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In eukaryotic cells, lipids in the form of triacylglycerols (TAGs) are the major reservoir of
cellular carbon and energy. These TAGs are packed into specialized organelles called lipid
droplets (LDs). They can be found in most, if not all, types of cells, from bacteria to human.
Recent data suggest that rather than being simple storage organelles, LDs are very
dynamic structures at the center of cellular metabolism. This is also true in plants and algae,
where LDs have been implicated in many processes including energy supply; membrane
structure, function, trafficking; and signal transduction. Plant and algal LDs also play a vital
role in human life, providing multiple sources of food and fuel. Thus, a lot of attention has
been paid to metabolism and function of these organelles in recent years. This review
summarizes the most recent advances on LDs degradation as a key process for TAGs
release. While the initial knowledge on this process came from studies in oilseeds, the
findings of the last decade revealed high complexity and specific mechanisms of LDs
degradation in plants and algae. This includes identification of numerous novel proteins
associated with LDs as well as a prominent role for autophagy in this process. This review
outlines, systemizes, and discusses the most current data on LDs catabolism in plants
and algae.

Keywords: lipid droplets (LDs), triacylglycerols (TAGs), lipid droplet degradation, lipolysis, lipase, autophagy, lipophagy
INTRODUCTION

Lipids in plants and algae can be generally divided into twomajor groups, storage lipids andmembrane
lipids. The former serve as energy and carbon reservoirs, and the latter are building blocks for
photosynthetic and non-photosynthetic membranes (Li-Beisson et al., 2013). Additionally, land plants
deposit a lipidic layer composed of waxes and cutin on their surface, which serves as an impermeable
barrier protecting them from excessive water loss, pathogens, and toxins (Nawrath et al., 2013; Serrano
et al., 2014). The storage lipids are represented mainly by triacylglycerols (TAGs) and to a much lesser
degree by sterol esters, whereas lipid composition of membranes is more complex and differs between
cell compartments, cell types, and organisms (Bouvier-Navé et al., 2010; Horn et al., 2011; Goold et al.,
2015; Shimada et al., 2019). Broadly, galactolipids are much more abundant in plastidial membranes,
whereas non-plastidial membranes are composed mostly of phospholipids (Li-Beisson et al., 2013).
Synthesis of lipids in plant and algal cells starts in plastids, where fatty acids (FAs) are generated. These
molecules are further used as substrates in the key cellular pathways of membrane lipid and TAGs
.org September 2020 | Volume 11 | Article 5790191
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synthesis. Before entering complex metabolic pathways FAs often
undergo modifications, like desaturation or elongation. Regardless
of their modification level, FAs can reside in the chloroplast, where
they function as substrates for synthesis of plastidial membrane
lipids, like monogalactosyldiacylglycerol (MGDG) or
digalactosyldiacylglycerol (DGDG) (Wang and Benning, 2012;
Lavell and Benning, 2019). When exported to the cytosol, free
FAs are first exported by FATTY ACID EXPORT1 (FAX1) across
the chloroplast inner envelope and then undergo vectorial
acylation by the chloroplast outer envelope-localized long-chain
acyl-CoA synthetase 9 (LACS9) (Schnurr et al., 2002; Li et al., 2015;
Li et al., 2016; Li et al., 2019). The resulting conjugates of FAs with
coenzyme A (CoA)—acyl-CoAs are transported into endoplasmic
reticulum (ER) and incorporated into the cellular pool of carbon
and energy in the form of TAGs (Li et al., 2016). The major
pathway of TAGs synthesis is the glycerol-3-phosphate (G-3-P) (or
Kennedy) pathway (Figure 1) (Ohlrogge and Browse, 1995;
Chapman and Ohlrogge, 2012). In this pathway, G-3-P is
successively esterified with acyl chains from acyl-CoAs.
These reactions occur in a precise manner and are catalyzed by
specific acyltransferases located in the endoplasmic reticulum (ER)
membrane. In the first reaction, catalyzed by glycerol-3-phosphate
acyltransferase (GPAT), G-3-P is linked to acyl-CoA and
lysphosphatidic acid (LPA) is generated. LPA is then converted
into phosphatidic acid (PA) by esterification with another acyl-
Frontiers in Plant Science | www.frontiersin.org 2
CoA. This reaction is catalyzed by lysophosphatidate
acyltransferase (LPAT). PA can serve as a substrate for synthesis
of phospholipids or TAGs. In the latter case, dephosphorylation of
PA by phosphatidic acid phosphatase (PAP) leads to formation of
diacylglycerol (DAG) (Li-Beisson et al., 2013). The synthesized
DAG is further converted into TAG by acyl-CoA:diacylglycerol
acyltransferases (DGATs), and this reaction is considered a
committed step of TAG formation (Zhang et al., 2009;
Turchetto-Zolet et al., 2011; Sanjaya et al., 2013; Zienkiewicz
et al., 2016; Zienkiewicz et al., 2017; Zienkiewicz et al., 2018). In
addition to DGAT-mediated pathway DAG can also be acylated
into TAG by the phospholipid:diacylglycerol acyltransferase
(PDAT) (Figure 1). This enzyme has been shown to synthesize
TAG via acyl-CoA-independent transacylation of DAG using
phosphatidylcholine (PC) as acyl donor (Figure 1) (Dahlqvist
et al., 2000; Zhang et al., 2009; Yoon et al., 2012).

TAGs synthesized in the ER membrane are continuously
deposited between leaflets of the membrane bilayer, finally
forming spherical organelles referred to in the literature by
many terms, such as lipid droplets (thereafter LDs), oil bodies
(OBs), oleosomes, or spherosomes (Figure 1). A prominent role
for LDs formation at ER membrane in plants has been shown for
SEIPIN proteins (Cai et al., 2015; Taurino et al., 2018; Greer
et al., 2020). Indeed, loss of function Arabidopsis thaliana SEIPIN
isoforms as well as their overexpression results in altered size of
FIGURE 1 | TAGs synthesis, lipid droplet formation and their protein equipment in plant and algal cells. ACP, acyl carrier protein; CoA, coenzyme A; CLO, caleosin;
CrMLDP Chlamydomonas reinhardtii major lipid droplet protein; CzCLO, Chromochloris zofingiensis caleosin; DAG, diacylglycerol; DGAT, acylCoA:diacylglycerol
acyltransferase, a-DOX1, dioxygenase 1; FA, fatty acid; FAS, fatty acid synthase, G3P, glycerol-3-phosphate; GPAT, acyl-CoA:glycerol-3-phosphate-acyltransferase;
LD, lipid droplet; LDAP, lipid droplet associated protein; LPA, lysophosphatidic acid; LPAT, acyl-CoA:lysophosphatidic acid acyltransferase; LPC,
lysophosphatidylcholine, NoLDSP, Nannochloropsis oceanica lipid droplet surface protein; OLE, oleosin; PA, phosphatidic acid; PAP, phosphatidic acid
phosphatase, PDAT, phospholipid:diacylglycerol acyltransferase; PC, phosphatidylcholine; PtLDP1, Phaeodactylum tricornutum lipid droplet protein 1; StLDP,
Stramenopile-type lipid droplet protein; STOLE, steroleosin; TAG, triacylglycerol.
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LDs, however, the exact role of these proteins in LDs
formation remains to be clarified (Cai et al., 2015; Taurino
et al., 2018). Recent studies showed also that mutation in the
gene encoding AtVAP27-1 (Vesicle-Associated Membrane
Protein (VAMP)–Associated Proteins (VAPs)) resulted in
formation of aberrant and enlarged LDs. Moreover, a direct
interaction between Arabidopsis SEIPIN isoforms (2 and 3) and
AtVAP27-1 indicates that these two proteins most probably
cooperate during formation of LDs (Greer et al., 2020). A
putative SEIPIN ortholog has also been identified in diatom
Phaeodactylum tricornutum.Overexpression of this SEIPIN in P.
tricornutum resulted in biogenesis of larger LDs, suggesting
similarities in the functional nature of SEIPINs between plants
and algae (Lu et al., 2017).

After their complete formation, LDs separate from the ER
membrane and localize to the cytosol (Chapman and Ohlrogge,
2012; Murphy, 2012; Olzmann and Carvalho, 2019). LDs have
been identified in cells of diverse organisms, including bacteria
(Zhang et al., 2017), yeast (Grillitsch et al., 2011), algae
(Zienkiewicz et al., 2020), plants (Tzen et al., 1993), nematodes
(O’Rourke et al., 2009), and mammals (Birsoy et al., 2013). This
indicates their highly conserved role in cellular lipid metabolism.
Until recently LDs were considered as a simple TAG storage
compartment, however, intense studies in the last decade revealed
that LDs represent highly dynamic structures, involved in a
plethora of diverse cellular processes, like regulation of energy
homeostasis, remodeling of membranes, and signaling (Chitraju
et al., 2017; Welte and Gould, 2017; Yang and Benning, 2018;
Fernandez-Santos et al., 2020). According to the common
structural model, LDs are composed of a hydrophobic core
filled mostly with TAGs surrounded by a phospholipid
monolayer, and are decorated with a set of specific proteins
(Figure 1). These proteins are considered essential for
biogenesis, stabilization, and mobilization of LDs, and are cell-,
tissue-, and organism-specific (Figure 1, Table S1) (Tzen et al.,
1993; Huang, 2018).
LIPID DROPLETS—MULTIPLE VARIANTS
OF THE SAME ORGANELLE?

In plants, structural proteins of LDs were first and best
characterized in seeds (Tzen et al., 1990; Tzen et al., 1993;
Jolivet et al., 2004; Huang, 2018; Du et al., 2019). The set of
major LD structural proteins found in seeds includes oleosin,
caleosin, and steroleosin, however their individual isoforms are
also present in non-seed tissues (Table S1) (Chapman et al.,
2012; Huang, 2018). Oleosins are the most abundant integral
membrane proteins of oilseed LDs. They are anchored in the
phospholipid monolayer by a hydrophobic a-helical hairpin
domain with a proline knot, and their C- and N- termini face
the cytosol (Abell et al., 1997; Napier et al., 2001; Alexander et al.,
2002). As Arabidopsis thalianamutant of one of the seed-specific
oleosins ole1 accumulates larger LDs when compared to wild
type plants, it has been proposed that oleosins control the
structure and size of LDs by preventing their uncontrolled
Frontiers in Plant Science | www.frontiersin.org 3
fusion (Siloto et al., 2006; Shimada et al., 2008). Caleosins are
much less abundant compared to oleosins in the LDs
fraction from oilseeds. Their name derives from the ability to
bind calcium ions (by a single EF-hand binding motif) and
structural similarity to oleosins (Chen et al., 1999). Phylogenetic
studies so far suggest that caleosin proteins were likely the
ancestors of oleosins, as the putative genes encoding for
caleosin-, but not oleosin-like proteins, are present in algae,
non-vascular plants, and fungi (Jiang and Tzen, 2010; Rahman
et al., 2018a; Rahman et al., 2018b). The ability to bind calcium
ions, together with the presence of several phosphorylation sites
and possession of peroxygenase activity suggest that caleosins
mediate signaling between diverse developmental and stress
signals and LDs (Hanano et al., 2006; Purkrtova et al., 2008).
Unlike caleosins and oleosins, steroleosins possess only two
structural motifs: an N-terminal hydrophobic region
responsible for association with LD membranes through
conserved proline residues, and a C-terminal domain with
hydroxysteroid dehydrogenase (HSD) activity (d’Andrea et al.,
2007). Steroleosins are thought to play a role in brassinosteroid-
mediated cellular signaling during plant growth and
development (Lin et al., 2002). Recent advances in LDs
proteomics identified many new LD-associated proteins in
seeds and seedlings, however their functions remain to be
deciphered (Zhi et al., 2017; Kretzschmar et al., 2020).

After the seed, pollen grains are one of the most active
sites in TAGs biosynthesis (Piffanelli et al., 1998; Zienkiewicz
et al., 2014a). Mature pollen grains of many plants, especially
oleaginous species, accumulate a high number of LDs in the
cytoplasm of the vegetative cell (Zienkiewicz et al., 2014a).
Similar to seeds, pollen LDs are coated with oleosin and
caleosin, but no pollen steroleosin has yet been identified (Kim
et al., 2002; Jiang et al., 2008; Zienkiewicz et al., 2010; Zienkiewicz
K. et al., 2011). Interestingly, oleosin-like and caleosin proteins
are also present in the pollen coat (Mayfield et al., 2001; Rejon
et al., 2016), anther loculus, as well as in tapetal cells (Zienkiewicz
K. et al., 2011; Levesque-Lemay et al., 2016). The latter tissue is
directly involved in pollen development and is extremely rich in
lipidic structures known as tapetosomes. They are released from
degrading tapetum during anther development and targeted to
the surface of developing pollen grains, eventually forming the
pollen coat (Parish and Li, 2010; Levesque-Lemay et al., 2016).
Interestingly, each tapetosome consists of multiple LDs clustered
together and coated by oleosins (Hsieh and Huang, 2005) and/or
caleosin (Zienkiewicz K. et al., 2011). This could explain the
presence of both these proteins in the pollen coat (Table S1) and
suggests that mature pollen grains are equipped with LD-
associated proteins of both gametophytic and sporophytic origin.

Depending on developmental stage and/or physiological state
of the plant, LDs can also be present in non-seed organs such as
fruits, leaves, stems, and roots (Lersten et al., 2006; Shimada
et al., 2015; Pyc et al., 2017a; Huang, 2018). Leaf LDs seem to be
equipped with a different set of integral proteins than seeds
(Table S1) (Pyc et al., 2017a; Fernandez-Santos et al., 2020). A
leaf-specific isoform of caleosin, CLO3, has been shown to
decorate leaf LDs and to be directly involved in triggering the
September 2020 | Volume 11 | Article 579019
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oxylipin-mediated response to pathogen attack in A. thaliana
(Hanano et al., 2015; Shimada et al., 2015). Infection of
Arabidopsis by the pathogenic fungus Colletotrichum
higginisianum leads to localization of a-dioxygenase 1 (a-
DOX1) on the surface of leaf LDs and the formation of 2-
hydroperoxy-octadecatrienoic acid (2-HPOT) from a-linolenic
acid released from TAGs stored in LDs. 2-HPOT is then
converted by CLO3 into 2-hydroxy-octadecatrienoic acid (2-
HOT), which possesses anti-fungal activity (Shimada et al.,
2014). Additionally, accumulation of phytoalexin deficient 3
(PAD3) protein involved in camalexin synthesis was observed
on the surface of leaf LDs after Pseudomonas syringae pv tomato
(Pst) DC3000 avrRpm1 infection, supporting the role of leaf LDs
in the plant defense response (Fernandez-Santos et al., 2020).
Besides caleosin, three isoforms of Lipid Droplet Associated
Proteins (LDAPs) have been identified in the leaves of
Arabidopsis. LDAPs have been shown to be essential for the
maintenance and regulation of LD metabolism and to play
nonredundant functions in the stress response and post-
germinative growth (Gidda et al., 2016). In addition to the
above mentioned LD-associated proteins, a few proteins with
diverse functions were also identified in the proteome of leaf LDs,
including LDAP-interacting protein (LDIP) (Pyc et al., 2017b),
glycerol-3-phosphate-acyltransferase 4 (GPAT4) and 8 (GPAT8)
(Fernandez-Santos et al., 2020), strictosidine synthase (STR), 2-
oxoglutarate (2OG) and farnesylcysteine lyase (FCLY) (Brocard
et al., 2017). These observations suggest the multifunctional
nature of LDs and support the direct involvement of non-seed
LDs in stress-response and defense-related pathways in plants.
Among non-seed tissues, few but extremely large LDs (over 10
µm of diameter) have also been found in mesocarp cells of some
oleaginous fruits, like olive and avocado (Horn et al., 2013;
Bartolini et al., 2014). Similar to seed LDs, mesocarp LDs are
filled with TAGs, but they mostly lack oleosin and are equipped
with LDAP protein instead (Horn et al., 2013; Zhi et al., 2017).

Under favorable growth conditions, algae usually accumulate
small amounts of TAGs, whereas upon stresses such as nutrient
limitation (e.g. nitrogen (N) deprivation), elevated temperatures,
or high light intensities they synthesize massive amounts (Goold
et al., 2015; Li-Beisson et al., 2015; Zienkiewicz et al., 2016). Algal
LDs are equipped with specific LD-associated proteins, different
from their plant counterparts (Moellering and Benning, 2010;
Vieler et al., 2012a; Zienkiewicz et al., 2016; Leyland et al., 2020).
The major LD protein MLDP was first identified in green algae,
Chlamydomonas reinhardtii (Moellering and Benning, 2010;
Nguyen et al., 2011) and then in Dunaiella salina (Davidi
et al., 2012), Scenedesmus quadricauda (Javee et al., 2016),
Chromochloris zofingiensis (Wang et al. , 2019), and
Lobosphaera incisa (Siegler et al., 2017). MLDPs are different
from oleosin in lacking the central hydrophobic region, and
appear to be specific to the lineage of green algae. Similar to
structural proteins covering LDs in land plants, CrMLDP also
seems to be involved in the control of LD size and stabilization
(Tsai et al., 2015). In turn, LDs of the oleaginous alga
Nannochloropsis oceanica are decorated with Lipid Droplet
Surface Protein (LDSP), which has been shown to localize on
Frontiers in Plant Science | www.frontiersin.org 4
the LD surface during N deprivation (Vieler et al., 2012a; Vieler
et al., 2012b; Zienkiewicz et al., 2020). NoLDSP protein, similar
to plant oleosin, possesses a proline-rich hydrophobic domain in
its central region, however the proline knot motif found in
oleosin is absent in NoLDSP (Vieler et al., 2012a). Major LD
structural proteins were also identified in the diatom P.
tricornutum, including LD-associated protein (PtLDP1) (Wang
et al., 2017), a homolog of oleosome-associated-protein 1
(DOAP1) from Fistulifera solaris (Maeda et al., 2014), and
Stramenopile-type lipid droplet protein (StLDP) (Yoneda et al.,
2016). Overexpression of both these proteins in P. tricornutum
was correlated with increased TAGs content and enlarged LDs
during N deprivation (Yoneda et al., 2016; Wang et al., 2017),
suggesting their analogous role to plant oleosin. Recently, three
caleosin-related proteins were identified by proteomic analyses
of LDs from C. zofingiensis, and co-localization for two of them
on LDs was confirmed in Saccharomyces cerevisiae (Wang et al.,
2019). Besides the major structural proteins detected in algal
LDs, multiple proteomic studies have been performed to identify
new LD proteins in diverse algal strains (Siegler et al., 2017;
Lupette et al., 2019; Wang et al., 2019), however their specific
localization and potential role in LD homeostasis have yet to
be investigated.

Regardless of LD protein and TAG composition, their
mobilization is crucial for providing energy and carbon during
periods of active metabolism. This process is highly coordinated
with development (e.g. seed germination) as well as responses to
specific environmental conditions (e.g. nutrient deprivation).
The release of TAGs from LDs requires the coordinated action
of molecular machineries governing protein and lipid
breakdown. Below we characterize the current state of
knowledge regarding these pathways and interactions.
LDS LIPOLYSIS—TAG LIPASES AND
CO-WORKERS

TAG lipases play one of the most essential roles in LDs
degradation in plants and algae. These enzymes hydrolyze
TAGs stored in LDs leading to the release of FAs, DAGs,
MAGs, and glycerol (Graham, 2008; Kelly and Feussner, 2016).
Glycerol is subsequently phosphorylated, oxygenated, and enters
into glycolysis, whereas FAs undergo b-oxidation into acetyl-
CoAs (Eastmond and Graham, 2001). In plants (Graham, 2008;
Pracharoenwattana et al., 2010; Rinaldi et al., 2016) and green
algae (Kong et al., 2018a; Kong et al., 2018b) the latter process
takes place in peroxisomes (glyoxysomes), meanwhile in diatoms
both mitochondrial and peroxisomal FAs b-oxidation is tough to
occur (Chauton et al., 2013; Jallet et al., 2020).

So far, the TAG lipases directly involved in LD mobilization are
best characterized in plants, mainly in germinating seeds and
growing seedlings of A. thaliana (Eastmond, 2006; Quettier and
Eastmond, 2009; Kelly et al., 2011). LDs accumulation during seed
development is critical for germination and seedling growth later on
(Huang, 1996; Graham, 2008; Zienkiewicz A. et al., 2011;
Zienkiewicz et al., 2014b). Based on the analysis of TAGs
September 2020 | Volume 11 | Article 579019
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breakdown in Arabidopsis sdp1, sdp1L, and sdp1 sdp1L mutants it
was demonstrated that among these two TAG lipases only AtSDP1
(SUGARDEPENDENT 1) plays a key role in mobilization of TAGs
from LDs during seed germination (Eastmond, 2006; Kelly et al.,
2011). In addition, the loss of SDP1 function caused increased TAG
content in the seeds of Arabidopsis (van Erp et al., 2014), rapeseed
(Brassica napus L.) (Kelly et al., 2013a), Jatropha (Jatropha curcas)
(Kim et al., 2014), and soybean (Glycine max L.) (Kanai et al., 2019),
suggesting that SDP1 might be involved in TAGs turnover in
developing seeds as well. Indeed, a decrease in oil content has
often been observed during desiccation phase of seed development
in some species (Baud et al., 2002; Chia et al., 2005; Kelly et al.,
2013a). It has been proposed that at early stages of post-germinative
growth, the inactive form of AtSDP1 first localizes to the surface of
peroxisomes and is then delivered to LDs via peroxules, initiating
TAGs hydrolysis (Figure 2) (Thazar-Poulot et al., 2015; Cui et al.,
2016; Esnay et al., 2020). The released FAs are then transported into
peroxisomes by AtPXA1 (an ATP-binding cassette (ABC)
transporter) and enter the b-oxidation process (Zolman et al.,
2001). Interestingly, Arabidopsis sdp1 and sdp1 sdp1L mutants
exhibit residual TAG hydrolysis on sugar-deficient medium,
suggesting that additional lipases could also be involved in this
process (Kelly et al., 2011). Therefore, the mobilization of TAGs was
also analyzed in an Arabidopsis mutant with a lesion in
ADIPOSE TRIGLYCERIDE LIPASE-LIKE (ATGL). ATGL encodes
a lipase similar to human ATGL and COMPARATIVE GENE
IDENTIFIER-58 (CGI-58), which possess TAG lipase,
phospholipase A (PLA), and lysophosphatidic acid acyltransferase
(LPAAT) activities (Eastmond, 2006; Ghosh et al., 2009; Kelly et al.,
Frontiers in Plant Science | www.frontiersin.org 5
2011). However, no significant difference in the rate of TAGs
breakdown was observed between wild type plants and these
single mutants (Kelly et al., 2011). It was reported recently that
AtOBL1, a homolog of acid lipase from Ricinus communis
(RcOBL1, oil body lipase 1, Eastmond, 2004) possesses activity
towards TAGs in Arabidopsis seeds (Müller and Ischebeck, 2018).
Although AtOBL1 is able to cleave TAGs and is associated with
LDs, seed germination and TAGs breakdown rates in the obl1
mutant were similar to those observed in wild type plants (Müller
and Ischebeck, 2018). A specific LD lipoxygenase (LOX) and
phospholipase A (PLA) seem to be involved in an alternative
pathway of seed LDs degradation (Rudolph et al., 2011). LOX
activity leads to formation of (9Z,11E,13S)-13-hydroperoxy
octadeca-9,11-dienoic acid (13-HPOD) by oxygenation of
linoleate moieties (18:2) of TAGs mobilized from LDs. The 13-
HPOD liberated from TAGs can be later reduced to 13-HOD by the
peroxygenase activity of caleosin (Rudolph et al., 2011). The LOX
and PLA activities were detected in vitro on isolated LDs of
cucumber (Cucumis sativus) (Rudolph et al., 2011) and olive
(Olea europaea L.) (Zienkiewicz et al., 2014b) during seed
germination. Thus, it was proposed that PLA might be
responsible for LD membrane degradation and thereby facilitate
access of LOX and lipase to TAG.

Pollen development, germination, and pollen tube growth are
essential for sexual reproduction in flowering plants. During
pollen hydration LDs polarize near the germinative aperture, and
as the pollen grain starts to germinate, they enter the emerging
pollen tube where their progressive degradation takes place
(Zienkiewicz et al., 2013; Taurino et al., 2018). AtSDP1L,
FIGURE 2 | Cellular pathways of lipid droplets degradation in plants and algae. Detailed description in the text. ATG8, AUTOPHAGY-RELATED PROTEIN 8; FA,
fatty acid; LD, lipid droplet; SDP1, SUGAR DEPENDENT 1; TAGs, triacylglycerols.
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unlike other putative TAG lipases identified in Arabidopsis,
showed exceptionally high expression in mature pollen grains
(Kelly et al., 2011). This suggests that AtSDP1L may be involved
in LDs breakdown during pollen germination. Two homologs of
RcOBL1, TAG lipase from tobacco (NtOBL1) and AtOBL1 from
Arabidopsis mentioned above, have been characterized in pollen
tubes (Müller and Ischebeck, 2018). Interestingly, similar to
RcOBL1 and unlike AtSDP1 in seeds, both proteins localized to
LDs when ectopically expressed in growing tobacco pollen tubes.
Moreover, Arabidopsis obl1 mutants showed slower pollen tube
growth in vivo. The authors suggested that acyl groups released
from TAGs by OBL1 might be directly channeled into the ER,
where they serve as substrates for rapid membrane synthesis
(Müller and Ischebeck, 2018).

LD-associated lipase activities were also found in vitro and in
situ in germinating pollen and growing pollen tubes of olive
(Olea europaea L.) (Rejon et al., 2012; Zienkiewicz et al., 2013).
Their direct role in proper pollen tube growth has been
confirmed by in vitro olive pollen germination in medium with
and without sucrose, with higher lipase activity resulting in the
latter case (Zienkiewicz et al., 2013). In these studies, TAG lipase
activity was found only on LDs isolated from germinating pollen
tubes, and not from the mature pollen grain. Similar localization
pattern was also found for LOX protein (Zienkiewicz et al.,
2013). In turn, PLA activity co-localized with LDs in both mature
and germinating olive pollen (Zienkiewicz et al., 2013). This
indicates that there are substantial differences in the temporal
and spatial localization pattern of machinery governing LDs
breakdown in pollen grains compared to seeds, where all the lipid
degrading enzymes seem to be recruited to the LDs surface
during or just after seed imbibition (Rudolph et al., 2011; Thazar-
Poulot et al., 2015). Most probably, this reflects the distinct
energy demands of pollen grains and seeds, which are tightly
connected with their biological functions. The initiation of pollen
germination and pollen tube growth occur much faster than seed
imbibition and germination. This could explain the presence of
some LDs degrading enzymes “on-site,” available to act as soon
as pollen germination starts.

Previous studies have shown that disruption of AtSDP1 also
leads to TAG accumulation in other vegetative tissues, such us
leaves, stems, and roots (Kelly et al., 2013b; Fan et al., 2014).
Moreover, the expression level of AtSDP1 increases during
natural leaf senescence, thus it is possible that this lipase is
involved in regulation of TAG homeostasis during leaf
development (Troncoso-Ponce et al., 2013). The transcript
levels corresponding to AtCGI-58 were up-regulated during
leaf senescence as well (Troncoso-Ponce et al., 2013), and loss
of function of AtCGI-58 resulted in a significant increase in TAG
content of leaf mesophyll cells (James et al., 2010). While in
mammals CGI-58 has been shown to act as an activator of
adipose triglyceride lipase ATGL, and thus to directly regulate
TAG breakdown (Lass et al., 2006), such a role has not been
confirmed for plants, where CGI-58 likely regulates the activity
of PXA1 but not of TAG lipase (Park et al., 2013). Consequently,
the plant CGI-58 does not seem to be a bona fide TAG lipase, but
rather an element of regulatory circuit of TAG homeostasis.
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Importantly, many putative lipases are expressed during leaf
senescence (Troncoso-Ponce et al., 2013), suggesting more
lipases could be involved in LD turnover in leaves.

LDs mobilization is an essential step during the transition of
algal cells from quiescence to autotrophy in response to restored
favorable growth conditions (Siaut et al., 2011; Tsai et al., 2018;
Zienkiewicz et al., 2020). Thus, comparative transcriptomics
between stress (N deprivation) and optimal (N resupply)
growth conditions led to the identification of many putative
TAG lipases highly expressed after triggering of the massive
TAG degradation (Jaeger et al., 2017; Zienkiewicz et al.,
2020). However, only a few of them have been functionally
characterized to date (Table 1). Among 49 putative lipases
encoded by the genome of the oleaginous marine diatom P.
tricornutum, only one patatin-SDP1-like lipase, named tgl1, has
been functionally characterized to date (Barka et al., 2016). The
TAG lipase activity of tgl1 has been confirmed in vitro and in
vivo. In the latter case, the tgl1 knockdown mutants of P.
tricornutum accumulated much higher amounts of TAGs when
compared to the wild type (Barka et al., 2016). In C. reinhardtii,
among over 130 putative lipases encoded by its genome, only one
TAG lipase has been identified and characterized recently. This
TAG lipase, LIP4, shares 44% amino acid identity with AtSDP1
(Table 1) (Warakanont et al., 2019). The expression of LIP4 is
downregulated in response to N deprivation and up-regulated
after N resupply, whereas its mutation resulted in delay of TAG
degradation, which consequently led to TAG over-accumulation
in Crlip4 mutant (Warakanont et al., 2019). Two homologs of
AtSDP1, named NoTGL1 and NoTGL2, have also been recently
reported in N. oceanica (Nobusawa et al., 2019). Over-
accumulation of TAGs was observed only in the N. oceanica
knockout of NoTGL1, but not of NoTGL2, after N resupply.
Moreover, NoTGL1 was found to be a specific resident of ER,
thus the authors proposed its involvement in degradation of
TAG de novo synthesized in the ER (Nobusawa et al., 2019).
Proteomic analysis of another oleaginous green alga, L. incisa,
revealed the presence of the putative TAG lipase LiSDP1. LiSDP1
TABLE 1 | Functionally characterized TAG lipases involved in LDs degradation
identified in plants and algae.

Organism TAG Lipase Reference

Plants
Arabidopsis thaliana
Brassica napus L.
Glycine max L.
Jatropha curcas

SDP1—Sugar
Dependent 1

Eastmond, 2006; Kelly et al., 2011;
Kelly et al., 2013a; Kim et al., 2014;
Kanai et al., 2019

Arabidopsis thaliana OBL1—Oil Body
Lipase 1

Müller and Ischebeck, 2018

Algae
Chlamydomonas
reinhardtii

LIP4 Warakanont et al., 2019

Lobosphaera incisa SDP1—Sugar
Dependent 1

Siegler et al., 2017

Nannochloropsis
oceanica

TGL1 and TGL2 Nobusawa et al., 2019

Phaeodactylum
tricornutum

Tgl1 Barka et al., 2016
Septembe
r 2020 | Volume 11 | Article 579019

https://www.frontiersin.org/journals/plant-science
http://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles


Zienkiewicz and Zienkiewicz LDs Degradation in Plant and Algae
shares 44% identity with AtSDP1 (Siegler et al., 2017). Ectopic
expression of LiSDP1 in A. thaliana sdp1 sdp1-L mutants
resulted in only partial complementation of the TAG lipase-
deficient plants. LiSDP1 from L. incisa was absent in LD isolates
from N-deprived cultures and did not localize to LDs when
ectopically expressed in tobacco pollen tube. The authors did not
exclude that LiSDP1 might be specifically recruited to the surface
of LDs when needed (Siegler et al., 2017). By searching for
human lipase homologs in the genome of Thalassiosira
pseudonana, Trentacoste et al. (2013) identified a homolog of
CGI-58, encoded by Thaps3_264297. The resulting protein has
been shown to possess TAG lipase, PLA, and LPAAT activities in
vitro, and a knockdown of Thaps3_264297 resulted in increased
TAG content and accumulation of LDs compared to the wild
type strain (Trentacoste et al., 2013). However, taking into
account the proposed role of plant CGI-58 the exact role of
algal CGI-58 still needs to be elucidated.
LIPOPHAGY—A NEW PLAYER
IN THE FIELD

Autophagy is a highly conserved process involved in regulation of
intracellular degradation and recycling of individual molecules as
well as whole organelles, via lysosomes in animals or vacuoles in
yeast and plants (Avin-Wittenberg et al., 2012; Bento et al., 2016;
Marshall and Vierstra, 2018; Couso et al., 2018). In plants,
autophagy plays an important role in many developmental
processes, such as seed development (Di Berardino et al., 2018;
Sera et al., 2019) and leaf senescence (Avila-Ospina et al., 2014; Li
et al., 2014). Autophagy is highly induced by various abiotic
stresses, including nutrient deprivation (Sun et al., 2018; Janse
van Rensburg et al., 2019), drought (Bao et al., 2020), and biotic
stresses e.g. pathogen infection (Dagdas et al., 2016). Two
major types of autophagy have been described in plants:
macroautophagy and microautophagy (Figure 2). During
macroautophagy, numerous autophagy-related (ATG) proteins
participate in the induction of autophagy and formation of a
double-membrane structure called an autophagosome
(Yoshimoto and Ohsumi, 2018). Autophagosomes containing
different cargo (macromolecules or damaged organelles) fuse
with the tonoplast and subsequently enter the vacuolar lumen as
autophagic bodies. The content of autophagic bodies then
undergoes progressive degradation (Soto-Burgos et al., 2018). In
microautophagy, cytoplasmic contents are directly captured into
the vacuolar lumen by invagination of the tonoplast. Previous
studies in yeast and mammalian cells demonstrated a close
relationship between LD homeostasis and autophagy (van
Zutphen et al., 2014; Petan et al., 2018). Indeed, autophagy may
either provide FAs for LDs biogenesis (Rambold et al., 2015) or
participate in their degradation in the process of lipophagy (Singh
et al., 2009; van Zutphen et al., 2014). In animals, depending on
the size of LDs, their degradation can be achieved either by
macrolipophagy, where small, entire LDs are enclosed together
with other cytoplasmic contents in an autophagosome, or by
piecemeal microlipophagy, where only a small portion of a large
Frontiers in Plant Science | www.frontiersin.org 7
LD is trapped in an autophagosome and then pinches off as a
double membrane autolipophagosome (Singh et al., 2009;
Khaldoun et al., 2014; Garcia et al., 2018). In yeast, distinct
forms of microlipophagy contribute to LD degradation
depending on growth conditions (van Zutphen et al., 2014;
Vevea et al., 2015; Seo et al., 2017). For example, under acute
glucose starvation, the molecular machinery of macroautophagy
participates in the induction of microlipophagy. ATG14 is
recruited to liquid-ordered membrane (Lo) domains at the
surface of vacuole, where together with ATG6 it forms
recruitment sites for LDs and initiates their microlipophagy (Seo
et al., 2017). In contrast, under lipid and ER stress, microlipophagy
depends on ESCRT (endosomal sorting complexes required for
transport) machinery rather than ATG proteins (Vevea et al.,
2015). Similarly, microlipophagy induced after diauxic shifts has
been shown to be independent of the core ATGs but dependent on
ESCRT proteins (Oku et al., 2017). Our knowledge on LDs TAG
degradation inside the vacuole/lysosome is rather scarce and
fragmentary. Nevertheless, one of the few reports showed
that vacuolar lipase ATG15 acts in degradation of neutral
lipids of LDs after their incorporation into the vacuole in yeast
(Maeda et al., 2015).

Over the last decade research has also produced increasing
evidence of an important role for autophagy in LDs degradation in
plants (Kurusu et al., 2014; Fan et al., 2019) and algae (Zhao et al.,
2014; Schwarz et al., 2017; Tsai et al., 2018). In plants, lipophagy
seems to be involved among others in male reproductive
development, pollen germination, and pollen tube growth
(Kurusu et al., 2014; Hanamata et al., 2019; Hanamata et al.,
2020; Zhao et al., 2020). The potential role of lipophagy in pollen
grain maturation was demonstrated in a study on the Oryza sativa
atg7 mutant (Kurusu et al., 2014). Mutation in OsATG7 was
associated with a lower number of LDs in mature pollen and a
higher accumulation of LDs in tapetal cells compared to wild type
plants. These results, together with the observation that in wild type
plants LDs were enclosed in the vacuoles of rice tapetal cells,
suggest that ATG7-dependent tapetal autophagy may be
responsible for LDs degradation and lipid metabolism in the
tapetum (Kurusu et al., 2014). Recently, a detailed analysis of the
germinating pollen lipidome in tobacco was performed using
ATG-suppressed RNAi lines (Zhao et al., 2020). This study
showed that silencing of ATG2 and ATG5 leads to a decrease in
the number of autophagosomes at the germinative pollen aperture
and is accompanied by inhibition of pollen germination and
significant accumulation of TAGs and DAGs in pollen grains.
Lipophagy may also contribute to the degradation of LDs during
seed germination and seedling growth. The potential implication of
autophagy in LDs degradation during seed germination was
suggested by earlier studies of the Arabidopsis clo1 mutant
(Poxleitner et al., 2006). During seed germination, LDs were
commonly observed in the vacuolar lumen of wild type
cotyledon cells, while loss of function of AtCLO1 resulted in the
absence of LDs inside the vacuoles and slower degradation of
eicosenoic acid (20:1) (Poxleitner et al., 2006). It is therefore
possible that turnover of some pools of LDs is regulated by
caleosin-dependent microlipophagy during seed germination.
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Other data showed that during in vitro germination of olive seeds,
the neutral lipids stained by Sudan Black B co-localize in the area of
protein bodies (known also as protein storage vacuoles), together
with lipase activity, suggesting that LDs degradation takes place
inside protein bodies (Zienkiewicz et al., 2014b). A significant
accumulation of TAGs was observed in etiolated carbon-starved
seedlings of the Arabidopsis atg5 mutant (Avin-Wittenberg et al.,
2015), indicating the potential role of autophagic machinery in LDs
degradation. It was demonstrated recently that LDs breakdown in
senescent watermelon (Cirullus lanatus) leaves occurs via different
pathways: small vacuole-associated and central vacuole-associated
(Zhang et al., 2020). In leaf cells without a central vacuole, LDs
interact with autophagosome-like structures before they enter small
vacuoles. Meanwhile, in the cells of senescent leaves containing the
central vacuole, LDs are delivered into the vacuolar lumen via a
process morphologically resembling microlipophagy (Zhang et al.,
2020). Lipophagy has also been implicated in LD turnover in
Arabidopsis leaves during dark-induced starvation (Fan et al.,
2019). Under extended darkness, DsRed-Atg8e-labeled
autophagic structures were observed to be associated with LDs in
the leaves of tgd1 (trigalactosyldiacylglycerol1) mutant. Moreover,
ultrastructural analysis of leaf cells from dark-treated Atsdp1-4
plants, deficient in cytosolic lipolysis, demonstrated the entrance
and appearance of LDs in the central vacuole. The authors
suggested that this process is likely mediated by the
microlipophagy pathway (Fan et al., 2019). Interestingly,
disruption of molecular macroautophagy machinery in
Arabidopsis double mutants atg2-1 sdp1-4 and atg5-1 sdp1-4
leads to inhibition of dark-induced lipophagy in the leaves.
Taken together, the findings described by Fan et al. (2019)
showed that microlipophagy observed in Arabidopsis leaves
depends on core components of macroautophagy pathway, as
has been described previously in yeast (van Zutphen et al., 2014).

A large number of studies on autophagy-mediated LDs
degradation in algae have been performed using C. reinhardtii
as a reference. Ultrastructural analysis of C. reinhardtii cells
under N resupply (NR) conditions showed the appearance of
small LDs in the vacuolar lumen is controlled by a process
morphologically resembling microlipophagy (Tsai et al., 2018). A
mutation in CrATG8, encoding one of the core ATG proteins
required for the formation of the autophagosome, results in
delayed degradation of TAGs after NR compared to wild type
lines (Kajikawa et al., 2019). In addition, by using mCherry-
ATG8 as a tool to monitor the intracellular movements of
autophagosomes (Yoshimoto et al., 2004; Klionsky et al., 2007),
the fusion between autophagosomes and LDs was observed at
later stages of N deprivation (Tran et al., 2019). Similar to C.
reinhardtii, small LDs were observed to be sequestered by the
vacuole via a pathway resembling microautophagy in another
green alga, Auxenochlorella protothecoides , during its
heterotrophy to autotrophy transition (Zhao et al., 2014).
Interestingly, the authors suggested that small portions of large
LDs might also be degraded in the vacuolar lumen through a
process reminiscent of the piecemeal microautophagy commonly
observed in mammalian cells. Microlipophagy-like degradation
of LDs was observed as well in N. oceanica under NR conditions
Frontiers in Plant Science | www.frontiersin.org 8
(Zienkiewicz et al., 2020). Moreover, by using a biomolecular
fluorescence complementation (BiFC) assay it was demonstrated
that NoATG8 protein interacts in vivo with NoLDSP —a major
LD surface protein in N. oceanica (Zienkiewicz et al., 2020). It
has been proposed that this interaction might be involved in the
targeting and/or fusion of LDs into the vacuole. The ATG8-
interacting motif (AIM) was also identified in Stramenopile-type
lipid droplet protein (StLDP), suggesting a possible link between
autophagy and LD degradation in P. tricornutum (Leyland et al.,
2020). The latest analyses revealed that salt stress is also
associated with appearance of LDs in the vacuolar lumen in
Parachlorella kessleri (You et al., 2019). Interestingly, in the
unicellular alga Micrasterias denticulate, LDs degradation
occurring under carbon starvation seems to be mediated by
macrolipophagy, as LDs were trapped in autophagosomes and
then delivered into small vacuoles (Schwarz et al., 2017).
LD PROTEIN TURNOVER—THE MISSING
PUZZLE IN THE CROSSTALK BETWEEN
LIPOLYSIS AND LIPOPHAGY?

Previous studies in animals revealed that association of ATGL with
the surface of LDs depends on the degradation of the LDs structural
proteins perilipin 2 (PLIN2) and perilipin 3 (PLIN3) via chaperone-
mediated autophagy (CMA) (Kaushik and Cuervo, 2015).
Sathyanarayan et al. (2017) proposed a model where the removal
of PLINs facilitates access of ATGL to TAGs, and ATGL acts as a
signal for LDs recognition by autophagosomes and thus an inducer
of bulk LDs degradation via lipophagy (Sathyanarayan et al., 2017).
In plants, oleosins and LDAPs have been proposed to protect LDs
from the action of TAG lipases (Siloto et al., 2006; Gidda et al.,
2016). Recently, two independent groups reported that
ubiquitinated oleosins interact with the PUX10 protein through
its UBA domain. Via its UBX domain, PUX10 in turn recruits
CDC48, enabling further degradation of oleosins by the proteasome
(Deruyffelaere et al., 2018; Kretzschmar et al., 2018). On the other
hand, it has been found that AtOLE1 can interact with AtATG8e
protein through the AIMmotif (ATG8 interacting motif) (Marshall
et al., 2019). This implies that autophagy can also participate in
oleosin turnover during seed germination. Interestingly, ATGL and
hormone-sensitive lipase (HSL) contain several putative LIR (LC3-
interacting region) motifs responsible for direct interaction with
microtubule associated protein 1 LC3 (ATG8 family protein)
(Martinez-Lopez et al., 2016). Mutating the ATGL LIR motif
blocked ATGL associations with the LD surface and lipolysis,
suggesting the direct crosstalk between lipolysis and autophagy in
animal cells. It remains unknown if the degradation of plant and
algal TAG lipases is also controlled by autophagy machinery.
CONCLUDING REMARKS

The past decade has seen considerable progress in the identification
and characterization of mechanisms governing LDs degradation in
plant and algal cells. The studies reviewed here revealed the
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complexity of intracellular molecular networks related to LDs
metabolism, and highlighted the fundamental meaning of these
organelles for developmental programs and physiological
responses in plants and algae. This includes essential functions of
LDs structural proteins (oleosins, celeosins, and their counterparts
in algal cells) as well as lipolysis and lipophagy pathways of TAGs
breakdown. However, there are still many unanswered questions.
For example, what is the nature of cross-talk between lipolysis and
lipophagy in plant and algal cells? And what specific lipophagy
receptors on the surface of LDs could be involved in activation of
the autophagic machinery and lipophagy initiation? Moreover, it is
still unclear whether, similar to animal cells, plant and algal TAG
lipases are implicated in the induction of lipophagy, and if
autophagy is responsible for their degradation. Answering these
questions will help us gain a better comprehensive understanding
of induction and regulation of LDs mobilization in plants and
algae. Future research is needed to uncover the fascinating and
multifaceted mechanisms that govern LDs turnover in plant
and algal cells, as this knowledge is crucial for the development
of more applied research and engineering of lipid-rich biomass
production from algae and oil crops.
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