one
hand, when Pseudo-nitzschia cells produce DA in considerable
amounts, the toxin gets into the food chain. When this occurs,
DA could lead to the death of certain consumers. In humans,
the poisoning was characterized by a constellation of clinical
symptoms and signs, involvingmultiple organ systems, including
the gastrointestinal tract, the central nervous system, and the
cardiovascular system. Among the most prominent features
described was memory impairment, which led to ASP, which
could be even lethal.

On the other hand, DA production starts in late EXP and ST
phase of the Pseudo-nitzschia growth cycle (Lelong et al., 2012).
In the late ST phase, cells are physiologically impaired by injury
in the structure of the wall and in themembrane (Pan et al., 1996).
Therefore, DA tends to be released into the culture medium,
along with ROS generated by the cells (as shown by Cabrera et al.,
2019b,c). Because of the short life span of ROS, this increased
production could not be very effective in damaging other
organisms in the aquatic community. However, the release of
DA could allopathically affect (protect or injure) other species of
non–toxin-producing photosynthetic microalgae. Using a highly
sensitive adsorptive cathodic stripping voltammetric technique,
Rue and Bruland (2001) showed that DA forms Fe chelates with a

conditional stability constant of KcondFeDA,Fe(III) = 108.7±0.5 M−1.
The degree to which the DA acts as a trace metal chelator reveals
that it has the potential to modify the availability of these metals
in the seawater. Thus, the physiological role of DA for toxigenic
Pseudo-nitzschia species may be tied closely to the acquisition
of Fe in coastal waters. Among several other postulations, the
formation of a Fe–DA complex could be a very attractive
hypothesis to explain the increased generation of ROS both
in producing and non–phycotoxin-generating species. Chemical
aspects of the Fe chelators, such as Fe affinity, Fe selectivity,
molecular weight, and lipophilicity, in addition to stability and
redox properties of the resultant Fe complex, drastically change
the ability of the Fe complex to catalyze radical generation. The
presence of a catalytically active Fe–DA complex could favor lipid
peroxidation and radical generation in a significative amount, by
affecting the composition of the labile Fe content within the cells.
This is a novel point of view that should be further explored.
The capacity of the antioxidant defense in each species will be
the main factor to determine the hormetic (beneficial) or the
damaging effect of the triggering of the burst of oxidative species.

However, other alternatives could be considered under
changing environmental conditions that can modify DA-
dependent active species generation in aquatic organisms.
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Hypoxia is a common condition in aquatic environments,
and exposure to hypoxia followed by reoxygenation is often
believed to induce oxidative stress and activation of relevant
signaling molecules such as the hypoxia-inducible factor 1α.
This transcription factor is a potent coordinator of acclimation
processes in various stress conditions. Eutrophication and
extensive algal blooms caused by anthropogenic activity (input
of nutrients, fertilizers, and human waste) deplete the ocean and
lake bottoms of O2, i.e., make them hypoxic. In the seas, the large
hypoxic areas are also known as hypoxic dead zones, and they are
expanding quickly (Conley et al., 2009). Hypoxic bottoms release
phosphorus from the aquatic sediments, which feed the algae
even further. Hypoxia has an acute effect on the benthic fauna,
and if the hypoxic environments are allowed to expand further,
the whole ecosystem will be disturbed (Conley et al., 2009;
Conley, 2012). Recently, Borowiec and Scott (2020) reported
that hypoxia acclimation of killifish leads to adjustments in ROS
homeostasis and oxidative status that do not reflect oxidative
stress, but may instead be part of the suite of responses used to
cope with chronic hypoxia. Thus, in situ studies could show the
alterations due to other transitory changes in the environment
that may occur during the HABs. Overall, the specific cellular

response to the increased oxidative stress triggered by DA
will be one of the important factors to allow survival of each
organism that contribute to determine how the composition of
the community will be affected by an increasing magnitude of the
HAB season produced by the climate global change.
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