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Breeding for grain yield (GY) in bread wheat at the International Maize and Wheat
Improvement Center (CIMMYT) involves three-stage testing at Obregon, Mexico in
different selection environments (SEs). To understand the efficiency of selection in the
SEs, we performed a large retrospective quantitative genetics study using CIMMYT’s yield
trials evaluated in the SEs (2013–2014 to 2017–2018), the South Asia Bread Wheat
Genomic Prediction Yield Trials (SABWGPYTs) evaluated in India, Pakistan, and
Bangladesh (2014–2015 to 2017–2018), and the Elite Spring Wheat Yield Trials
(ESWYTs) evaluated in several sites globally (2003–2004 to 2016–2017). First, we
compared the narrow-sense heritabilities in the Obregon SEs and target sites and
observed that the mean heritability in the SEs was 44.2 and 92.3% higher than the
mean heritabilities in the SABWGPYT and ESWYT sites, respectively. Second, we
observed significant genetic correlations between a SE in Obregon and all the five
SABWGPYT sites and 65.1% of the ESWYT sites. Third, we observed high ratios of
response to indirect selection in the SEs of Obregon with a mean of 0.80 ± 0.21 and 2.6 ±
5.4 in the SABWGPYT and ESWYT sites, respectively. Furthermore, our results also
indicated that for all the SABWGPYT sites and 82% of the ESWYT sites, a response
greater than 0.5 can be achieved by indirect selection for GY in Obregon. We also
performed genomic prediction for GY in the target sites using the performance of the
same lines in the SEs of Obregon and observed moderate mean prediction accuracies of
0.24 ± 0.08 and 0.28 ± 0.08 in the SABWGPYT and ESWYT sites, respectively using the
genotype x environment (GxE) model. However, we observed similar accuracies using the
baseline model with environment and line effects and no advantage of modeling GxE
interactions. Overall, this study provides important insights into the suitability of the
Obregon SEs in breeding for GY, while the variable genomic predictabilities of GY and
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the high year-to-year GY fluctuations reported, highlight the importance of multi-environment
testing across time and space to stave off GxE induced uncertainties in varietal yields.
Keywords: wheat, grain yield, quantitative genetics, genomic prediction, genotype x environment
INTRODUCTION

Increasing the grain yield (GY) potential of bread wheat (Triticum
aestivum L.) and developing resilient varieties are critical to ensure
food security amidst the low (0.9%) global average rate of increase
(Ray et al., 2013) and escalating challenges like fluctuating
temperatures, low precipitation, erratic rainfall patterns, and
extreme weather conditions (Wheeler and von Braun, 2013;
Curtis and Halford, 2014; Trnka et al., 2014; Tack et al., 2015;
Zampieri et al., 2017; Hatfield and Dold, 2018). However, the
identification of high-yielding widely adapted varieties is
constrained by the interactions of genotypes with the
environments (GxE interactions) that result in genotype rank
changes across environments and reduce the response to
selection (Haldane, 1946; Allard and Bradshaw, 1964; Eberhart
and Russell, 1966; Knight, 1970). To stave off GxE induced
uncertainties in varietal yields and the impending risks of crop
failure, the International Maize and Wheat Improvement Center
(CIMMYT) performs intensive three-stage GY testing at its
primary yield testing site, the Norman E. Borlaug Experimental
Research Station, CiudadObregon, Sonora,Mexico (27°29′N, 109°
56′W) and also analyzes GY data returned by collaborating
national partners from its target population of environments
(TPEs) to identify lines with temporal and spatial stability over a
range of environmental conditions (Crossa et al., 1991; Fox, 1994;
Cooper and Byth, 1996; Cooper et al., 1997; Braun et al., 2010).
These strategies adopted by CIMMYT have bolstered the
development of high-yielding, widely adapted stable wheat lines
(Rajaram and Skovmand, 1977; Braun et al., 1996; Singh and
Trethowan, 2007; Lage et al., 2008) that have a remarkable impact
globally, especially in developing countries (Byerlee and Moya,
1990; Heisey et al., 2002; Lantican et al., 2005; Lantican
et al., 2016).

The GY selection-environments (SEs) in Obregon are well
tailored to represent different planting systems, irrigation systems
and abiotic stresses in the spring bread wheat target mega-
environments (MEs) (Rajaram et al., 1993; Braun et al., 2010).
The first year/stage (Stage 1) of GY testing in Obregon involves the
evaluation of about 9,000 lines that were selected from the head-
rows in the fully irrigated bed planting environment (Stage 1
irrigated BP). The second year/stage (Stage 2) involves the
evaluation of 1,092 lines (~12% of 9,000 lines) selected from Stage
1 in six environments including the fully irrigated bed planting
(Stage 2 irrigated BP), fully irrigated flat planting (Stage 2 irrigated
FP), reduced irrigation (Stage 2 reduced irrigation), drought-
stressed (Stage 2 drought), early-sown heat stressed (Stage 2 early
heat), and late-sown heat stressed (Stage 2 late heat) environments.
The third year/stage (Stage 3) of testing involves 280 lines (~25% of
1,092 lines) selected from Stage 2 that are evaluated in three
environments including the fully irrigated bed planting (Stage 3
tiersin.org 2
irrigated BP), drought-stressed (Stage 3 drought), and late-sown
heat stressed (Stage 3 late heat) environments. In parallel with the
Stage 3 of GY testing in Obregon, the first GY testing at CIMMYT’s
major TPEs in South Asia is done through the South Asia Bread
Wheat Genomic Prediction Yield Trial (SABWGPYT). This trial
initiated in 2014 comprises 540 lines (~50% of 1,092 lines) selected
for high GY from Stage 2 of yield testing in Obregon, that are
evaluated in fully irrigated flat seed beds at the followingmain wheat
growing regions of South Asia: (i) Pakistan, Faisalabad (31°25’N, 73°
4’E) (ii) Bangladesh, Jamalpur (24°55′N, 89°57′E) (iii) Research
stations of the Borlaug Institute for South Asia in India, including
Ludhiana, Punjab (30°54′N, 75°51′E, representing the North-
Western Plain Zone), Pusa, Bihar (25°59′N, 85°41′E, representing
the North-Eastern Plain Zone), and Jabalpur, Madhya Pradesh (23°
10’N, 79°55’E, representing the Central Zone).

The lines with high and stable GY relative to checks in the fully
irrigated trials at the South Asia TPEs and in the Obregon SEs that
also possess good to moderate drought and heat tolerance are
selected and comprise the Elite Spring Wheat Yield Trials
(ESWYTs). This includes 50 lines distributed globally on request
every year that are targeted to the irrigated wheat growing
environments with mostly favorable temperatures during the
main crop season, including the Northwestern Gangetic Plains of
South Asia, Egypt, Northwestern Mexico (Obregon), various spring
wheat-growing areas of Turkey, Afghanistan, Iran, etc. In addition
to the ESWYTs, three other international wheat yield trials
including the semi-arid wheat yield trials, high-temperature
wheat yield trials and the high rainfall wheat yield trials targeted
to the drought-stressed, heat-stressed, and high rainfall regions,
respectively are also distributed annually by CIMMYT (Trethowan
and Crossa, 2007). While CIMMYT’s international yield trials have
proved to be extremely useful for characterizing relationships
between selection and target sites, genotype adaptations and GxE
interactions (Krull et al., 1968; Byth et al., 1976; Peterson and
Pfeiffer, 1989; DeLacy et al., 1993; Trethowan et al., 2001; Lillemo
et al., 2004), an extensive retrospective quantitative genetics study
focusing on understanding the GY heritabilities and genetic
correlations (GCs) and their effect on the response to selection for
GY is lacking.

Heritability is a key parameter in quantitative genetics that is
important to plant breeders as it expresses the correspondence
between GY phenotypic and breeding values and determines the
response to selection (Fisher, 1918; Falconer, 1960; Piepho and
Möhring, 2007). While the broad-sense heritability represents the
phenotypic variance that can be attributed to both additive and
non-additive genetic variance, the narrow-sense heritability
represents the proportion of phenotypic variance that can be
attributed to the additive genetic variance (Jacquard, 1983;
Nyquist, 1991; Kruijer et al., 2015). Two other critical quantitative
genetics parameters that are pivotal in understanding the efficiency
August 2020 | Volume 11 | Article 580136
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of selecting in a few SEs for a wide range of TPEs include: (i) the
genetic correlations (GCs) which determine the extent to which GY
in two environments is influenced by the same genes and (ii) the
ratio of correlated response to indirect selection in the SEs relative to
direct selection in the TPEs (Falconer, 1960; DeLacy et al., 1996). In
addition to understanding the quantitative genetic parameters
associated with GY, it is also essential to evaluate genomic
approaches that can minimize the adverse effects of GxE
interactions on the response to selection for GY. In this regard,
genomic selection (GS) where the genomic-estimated breeding
values (GEBVs) of lines obtained from genome-wide markers are
used in selecting individuals (Meuwissen et al., 2001) has been
found to be promising for improving GY in wheat (Zhao et al., 2013;
Charmet et al., 2014; Juliana et al., 2018; Lozada et al., 2019). Since it
has the potential to increase the selection accuracy and reduce the
costs associated with phenotyping (Heffner et al., 2009; Crossa et al.,
2014; Voss-Fels et al., 2018), it can be very beneficial in effectively
selecting lines for the TPEs.

Recognizing the importance of quantitative genetic parameters
in understanding the efficiency of CIMMYT’s yield testing
strategies, we designed this study with the following key
objectives: (i) estimate the GY narrow-sense heritabilities using 36
trials evaluated in the SEs of Obregon and 534 trials evaluated in the
TPEs, (ii) estimate the GCs and the rates of response to selection
using four cohorts of breeding lines evaluated in the SEs of Obregon
and in the SABWGPYTs and two cohorts evaluated in the SEs of
Obregon, SABWGPYTs, and ESWYTs, (iii) cluster the sites in the
TPEs based on their GCs to identify sites where the lines have
similar patterns of GY performance to facilitate better targeting of
lines for those TPEs. In addition, to evaluate the prospects of
implementing GS for targeting lines to the TPEs, we first
determined the genomic prediction accuracies (PAs) for GY in
the target sites using the GY of the same lines in the SEs in Obregon
for 1,424 selection and target environment pairs. For this we used a
GxE model with genomic effects, environment effects, and genotype
x environment effects that has been shown to boost the PAs
(Burgueño et al., 2012; Heslot et al., 2013; Crossa et al., 2016;
Jarquıń et al., 2017; Pérez-Rodrıǵuez et al., 2017), and compared the
PAs to those from a baseline model with only the main effects of the
environment and the lines (EL model) to understand the advantage
of modeling GxE interactions. Moreover, we also compared the PAs
from the GxE model with the phenotypic correlations between the
environments to comprehend the relationships between them.
Furthermore, we also partitioned the phenotypic GY variance
between the selection and target environments into genetic,
environment, genotype x environment, and error variance to
decipher the relative contribution of these components towards GY.
MATERIALS AND METHODS

Populations, Phenotyping, and Best Linear
Unbiased Estimates for Grain Yield
The yield trial lines used in this study were developed by the
CIMMYT wheat breeding program using the selected bulk
Frontiers in Plant Science | www.frontiersin.org
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breeding approach, which involves early generation visual
selection for phenological traits, agronomic type, rust
resistance, tillering capacity, spike fertility, grain size, and
overall grain health. GY in all the trials was measured in
tonnes/hectare obtained from the plot-based harvested grain
weight. In the Stage 1 of GY testing in Obregon, 6,408, 7,987,
and 8,182 lines were evaluated in the irrigated BP environment in
the 2013–2014, 2014–2015, and 2015–2016 cycles, respectively.
The lines were sown on raised beds during the optimum planting
time from the third week of November to the first week of
December and they received an optimum irrigation of about
500 mm of water in five irrigations throughout the cycle. The
trials were laid out in an alpha-lattice design with two
replications and two checks.

In the Stage 2 of yield testing, 1,092 lines were evaluated each
year during the 2013–2014 to 2016–2017 cycles in all the six
environments, except in the 2015–2016 cycle where the lines were
not evaluated in the Stage 2 early heat and Stage 2 late heat
environments. The lines evaluated in the Stage 2 irrigated BP and
Stage 2 irrigated FP environments were planted in raised and flat
seed beds, respectively, during the optimum planting time and
received a total of about 500 mm of water in five irrigations. The
lines evaluated for drought-stress in the Stage 2 reduced irrigation
and Stage 2 drought environments were planted in raised and flat
seed beds respectively, during the optimumplanting time.While the
Stage 2 reduced irrigation environment received a total of about
250 mm of water in two irrigations, the Stage 2 drought
environment received a total of 180 mm of water through drip
irrigation. Evaluation of the lines for GY under high temperatures
during the juvenile growth stage (Stage 2 early heat) and during the
heading and grain-filling stages (Stage 2 late heat) were achieved by
sowing the lines early in mid-October (30 days before he optimum
planting time) and late in the last week of February (90 days after
the optimum planting time), respectively. Both the heat-stressed
environments received a total of 500 mm of water in five irrigations.
In the Stage 3 of yield testing, 280 lines were evaluated each year
during the 2014–2015 to 2017–2018 cycles in the irrigated BP,
drought, and late heat environments, as described above.

The 540 lines in the SABWGPYTs were grown in an alpha-
lattice design with two replications during the 2014–2015 to
2017–2018 cycles. While the lines were evaluated in India
Jabalpur, India Ludhiana, and India Pusa during all the cycles,
they were evaluated in Bangladesh Jamalpur during the 2016–
2017 cycle only and in Pakistan Faisalabad during the 2015–2016
and 2016–2017 cycles only. The 24th to the 37th ESWYTs
comprising 700 lines with 50 lines in each ESWYT (46 lines,
three CIMMYT checks, and one local check) were evaluated in
two replications in several sites during the 2003–2004 (24the

ESWYT) to 2016–2017 (37th ESWYT) cycles. However, all the
ESWYTs were not evaluated in all the sites due to several factors
like the lack of capacity for GY testing, the importance for bread
wheat in the site etc. (Lage et al., 2008) and hence only the 60
sites that had been evaluated at least five of the 14 ESWYTs were
included in the analysis. This included sites in 17 countries
including Afghanistan, Algeria, Argentina, Bangladesh, Canada,
Chile, Egypt, India, Iran, Mexico, Nepal, Pakistan, Portugal,
August 2020 | Volume 11 | Article 580136
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South Africa, Spain, Sudan, and Turkey that are described in
Supplementary Table 1.

To obtain the best linear unbiased estimates for GY in all the
datasets, we used the below mixed model in the ASREML ‘R’
package (Gilmour, 1997):

yijkl = m + gi + tj + rk(j) + bl(jk) + ϵijkl   (1)

where yijkl represents the unadjusted GY, m represents the overall
mean, gi represents the fixed effect of the genotype, tj represents
the random effect of the trial assumed to be independent and
identically distributed (IID) (tj eN   (0,  s 2

t )), rk(j) represents the
random effect of the replicate within the trial assumed to be IID
(rk(j) eN   (0,  s 2

r )), bl(jk) represents the random effect of the
incomplete block within the trial and the replicate assumed to
be IID (bm(jk) eN   (0,  s 2

b )) and ϵijkl is the residual assumed to be
IID (ϵijkl e  N   (0,  s 2

ϵ )). The GY BLUEs for all the lines in the
Stage 1, Stage 2, Stage 3 of yield testing, the SABWGPYTs and
the ESWYT sites are given in Supplementary Tables 2 and 3.

Genotyping
Genome-wide markers for all the lines used in this study were
obtained using the genotyping-by-sequencing (GBS) method
(Poland et al., 2012). The marker polymorphisms were called
using the TASSEL (Trait Analysis by aSSociation Evolution and
Linkage) version 5 GBS pipeline (Bradbury et al., 2007; Glaubitz
et al., 2014). We then performed single nucleotide polymorphism
discovery by filtering for a minor allele frequency of 0.01, followed
by aligning the resulting 6,075,743 GBS tags to the reference genome
(RefSeq v1.0) of bread wheat (IWGSC, 2018). Further filtering of the
tags as described in Juliana et al. (2019) resulted in 78,662 markers
that passed at least one of the filters. We then filtered the markers
with greater than 60% missing data, minor allele frequency lesser
than 5% and heterozygosity less than 10%, and also the lines that
had greater than 50% missing data. This resulted in the following
number of lines andmarkers for the different yield trials in Obregon
and the SABWGPYTs: (i) Stage 1 2012–2013—947 lines and 6,071
markers; (ii) Stage 1 2013–2014—6,408 lines and 8,416markers; (iii)
Stage 1 2014–2015—7,987 lines and 11,982 markers; (iv) Stage 1
2015–2016—8,182 lines and 11,518 markers; (v) Stage 2 2013–
2014—947 lines and 6,071 markers; (vi) Stage 2 2014–2015—1,012
lines and 5,963 markers; (vii) Stage 2 2015–2016—1,052 lines and
8,402 markers; (viii) Stage 2 2016–2017—1,040 lines and 8,312
markers; (ix) Stage 3 2014–2015—269 lines and 6,180 markers; (x)
Stage 3 2015–2016—263 lines and 5,399 markers; (xi) Stage 3 2016–
2017—272 lines and 6,356 markers; (xii) Stage 3 2017–2018—264
lines and 5,768 markers; (xiii) SABWGPYT 2014–2015—508 lines
and 5,600 markers; (xiv) SABWGPYT 2015–2016—487 lines and
6,122 markers; (xv) SABWGPYT 2016–2017—515 lines and 7,752
markers; and (xvi) SABWGPYT 2017–2018—505 lines and 7,474
markers. Similarly, in the 14 ESWYTS, the number of lines
and markers after filtering ranged from 36 to 43 and from 7,742
to 12,441, respectively. Marker missing data was imputed using the
linkage-disequilibrium based k-nearest neighbor imputation
method in TASSEL (Money et al., 2015) and the unfiltered
genotyping data is available in https://doi.org/10.6084/m9.figshare.
12609368.v2.
Frontiers in Plant Science | www.frontiersin.org 4
Statistical Analysis of the Grain Yield Data
in the Target Sites and Narrow-Sense
Heritabilities in the Selection and Target
Environments
To understand the GY performance of lines in the SABWGPYTs
(2014–2014 to 2017–2018) and in the ESWYTs (2003–2004 to
2016–2017), we performed statistical analysis of the GY BLUEs
within each yield trial and calculated the mean, median, range,
standard deviation, standard error of the mean, and variance. We
then estimated the line mean narrow-sense heritabilities for GY
across replications in the SEs and in the target sites using the
formula:

h2 =  
s 2
g

s 2
g +   s 2

ϵ
nreps

(2)

where s2
g represents the genetic variance, s 2

ϵ represents the error
variance, and nreps represents the number of replications. The
genetic and error variances in each trial were estimated using the
average information-restricted maximum likelihood algorithm
(Gilmour et al., 1995) in the ‘R’ package ‘heritability’ (Kruijer
et al., 2015). The datasets that were used for the estimation of
heritabilities include: (i) 23,524 lines evaluated in the SEs of
Obregon between 2013–2014 and 2017–2018 in 36 trials; (ii)
2,015 lines evaluated in the five SABWGPYT sites between 2014–
2015 and 2017–2018 in 15 trials; and (iii) 700 lines evaluated in
60 ESWYT sites between 2003–2004 and 2016–2017 in 519 trials.

Genetic Correlations and Clustering of
Target Sites Based on Genetic
Correlations
We estimated GCs from the genetic covariances calculated in the
‘R’ package EMMREML (Akdemir and Okeke, 2015) using the
formula (Falconer, 1960),

rA =
COVXY
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
varXvarY

p (3)

where rA represents the genetic correlation of GY in two
environments, covXY represents the covariance for GY in the
two environments, and varX and varY are the variances for GY in
the two environments. The function ‘emmreml Multivariate’ in
EMMREML accounts for the additive genetic (co)variance
matrix of GY in different environments, that is calculated
using markers and solves a multivariate Gaussian mixed model
with a known covariance structure.

The GCs between GY evaluated in the Stage 1 and Stage 2 SEs
and the target SABWGPYTs were evaluated in four sets of
breeding lines or cohorts, as follows: (i) Cohort 1: 508 lines in
Stage 1 2012–2013, Stage 2 2013–2014, and SABWGPYT 2014–
2015; (ii) Cohort 2: 487 lines in Stage 1 2013–2014, Stage 2 2014–
2015, and SABWGPYT 2015–2016; (iii) Cohort 3: 515 lines in
Stage 1 2014–2015, Stage 2 2015–2016, and SABWGPYT 2016–
2017; and (iv) Cohort 4: 505 lines in Stage 1 2015–2016, Stage 2
2016–2017, and SABWGPYT 2017–2018. Similarly, the GCs
between GY evaluated in all the SEs of Obregon, and in the
August 2020 | Volume 11 | Article 580136
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target SABWGPYT and ESWYT sites were obtained in two
cohorts as follows: (i) Cohort 1: 42 lines in Stage 1 2012–2013,
Stage 2 2013–2014, Stage 3 2014–2015, SABWGPYT 2014–2015,
and ESWYT 2015–2016; (ii) Cohort 2: 43 lines in Stage 1 2013–
2014, Stage 2 2014–2015, Stage 3 2015–2016, SABWGPYT 2015–
2016, and ESWYT 2016–2017. In addition, we also obtained the
GCs between the SABWGPYT sites across the years, the 69 sites
in the ESWYT 2015–2016, and the 71 sites in the ESWYT 2016–
2017. The significance of all the GCs were tested and the p-values
for the test of significance were obtained. We then used the GCs
between the 44 ESWYT sites that had evaluated both the 36th and
37th ESWYTs to cluster the sites using the hierarchical clustering
approach and the dendrogram was cut into five branches and
visualized using the ‘R’ package, ‘pheatmap’ (Kolde, 2012). The
clustering patterns of the ESWYT sites in the two different years
were then analyzed to identify consistent patterns.

Rate of Response to Selection
To understand the effectiveness of indirect selection in the SEs of
Obregon relative to that of direct selection in the TPEs, we
calculated the ratio of response to indirect vs direct selection
using the formula (Falconer, 1960):

CRX

RX
= rA

iY
iX

hY
hX

(4)

where CRX is the correlated response to GY selection in the target
environment (X) resulting from selection applied to GY in the SE, RX
is the direct response to GY selection in the target environment, rA is
the GC between the selection and target-environments, iY and iX are
the intensities of selection in the selection and target-environments,
respectively (which we assumed to be the same), and hY and hX are
the narrow-sense heritabilities for GY in the selection and target-
environments, respectively.

Genomic Prediction for Grain Yield in the
Target Sites Using Their Yields in the
Selection-Environments of Obregon
The ability of GY evaluations in the SEs of Obregon to predict
GY in the target sites was assessed using four cohorts of lines in
the SABWGPYTs and two cohorts of lines in the ESWYTs. To
model the effects of the genotypes, environments and the GxE
interactions in a GxE model, we used the reaction norm
framework (Jarquı ́n et al., 2014) and the model can be
represented as:

y = m1 + Zyby + Zgu1 + u2 + ϵ (5)

where y represents the vector of GY BLUEs; m represents the
general mean; Zy represents the incidence matrix for the
environment; by represents the random effect of the environment
assumed to be multivariate normal by eMN(0,  s 2

y I); Zg represents
the incidence matrix connecting the lines with the GY BLUEs; u1
represents the random effect of the lines; u2 represents the GxE
interaction assumed to be multivariate normal u2 eMN(0,s 2

gy(Zg

GZ
0
g) (ZyZ

0
y)), where # denotes the Hadamard product (cell-by-cell)

of the two matrices in parentheses (Jarquıń et al., 2014), and ϵ
Frontiers in Plant Science | www.frontiersin.org 5
represents the residuals assumed to be multivariate normal and
distributed as ϵ eMN(0,s 2

ϵ I). We also performed GY predictions
using the EL model with environment and line effects and can be
represented as:

y = m1 +  Zyby + Zlb l +   ϵ  (6)

where y represents the vector of GY BLUEs, m represents the general
mean, Zy by and ϵ represent the same as in Equation 5, Zl represents
the incidence matrix for the lines and bl represents the random
effect of the lines such that it is multivariate normal bl eMN(0,  
s 2
l I), and s 2

l represents the variance of the lines. Both the GxE
model and the EL model were fitted in the BGLR ‘R’ package and
the Pearson’s correlations between the predicted values and the
observed values were calculated as the PAs. To understand the
relationships between PAs and the phenotypic correlations between
the SEs ad TPEs, we also obtained the Pearson’s correlations
between them and visualized them using the ‘R’ package ggplot2
(Wickham, 2009).
RESULTS

Statistical Analysis of the Grain Yield Data
and Grain Yield Progress
Statistical analysis of the GY data (Supplementary Table 4)
indicated that in the SABWGPYT sites, the highest mean GY in
all the years was observed in India Jabalpur where the mean GY
across years ranged between 6.5 and 8.3 t/ha, followed by India
Ludhiana (5.4 to 7 t/ha), India Pusa (4.4 to 6.1 t/ha), Pakistan
Faisalabad (3.4 to 4.6 t/ha), and Bangladesh Jamalpur (3.1 t/ha).
The mean GY from the 2014–2015 to the 2017–2018 cycle had
increased by 27.3% in India Jabalpur, 31.2% in India Ludhiana,
and 40.5% in India Pusa over the base mean GY in the 2014–
2015 cycle. Similarly, the mean GY in Pakistan Faisalabad had
increased by 36.8% across the two cycles (2015–2016 and
2016–2017).

In the ESWYTs, the mean GY across 14 years had increased
by 24% from 4.6 ± 2.5 t/ha in the 24th ESWYT to 5.7 ± 2 in the
37th ESWYT. The highest mean yields in the most recent
ESWYT analyzed were observed in Turkey Adana (11.1 t/ha),
Egypt Sids (10 t/ha), Egypt Gemmeiza (8.06 t/ha), and Egypt Ety-
El-Barud (7.9 t/ha). We also observed highly variable and non-
linear GY trends across the years in several ESWYT sites
(Supplementary Figures 1 and 2). However, a clear increasing
trend in themeanGY (considering themeanGY in the first evaluated
ESWYT and the highest mean GY of the two most recent ESWYTs)
was observed in several sites including, (i) Afghanistan Darul Aman:
5.5 fold or 445.5% increase in 12 years, (ii) Canada Swift Current:
3.8 fold or 279% increase in 12 years, (iii) Pakistan Bahawalpur: 2.8
fold or 176.5% increase in 10 years, (iv) Pakistan Tandojam: 2.5 fold
or 151.2% increase in 10 years, (v) Pakistan Islamabad: 2.1 fold or
111.8% increase in 13 years, and (vi) India Gurdaspur: 2.1 fold or
106% increase in 9 years.

The relative performance of the highest yielding ESWYT line
in each year over the GY of the local check in that year was
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analyzed in 12 sites where the ESWYTs were evaluated in a
higher number of years (12–14 years). We observed a clear
superiority of the highest yielding ESWYT lines over the local
check (Figure 1) in 144 out of the 152 (94.7%) site-year
combinations. While the mean increase in GY of the highest
yielding ESWYT line over the local check in the 144 site-year
combinations was 1.1 ± 0.7 t/ha (29.5 ± 28.6% increase), it
ranged from 0.03 to 3.54 t/ha (0.6 to 237.2% increase). In
addition, we also observed a clear increasing trend in the GY
of the highest yielding ESWYT line in most sites from the 24th to
the 37th ESWYT.

Narrow-Sense Heritabilities in the
Selection and Target Environments
The highest mean narrow-sense heritabilities were observed
in the SEs of Obregon (0.75 ± 0.11), followed by the
SABWGPYT sites (0.52 ± 0.13) and the ESWYT sites (0.39 ±
0.29) (Supplementary Table 5). The mean narrow-sense
heritabilities in the Obregon yield testing stages were: 0.65 ±
0.06 in Stage 1, 0.79 ± 0.1 in Stage 2, and 0.7 ± 0.12 in Stage 3 of
GY testing. In the SABWGPYT sites, the highest mean narrow-
sense heritabilities were observed in India Ludhiana (0.56 ±
0.08), followed by India Pusa (0.55 ± 0.14), India Jabalpur (0.53 ±
0.16), Pakistan Faisalabad (0.49 ± 0.15), and Bangladesh
Jamalpur (0.32).

Among the 60 ESWYT sites, 16 (26.7%) had mean
heritabilities greater than 0.5, 24 (40%) had mean heritabilities
between 0.3 and 0.49 and 20 (33.3%) had mean heritabilities less
than 0.3. In addition, we observed high variabilities in the site
heritabilities across years and considering all the 519 site-years,
251 site-years (48.4%) had heritabilities less than 0.3, 141 site-
years (27.2%) had heritabilities between 0.31 and 0.6, 107 site-
years (20.6%) had heritabilities between 0.61 and 0.95, and 20
Frontiers in Plant Science | www.frontiersin.org 6
site-years (3.9%) had unrealistically high heritabilities between
0.95 and 1 (Figure 2).

Genetic Correlations Between the
Selection and Target Environments
The GCs between the Stage 1 and Stage 2 SEs in Obregon and the
SABWGPYT sites (Figure 3, Supplementary Table 5) indicated
that among the 95 SE-SABWGPYT site combinations, 77 (81%)
combinations had a significant GC at a p-value threshold of
0.001. While the Stage 1 irrigated BP environment had
significant GCs with all the SABWGPYT sites in all the years,
the Stage 2 late heat, Stage 2 early heat, Stage 2 drought, Stage 2
irrigated FP, Stage 2 reduced irrigation, and Stage 2 irrigated BP
environments had insignificant GCs in 5, 4, 3, 3, 2, and 1 site-
year combinations, respectively. For GY evaluated in Bangladesh
Jamalpur, the highest GC (0.41) was with the Stage 2 reduced
irrigation environment. For GY evaluated in India Jabalpur, the
highest GCs with the SEs ranged between 0.43 and 0.66 and were
with the Stage 2 reduced irrigation, Stage 2 irrigated BP, Stage 2
irrigated FP, and Stage 2 drought environments in the four
cycles, respectively. For GY evaluated in India Ludhiana, the
highest GCs with the SEs ranged between 0.52 and 0.63 and were
with the Stage 2 irrigated BP environment in the first three cycles
and the Stage 1 irrigated BP environment in the fourth cycle. For
GY evaluated in India Pusa, the highest GCs with the SEs ranged
between 0.34 and 0.57 and were with the Stage 2 irrigated BP,
Stage 2 irrigated FP, Stage 2 irrigated BP, and Stage 2 reduced
irrigation environments, respectively. For GY evaluated in
Pakistan Faisalabad, the highest GCs in the two cycles were
0.59 and 0.55 and were with the Stage 2 drought and Stage 2
irrigated FP environments. Across all the SABWGPYT sites, the
SEs that had high mean GCs were Stage 1 irrigated BP (0.39 ±
0.14), Stage 2 irrigated BP (0.38 ± 0.18), Stage 2 reduced
FIGURE 1 | Relative grain yield performance of the highest yielding Elite Spring Wheat Yield Trial (ESWYT) line in each year over the grain yield of the local check in
that year across 12 sites in the 24th to the 37th ESWYT.
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irrigation (0.36 ± 0.18), Stage 2 irrigated FP (0.34 ± 0.17), and
Stage 2 drought (0.31 ± 0.2), while the Stage 2 early heat (0.19 ±
0.23) and Stage 2 late heat (0.1 ± 0.23) SEs had low GCs.

In the 36th ESWYT sites, the highest GCs with an Obregon SE
were significant in 46 out of the 69 sites (66.7%) at a p-value
threshold of 0.05 (the threshold was relaxed because of the small
sample size). The highest GCs of these 46 sites with an Obregon
SE ranged between 0.3 and 0.4 in 22 sites, between 0.41 and 0.5 in
12 sites and between 0.51 and 0.67 in 12 sites. The 36th ESWYT
sites that had the highest GCs with the Obregon SEs included
Canada Swift Current (0.67), Algeria Setif (0.66), Turkey Adana
(0.65), Egypt Sids (0.62), India Wellington (0.62), and Ethiopia
Adet (0.58). The SEs that had the highest significant GCs with
the 46 target sites included the Stage 2 irrigated FP (11 sites),
Stage 2 early heat (8 sites), Stage 3 irrigated BP (6 sites), Stage 2
drought (5 sites), Stage 2 reduced irrigation (4 sites), Stage 2
irrigated BP (3 sites), Stage 3 drought (3 sites), Stage 3 late heat (3
sites), Stage 1 irrigated BP (2 sites), and the Stage 2 late heat (1
site) environments.
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In the 37th ESWYT sites, the highest GCs with an Obregon SE
were significant in 45 out of the 71 sites (63.4%) at a p-value
threshold of 0.05. The highest GCs of these 45 sites with an
Obregon SE ranged between 0.3 and 0.4 in 24 sites, between 0.41
and 0.5 in 16 sites, and between 0.51 and 0.67 in 5 sites. The 37th

ESWYT sites that had the highest GCs with the Obregon SEs
included Canada Swift Current (0.66), Afghanistan Dehdadi
(0.56), Argentina Pergamino (0.56), India New Delhi (0.56)
and India Jalander (0.52). The SEs that had the highest
significant GCs with the target sites included the Stage 2 early
heat (9 sites), Stage 1 irrigated BP (6 sites), Stage 2 irrigated BP (6
sites), Stage 2 reduced irrigation (6 sites), Stage 2 drought (5
sites), Stage 3 late heat (5 sites), Stage 3 irrigated BP (4 sites),
Stage 2 irrigated FP (2 sites) and Stage 2 late heat (2
sites) environments.

Considering the 44 sites where both the 36th and 37th ESWYTs
were evaluated, the mean of the highest GCs of these sites with an
Obregon SE ranged between 0.15 and 0.3 in 18 sites, between 0.31
and 0.4 in 18 sites, and between 0.41 and 0.67 in 8 sites (Figure 4).
FIGURE 2 | Narrow-sense heritabilities of grain yield in the 24th to the 37th Elite Spring Wheat Yield Trials (ESWYTs) evaluated in 60 target sites indicated by the
country followed by the site.
FIGURE 3 | Genetic correlations between the environments in the Stages 1 and 2 of yield testing in Obregon and the three sites in India where the South Asia
Bread Wheat Genomic Prediction Yield Trials were evaluated in four cycles. S1 FI BP, Stage 1 full irrigation bed planting; S2 FI BP, Stage 2 full irrigation bed planting;
S2 FI FP, Stage 2 full irrigation flat planting; S2 RI, Stage 2 reduced irrigation; S2 DS, Stage 2 drought stress; S2 ESHS, Stage 2 early-sown heat stress; and S2
LSHS, Stage 2 late-sown heat stress.
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The sites that had the highest mean GCs with the Obregon SEs and
low standard deviations across the two ESWYTs included Canada
Swift Current (0.67 ± 0.003), Afghanistan Dehdadi (0.54 ± 0.02),
India New Delhi (0.53 ± 0.02), India Hoshangabad (0.47 ± 0.01),
India Indore (0.42 ± 0.06), Iran Safiabad (0.42 ± 0.07). and Nepal
Khumaltar (0.41 ± 0.03). However, only two among the 44 sites had
the highest GCs with the same SE in both the years including China
Laomancheng with the Stage 2 irrigated BP environment and
Pakistan Dera Ismail Khan with the Stage 2 late heat
environment. Overall, the SEs having the highest GCs with the 44
sites in both the years included the Stage 2 early heat (20 sites) and
Stage 2 drought (12 sites) environments. We also observed that the
Stage 1 irrigated BP, Stage 2 irrigated BP, Stage 3 irrigated BP, Stage
2 reduced irrigation, Stage 2 late heat, and Stage 3 late heat
environments had the highest GCs in eight sites each, while the
Stage 2 irrigated BP environment had the highest GC in six sites.

To understand the selection abilities of the SABWGPYT sites
in India and Pakistan and the Obregon SEs with the target sites
in India and Pakistan, we obtained their GCs with 11 ESWYT
sites in India and 6 ESWYT sites in Pakistan that were evaluated
in both the 36th and the 37th ESWYTs (Figure 5). In the 36th

ESWYT, the highest GCs of eight of the 17 target sites were with
the SEs in Obregon that included India Gurgaon, India Hissar,
India Hoshangabad, India Indore, India New Delhi, India
Pantnagar, Pakistan Dera Ismail Khan, and Pakistan Pirsabak.
In the 37th ESWYT, the highest GCs of 10 target sites were with
the SEs in Obregon that included India Dharwad, India Hissar,
India Hoshangabad, India Indore, India Karnal, India New
Delhi, India Pune, Pakistan Dera Ismail Khan, Pakistan
Islamabad, Pakistan Peshawar. The four sites where the
Frontiers in Plant Science | www.frontiersin.org 8
SABWGPYT sites had a higher GC compared to the Obregon
SEs in both the ESWYTs included India Karnal Syngenta (0.59
with India Ludhiana in the 36th ESWYT and 0.65 with Pakistan
Faisalabad in the 37th ESWYT), India Varanasi (0.46 and 0.49
with India Jabalpur in the 36th and 37th ESWYT respectively),
Pakistan Bahawalpur (0.52 with India Jabalpur in the 36th

ESWYT and 0.28 with India Ludhiana in the 37th ESWYT),
and Pakistan Sakrand (0.27 and 0.33 with Pakistan Faisalabad in
the 36th and 37th ESWYTs, respectively).

Genetic Correlations Between the Target
Sites and Clustering of Target Sites
The GCs between the target sites in the SABWGPYTs, 36th and 37th

ESWYTs were analyzed to identify consistently correlated sites
(Supplementary Tables 7 and 8). In the SABWGPYT sites, high
mean GCs were observed between India Pusa and Bangladesh
Jamalpur (0.75), Pakistan Faisalabad and India Pusa (0.68 ± 0.14),
Pakistan Faisalabad and India Ludhiana (0.59 ± 0.24), Pakistan
Faisalabad and Bangladesh Jamalpur (0.57), and India Pusa and
India Ludhiana (0.54 ± 0.16). However, the mean GCs of India
Jabalpur with Pakistan Faisalabad (0.44 ± 0.04), India Pusa (0.42 ±
0.18), Bangladesh Jamalpur (0.35), and India Ludhiana (0.22 ± 0.05)
were moderate to low.

In the two ESWYTs, the highest mean GCs and low standard
deviations across the two ESYWTs were observed between the
following target site pairs: Turkey Izmir and Egypt Gemmeiza (0.67 ±
0.01), India Karnal and India Hissar (0.52 ± 0.005), Turkey Izmir
and Mexico Las Margaritas (0.52 ± 0.08), Canada Swift Current
and Afghanistan Dehdadi (0.48 ± 0.09), Turkey Adana and Turkey
Kahramanmaras (0.44 ± 0.09), China Laomancheng and India
FIGURE 4 | Highest genetic correlations between a selection environment in the Stages 1, 2, and 3 of yield testing in Obregon and the 44 target sites in the Elite
Spring Wheat Yield Trials (ESWYTs) where both the 36th and the 37th ESWYT were evaluated. S1 FI BP, Stage 1 full irrigation bed planting; S2 FI BP, Stage 2 full
irrigation bed planting; S2 FI FP, Stage 2 full irrigation flat planting; S2 RI, Stage 2 reduced irrigation; S2 DS, Stage 2 drought stress; S2 ESHS, Stage 2 early-sown
heat stress; S2 LSHS, Stage 2 late-sown heat stress; S3 FI BP, Stage 3 full irrigation bed planting; S3 DS, Stage 3 drought stress; and S3 LSHS, Stage 3 late-sown
heat stress.
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Karnal (0.44 ± 0.09), Afghanistan Dehdadi and Ukraine Kharkov
(0.43 ± 0.1), India Dharwad and Pakistan Islamabad (0.43 ± 0.08),
Pakistan Pirsabak and India Pune (0.42 ± 0.07), China
Laomancheng and India Varanasi (0.42 ± 0.05), Pakistan Sakrand
and Ukraine Kharkov (0.41 ± 0.04), Pakistan Peshawar and India
Pune (0.41 ± 0.02), Mexico Las Margaritas and India New Delhi
(0.4 ± 0.03), and India Varanasi and India Indore (0.4 ± 0.06).
When these sites in the 36th and 37th ESWYTs were clustered based
on their GCs, the following pairs clustered together in both the
ESWYTs: Turkey Izmir and Egypt Gemmeiza, India Karnal and
India Hissar, Canada Swift Current and Afghanistan Dehdadi,
China Laomancheng and India Karnal, India Dharwad and
Pakistan Islamabad, and Pakistan Sakrand and Ukraine Kharkov
(Figure 6).
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Ratios of Response to Selection
The ratios of response indirect selection in the SEs of Obregon
relative to that of direct selection in the TPEs were calculated for
the SABWGPYT and ESWYT sites (Supplementary Table 9,
Figure 7). For the SABWGPYT sites, the highest ratios of
response to indirect selection in Obregon ranged between 0.52
and 1.14 across all the site-years, with a mean of 0.80 ± 0.21.
Considering the individual sites, the highest ratios of response to
indirect selection in the different years ranged as follows:
Bangladesh Jamalpur: 0.98, India Jabalpur: 0.53 to 1.14, India
Ludhiana: 0.64 to 0.86, India Pusa: 0.52 to 1.1, and Pakistan
Faisalabad: 0.94 to 0.98. The Obregon SEs that had the highest
ratios of indirect selection response for the SABWGPYTs
included Stage 2 drought environment (4 site-years), Stage 2
FIGURE 6 | Clustering of the Elite Spring Wheat Yield Trials (ESWYT) sites based on the genetic correlations of grain yield evaluated in those sites with lines from the
36th and the 37th ESWYT.
FIGURE 5 | Genetic correlations between grain yield evaluated in the selection environments of Obregon and the South Asia Bread Wheat Genomic Prediction Yield
Trial sites in India and Pakistan with the grain yield evaluated in Elite Spring Wheat Yield Trial (ESWYT) sites in India and Pakistan in the 36th and 37th ESWYT. S1 FI
BP, Stage 1 full irrigation bed planting; S2 FI BP, Stage 2 full irrigation bed planting; S2 FI FP, Stage 2 full irrigation flat planting; S2 RI, Stage 2 reduced irrigation; S2
DS, Stage 2 drought stress; S2 ESHS, Stage 2 early-sown heat stress; S2 LSHS, Stage 2 late-sown heat stress; S3 FI BP, Stage 3 full irrigation bed planting; S3
DS, Stage 3 drought stress; and S3 LSHS, Stage 3 late-sown heat stress.
August 2020 | Volume 11 | Article 580136

https://www.frontiersin.org/journals/plant-science
http://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles


Juliana et al. Quantitative Genetic Analysis of Yield
irrigated BP environment (3 site-years), and Stage 2 reduced
irrigation environment (3 site-years).

In the ESWYT sites, the mean of the highest ratios of response
to indirect selection in the SEs of Obregon across two cycles was
2.6 ± 5.4. In the 36th ESWYT, the ratios of response to indirect
selection were greater than one for 34 sites (49.3%) and greater
than 0.5 for 50 sites (72.5%). While the highest ratios of response
for indirect response (greater than five) were observed for
Ethiopia Adet, Morocco Marchouch, Zambia Lusaka, Iran
Gachsaran, Libya Misurata, and India Wellington, sites like
Angola Chianga, Iraq Bakrajo, Pakistan Bahawalpur, and Spain
Castilla Y Leon had the lowest ratios. The Obregon SEs that had
the highest ratios of indirect selection response for the 36th

ESWYT sites included Stage 2 early heat (11sites), Stage 2
drought (10 sites), Stage 3 drought (10 sites), and Stage 2
irrigated FP (8 sites). In the 37th ESWYT, the ratios of
response to indirect selection were greater than one for 31 sites
(43.7%) and greater than 0.5 for 52 sites (73.2%). Sites
like Nigeria Birnin Kebbi, Afghanistan Takhar, India Nagpur,
Turkey Kahramanmaras, Egypt Sids, Nepal Khumaltar, India
Hoshangabad, and Afghanistan Urdokhan had the highest ratios
for indirect selection, while the lowest ratios were observed for
sites like Turkey Adana, Egypt Gemmeiza, Afghanistan Shesham
Bagh, and Iran Gorgan. The Obregon SEs that had the highest
ratios of indirect selection response for the 37th ESWYT sites
included the Stage 2 early heat (20 sites), Stage 2 drought (11
sites), Stage 2 late heat (10 sites), and Stage 3 late heat (9 sites)
environments. The means of the highest ratios of response to
indirect selection in sites with two years of evaluations indicated
that 66% of the 44 sites had mean response ratios greater than
one and 82% of the sites had ratios greater than 0.5. Overall,
across both the ESWYTs, the Obregon SEs that had the highest
ratios of indirect response to selection were Stage 2 early heat (20
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site-years), Stage 2 drought (13 site-years), Stage 2 late heat (12
site-years), and Stage 2 reduced irrigation (8 sites) environments.

Genomic Prediction for Grain Yield in the
Target Sites Using Their Yields in the
Selection-Environments of Obregon
The ability of GY evaluated in the SEs of Obregon to predict GY
in the target SABWGPYTs and ESWYTs were evaluated for
1,424 SE-TPE pairs and compared to the phenotypic correlations
between the environments (Supplementary Table 10). In the
SABWGPYT evaluation sites where the GY of 487 to 515 lines
were predicted from their corresponding Obregon yields, the
mean of the highest PAs from the Obregon SEs using the GxE
model across the five South-Asian sites was 0.24 ± 0.08 and the
mean PAs were the highest in India Ludhiana (0.28 ± 0.1),
followed by Pakistan Faisalabad (0.28 ± 0.11), India Jabalpur
(0.27 ± 0.08), India Pusa (0.19 ± 0.01), and Bangladesh Jamalpur
(0.13). The Obregon SEs that had the highest PAs for the
SABWGPYT sites included the Stage 2 irrigated BP
environment (7 site-years) and the Stage 1 irrigated BP
environment (3 site-years) (Figure 8). A strong relationship
between the PAs from the GxE model and the PAs from the
EL model (correlation of 0.98) and the phenotypic correlations
(correlation of 0.98) was observed and there were no significant
differences between the PAs from the GxE model and the EL
model (p-value of 0.47) and between the PAs from the GxE
model and the phenotypic correlations (p-value of 0.73).

To further understand the PAs from the GxE and EL models,
we partitioned the GY variance between the SABWGPYT sites
and the Obregon SE that had the highest predictability for each
site into the genetic, environment (including year and site),
genotype x environment, and error variance components and
obtained the ratios of the variance components relative to the
FIGURE 7 | Ratios of response to indirect selection in the selection-environments of Obregon relative to that of direct selection in 44 target-environments, where the
36th and 37th Elite Spring Wheat Yield Trials (ESWYTs) were evaluated. S1 FI BP, Stage 1 full irrigation bed planting; S2 FI BP, Stage 2 full irrigation bed planting;
S2 FI FP, Stage 2 full irrigation flat planting; S2 RI, Stage 2 reduced irrigation; S2 DS, Stage 2 drought stress; S2 ESHS, Stage 2 early-sown heat stress; S2 LSHS,
Stage 2 late-sown heat stress; S3 FI BP, Stage 3 full irrigation bed planting; S3 DS, Stage 3 drought stress; and S3 LSHS, Stage 3 late-sown heat stress.
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genetic variance (Table 1). We observed that the environmental
variance between the Obregon SEs with the highest
predictabilities and the SABWGPYT sites were high and as
follows: Bangladesh Jamalpur (23.8 times the genetic variance),
Pakistan Faisalabad (7.3 to 19.2 times the genetic variance),
India Jabalpur (3.6 to 37.1 times the genetic variance), and
India Pusa (5.6 to 9.4 times the genetic variance). However, the
environmental variance between the Obregon SE with the
highest predictability and India Ludhiana was low (1.1 to 3.3
times the genetic variance). We also observed that the GxE
variance was 0.4 to 1.8 times the genetic variance, and the
error variance was 0.8 to 3.8 times the genetic variance across
the sites. The mean narrow-sense heritabilities between the SEs
with the highest predictabilities and the SABWGPYT sites were
high in India Ludhiana (0.47 ± 0.12), followed by India Pusa
(0.22 ± 0.05), India Jabalpur (0.2 ± 0.16), Pakistan Faisalabad
(0.15 ± 0.08), and Bangladesh Jamalpur (0.08).

In the 36th ESWYT, where the yields of 42 lines were
predicted from their corresponding yields in the Obregon SEs,
the mean of the highest PAs from the GxE model was 0.29 ± 0.11
(ranged between 0.06 and 0.56) and the best predicted sites were
Venezuela Los Bagres (0.56), Afghanistan Dehdadi (0.52),
Pakistan Quetta (0.51), Iran Safiabad (0.5), and Afghanistan
Urdokhan (0.49). The Obregon SEs that had the highest PAs
for the sites in the 36th ESWYT were: Stage 2 irrigated FP (19
sites), Stage 2 drought (8 sites), Stage 3 irrigated BP (8 sites), and
Stage 2 early heat (7 sites). In the 37th ESWYT, where the yields
of 43 lines were predicted, the mean of the highest PAs from the
GxE model was 0.29 ± 0.1 (ranged between 0.01 and 0.63), and
the sites that had the highest PAs included Argentina Pergamino
(0.63), Canada Swift Current (0.5), India Karnal (0.47), and
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Egypt Nobaria (0.44). The Obregon SEs that had the highest PAs
for the 37th ESWYT sites included Stage 2 early heat (16 sites),
Stage 2 reduced irrigation (10 sites), Stage 1 irrigated BP (9 sites),
Stage 2 drought (7 sites), and Stage 2 late heat (7 sites).
Considering only the target sites where the ESWYTs were
evaluated in both the years, the mean of the highest PAs from
the Obregon SEs using the GxE model was 0.28 ± 0.08 (Figure
9). On comparing the PAs from the GxE model with the baseline
EL model across both the ESWYT sites, we observed a high
correlation (0.95) and a negligible mean increase using the GxE
model (0.01 ± 0.03), despite significant differences between the
pairwise accuracies (p-value for the test of significance of
differences between them was 4.05e-5). We also observed a
high correlation between the PAs from the GxE model and the
phenotypic correlations between the environments (0.94) and
insignificant differences between them (p-value for the test of
significance of differences between them was 0.02).
DISCUSSION

We have performed a large retrospective quantitative genetics
study that provides excellent insights into the effectiveness of the
current GY testing strategies adopted by the CIMMYT wheat
breeding program and the screening ability of CIMMYT’s key
GY testing site. A remarkable increase in the mean GY (ranging
between 27.3% and 40.5%) from the base GY in 2014–2015 was
observed across four years at the SABWGPYT sites, clearly
indicating continuous GY improvement at the target South
Asia sites by indirect selection in the SEs of Obregon. While
we also observed a 24% increase in the mean GY across 14 years
FIGURE 8 | Prediction accuracies for grain yield in the South Asia Bread Wheat Genomic Prediction Yield Trial target sites predicted from the yield of the same lines
(487 to 515 lines) in the selection-environments of Obregon using the baseline model with environment and line effects and the model with environment, genomic,
and genotype x interaction (GxE) interaction effects (GxE model), along with the phenotypic correlations between the selection and target-environments.
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in the ESYWT sites, the high non-linear trends across years in
some ESWYT sites stemmed from the different biotic and abiotic
stresses prevalent in the sites in different years, changing
environments (Braun et al., 1992), variable trial management,
and agricultural practices across years etc. Nonetheless, the
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445.5% increase in mean GY at an ESWYT site over 12 years
and the outstanding performance of the highest yielding ESYWT
lines over the local check varieties in 94.7% of the 152 site-year
combinations, affirm the high GY performance of the ESWYT
lines as also observed in previous studies (Rajaram and
TABLE 1 | Marker-based estimates of genetic (s2g), environment (s2e), genotype x environment (s2
gxe) and error (s2ϵ) variance components, variance ratios, and

narrow-sense heritabilities across the target South Asia Bread Wheat Genomic Prediction Yield Trial sites and the Obregon selection environment that had the highest
prediction accuracy for the target site.

Variance components, variance ratios, and
heritabilities

Cycle Bangladesh Jamalpur India Jabalpur India Ludhiana India Pusa Pakistan Faisalabad

s2g 2014–2015 0.08 0.10 0.10
s2e 1.74 0.33 0.90
s2gxe 0.06 0.07 0.09
s2ϵ 0.11 0.11 0.16
s2g:s2e:s2gxe:s2ϵ 1:21.8:0.8:1.3 1:3.3:0.7:1.2 1:9.4:0.9:1.7
h2 0.08 0.38 0.18
s2g 2015–2016 0.05 0.09 0.13 0.08 0.03
s2e 1.16 0.32 0.15 0.46 0.18
s2gxe 0.06 0.10 0.05 0.09 0.04
s2ϵ 0.09 0.18 0.10 0.14 0.06
s2g:s2e:s2gxe:s2ϵ 1:23.8:1.3:2 1:3.6:1.1:2 1:1.1:0.4:0.8 1:5.8:1.1:1.8 1:7.3:1.5:2.5
h2 0.08 0.36 0.64 0.26 0.21
s2g 2016–2017 0.04 0.05 0.05 0.08
s2e 0.18 0.14 0.26 1.45
s2gxe 0.05 0.09 0.07 0.08
s2ϵ 0.17 0.11 0.12 0.13
s2g:s2e:s2gxe:s2ϵ 1:4.1:1.2:3.8 1:2.8:1.8:2.1 1:5.6:1.5:2.6 1:19.2:1:1.8
h2 0.33 0.42 0.26 0.09
s2g 2017–2018 0.11 0.05 0.05
s2e 3.90 0.13 0.41
s2gxe 0.10 0.07 0.05
s2ϵ 0.12 0.11 0.10
s2g:s2e:s2gxe:s2ϵ 1:37.1:0.9:1.2 1:2.6:1.4:2.2 1:8.8:1.1:2.1
h2 0.05 0.44 0.19
Augu
st 2020 | Volum
FIGURE 9 | Prediction accuracies for grain yield in the Elite Spring Wheat Yield Trial target sites predicted from the yield of the same lines (42 lines in the 2015–2016
cycle and 43 lines from the 2016–2017 cycle) in the selection-environments of Obregon using the baseline model with environment and line effects and the model
with environment, genomic, and genotype x interaction (GxE) interaction effects (GxE model), along with the phenotypic correlations between the selection and
target-environments.
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Skovmand, 1977; Trethowan et al., 2002; Singh et al., 2007;
Crespo-Herrera et al., 2017) and indicate progress made from
indirect selection for GY in Obregon.

In the SEs of Obregon, we observed consistent narrow-sense
heritabilities across years ranging from 0.5 to 0.94 and the mean
heritability in the SEs was 44.2% and 92.3% higher than the mean
heritabilities in the SABWGPYT and ESWYT sites, respectively.
On the contrary, only a small percentage (26.7%) of the 60 target
ESWYT sites had mean heritabilities greater than 0.5, and there
were tremendous variations in the heritabilities across years. We
also observed significant GCs between a SE in Obregon and all
the SABWGPYT sites, 66.7% of the 36th ESWYT sites and 63.4%
of the 37th ESWYT sites, clearly demonstrating the efficiency of
indirect selection in Obregon. While most SEs had high GCs
with several target sites, the observed low GCs between the Stage
2 late heat environment and the target sites was expected,
because this SE was not designed to select lines for the
optimum environments, but only for environments vulnerable
to terminal heat stress.

Our results indicated that except for one SABWGPYT site
(India Ludhiana) and two ESWYT sites (China Laomancheng
and Pakistan Dera Ismail Khan) that had high GCs with the same
SEs in Obregon across years, all the other target sites had high
GCs with different SEs in different years. In addition, we also
observed non-repeatable GCs between the selection and target
environments in different years. For example, the Stage 2
irrigated FP environment that had high GCs with 11 sites in
the 36th ESWYT had high GCs with only two sites in the 37th

ESWYT. Likewise, the Stage 2 early heat environment which had
insignificant GCs with several SABWGPYT sites had the highest
GCs with a large number of ESWYT sites. All these observations
clearly indicate that the identification of optimal or few SEs that
will have high GCs with the target sites in all the years is not
feasible and highlights the importance of multiple SEs in
breeding for unpredictable changing environments with high
year-to-year variations.

We also investigated the relative GCs of the SABWGPYT sites
in India and Pakistan and the SEs in Obregon with target sites in
India and Pakistan and observed that the SEs in Obregon had the
highest GCs with 47% of the sites in the 36th ESWYT and 59% of
the sites in the 37th ESWYT. The SABWGPYT sites had the
highest GCs in both the ESWYTs with some sites like India Karnal
Syngenta, India Varanasi, Pakistan Bahawalpur, and Pakistan
Sakrand, which is expected because of the geographical
proximities of these locations and the similar wheat growing
conditions in some of them. While these results indicate that
earlier screening in the SABWGPYT sites provide useful
information in selecting lines for some target sites, we also
present substantial evidence for the consistent and competitive
screening ability of Obregon, which also has the capacity to screen
a larger number of lines than the SABWGPYTs.

The GCs between the target sites were also used to understand
the similarities between them based on the discrimination of
genotypes and to determine the repeatabilities of site clusterings,
both of which are important for designing efficient germplasm
targeting strategies (DeLacy et al., 1993; Mirzawan et al., 1994;
Frontiers in Plant Science | www.frontiersin.org 13
Lillemo et al., 2004). While we observed inconsistent GCs across
several ESWYT sites in the two years indicating high year-to-
year variabilities and a marked tendency of the sites to change
into a different ME due to climate change (Braun et al., 2010), we
also observed high and consistent GCs and similar clustering
patterns between sites in different MEs like Canada Swift Current
(ME6) and Afghanistan Dehdadi (ME12 and ME9), China
Laomancheng (ME 6) and India Karnal (ME 1), Afghanistan
Dehdadi and Ukraine Kharkov (ME 11), Pakistan Pirsabak
(ME4, ME8) and India Pune (ME 5), etc. This provides
striking evidence to the wide adaptability of the ESWYT lines
to very different geographical regions and MEs (Krull et al., 1968;
Braun et al., 1992; Crespo-Herrera et al., 2017), thereby
exemplifying the successful GY testing strategies of CIMMYT.

We have reported high ratios of response to indirect selection
in the SEs of Obregon with a mean of 0.80 ± 0.21 and 2.6 ± 5.4 in
the SABWGPYT and ESWYT sites, respectively. Furthermore,
our results indicating that greater than 0.5 ratio of response to
indirect selection in Obregon can be achieved for all the
SABWGPYT sites and 82% of the ESWYT sites, provide strong
evidence to the selection ability of the Obregon SEs. The high
ratios of correlated response to indirect selection in Obregon
were driven by the moderate to high GCs with the target
environments and the high heritabilities in the SEs compared
to the TPEs (Falconer, 1960). However, it should also be noted
that the ESWYTs used in this study are small populations that
were not designed for research purposes (Fox, 1994) and larger
populations are necessary to obtain more precise estimates of the
response to selection. Nevertheless, these results imply that
CIMMYT’s strategy of GY testing in a key site for a range of
target environments is appropriate and an ideal strategy
considering the cost and resources that will be needed for
large-scale GY testing in multiple sites.

We also performed genomic prediction for GY in the target
sites using the performance of the lines in the SEs of Obregon and
observed moderate mean PAs of 0.24 ± 0.08 and 0.28 ± 0.08 in the
SABWGPYT and ESWYT sites, respectively using the GxE
model. However, we observed similar PAs using the baseline EL
model and no advantage of modeling GxE interactions in this
scenario similar to the results reported by Dawson et al. (2013),
but contrary to some studies that report a marginal increase using
GxE models in other scenarios (Burgueño et al., 2012; Heslot
et al., 2013; Jarquıń et al., 2017). Moreover, the partitioned
phenotypic GY variance components also indicated a high
environmental variance (1.1 to 37.1 times the genetic variance)
and low GxE variance (0.4 to 1.8 times the genetic variance) in
accordance with previous observations (Fowler and De la Roche,
1975; Goodchild and Boyd, 1975), which explains the similarity in
PAs using both the models. These are key findings in our study
substantiating that environmental variabilities constituted by
fluctuating factors like temperature, nutrient, edaphic, rainfall
patterns, stresses, and management conditions (Hill, 1975; Bell
and Fischer, 1994; Storlie and Charmet, 2013) play a larger role in
determining GY compared to GxE interactions. Furthermore, our
results also imply that a line’s GY performance in a new
environment is predictable only when the effect of the
August 2020 | Volume 11 | Article 580136
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environment is known beforehand, and the effect of GxE
interactions do not add much value to the predictabilities.
Further studies on evaluating genomic prediction for GY in
earlier generations where GY testing is not feasible due to
limited seed are needed to understand the application of
genomic prediction for GY testing. Overall, this study provides
extensive quantitative genetic evidence on the suitability of the
Obregon SEs in breeding for GY and provides important insights
into the genomic predictabilities of GY in different environments.
The high year-to-year fluctuations observed highlight the non-
feasibility of breeding for every micro-environment (Rajaram and
Skovmand, 1977) and affirm the necessity to breed for GY
stability and wide adaptability by multi-environment testing
across time and space (Finlay and Wilkinson, 1963; Hurd,
1969; Eskridge, 1990; Kang and Pham, 1991).
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