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INTRODUCTION

Polarity is at the core of plant development, as well as that of other multicellular organisms since
polarization acts as a driving force to generate a variety of specialized cells. Therefore, unraveling
how cells establish polarity is the most fundamental issue toward understanding the principles of
plant morphogenesis.

Cell polarity coordinated within the plane of a single tissue layer is particularly termed “planar
polarity (also termed planar cell polarity),” which offers an experimentally accessible model system.
Therefore, planar polarity is studied in various multicellular organisms. In the animal kingdom,
polarized arrangement of ommatidia and bristles in Drosophila melanogaster and the orientation of
hair follicles in mammalian skin are well-known examples of planar polarity.
ROOT HAIR POSITIONING AS A MODEL SYSTEM FOR
PLANAR POLARITY

Root hairs possess crucial roles in nutrient and water uptake from the soil, as well as in providing
anchorage for plants (Gilroy and Jones, 2000). In Arabidopsis thaliana, root hair emergence is
restricted to close to the basal ends (rootward ends) of specialized cells aligned within a single file,
namely the hair-forming cell lineage (trichoblasts), thus manifesting typical planar polarity (Figure
1A) (Masucci and Schiefelbein, 1994; Fischer et al., 2007). The site of root hair emergence
intriguingly appears to be evolutionarily conserved across plant species (Salazar-Henao et al.,
2016; Dolan, 2017) and is easily observable under laboratory conditions without any special
equipment; root hair positioning provides an excellent model to elucidate the mechanisms behind
establishing polarity in plants, which indeed has been studied extensively.
RHO-OF-PLANTS, AN EARLY MARKER FOR ROOT HAIR
POSITIONING

The members of the Rho-of-plant (ROP) small GTPase protein family are implicated in establishing
root hair planar polarity. Among the 11 members of the ROP family in Arabidopsis, ROP2, ROP4,
and ROP6 localize to the hair initiation site (Figure 1B) (Molendijk et al., 2001; Jones et al., 2002).
Severe defects in root hair growth were observed in the rop2/4/6 triple mutant (Gendre et al., 2019).
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More importantly, increased ROP activities from either
overexpression of ROP2 or defects in ROP-GDP dissociation
inhibitor lead to root hair formation at multiple sites in one cell
(Figure 1A) (Jones et al., 2002; Carol et al., 2005), indicating that
an adequate ROP protein level needs to be placed at the adequate
site to establish planar polarity during root hair development.
ROP proteins begin accumulating at the future hair initiation site
prior to the actual onset of hair formation (Figure 1B)
(Molendijk et al., 2001), providing an early marker for the
established root hair planar polarity; thus, clarifying the
mechanism behind ROP placement at the future initiation site
is key toward understanding planar polarity establishment
during root hair development.
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AUXIN AND ETHYLENE PROVIDE A CUE
FOR ROOT HAIR POSITIONING

Among phytohormones, auxin and ethylene have been reported
to provide a cue for root hair positioning (Masucci and
Schiefelbein, 1994; Vicente-Agullo et al., 2004). Exogenous
application of either auxin or 1-aminocyclopropane-1-
carboxylic acid (ACC), an ethylene precursor, causes a basal
shift of root hair positioning. Root hairs in plants with either a
reduced level of auxin signaling or ethylene perception emerge
from more apical sites compared with those in wild-type plants
(Figure 1A) (Masucci and Schiefelbein, 1994; Ikeda et al., 2009).
Ikeda et al. (2009) reported that the auxin applied locally at the
A

B

FIGURE 1 | (A) Root hair positioning of wild-type, mutants with altered cytoskeleton or Rho-of-plants (ROP) level, and plants treated with reagents related to auxin
and ethylene. (B) Cytoskeletal control of root hair positioning. Black solid lines represent direct protein interactions. Black solid and black broken arrows represent
direct or indirect action on the target, respectively.
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very tip of roots was actively transported to hair-forming cells,
eventually generating a basal shift of root hair positioning.
Contrastingly, auxin transport inhibition from the root tip to
hair-forming cells results in an apical shift (Figure 1A). These
findings suggest that auxin redistribution involving both local
synthesis and polar transport is required for properly
establishing root hair planar polarity. Ethylene potentially acts
upstream of auxin to control planar polarity by regulating local
auxin synthesis (Figure 1B) (Ikeda et al., 2009). Recent studies
have shed light on the role of the cytoskeleton in mediating
hormonal control of root hair positioning,
CYTOSKELETAL CONTROL OF THE ROP
PLACEMENT IN ROOT HAIR INITIATION

Eukaryotic cells possess three types of cytoskeleton, namely,
actin microfilaments (MFs), microtubules (MTs), and
intermediate filaments; the presence of intermediate filaments
in plants is albeit still unresolved (Kost and Chua, 2002; Ivakov
and Persson, 2013). In this review, we describe recent advances
in actin- and MT-mediated establishment of root hair
planar polarity.

Actin
The involvement of the actin cytoskeleton in root hair
positioning has long been recognized, according to the finding
that a mutation in the ACTIN2 (ACT2) gene encoding globular
actin (G-actin) causes an apical shift of root hair positioning in
Arabidopsis (Figure 1A) (Ringli et al., 2002). Moreover, the
knockout mutant for ACT7, another member of the ACT gene
family in Arabidopsis, exhibits more severe defects in root hair
positioning than act2; both apical and basal shifts of root hair
positioning are frequently observed in act7 (Figure 1A) (Kiefer
et al., 2015). Filamentous actin (F-actin) formed through
polymerization of G-actin encoded by ACT genes is highly
accumulated at the future initiation site before polar root hair
emergence takes place; hence, actin filaments containing G-actin
produced from ACT7 and/or ACT2 are possibly required for
establishing planar polarity in root hair development (Figure
1B) (Kiefer et al., 2015). Recent studies identified key regulators
that modulate ROP placement and eventual root hair positioning
by influencing actin dynamics.

Kiefer et al. (2015) found that ACT7 and ACT2 modulate
planar polarity along with their direct interactor, ACTIN-
INTERACTING PROTEIN1-2 (AIP1-2) (Figure 1B). The
aip1-2 knockout mutant displays a basal shift of the ROP
placement and resultant root hair positioning as in act mutants
(Figure 1A). Moreover, analyses of the genetic interaction
between ACT7 and AIP1-2 revealed that AIP1-2 acts upstream
of ACT7 (Figure 1B) (Kiefer et al., 2015). AIP1-2 affects actin-
filament organization by physically interacting with ACT7,
thereby determining ROP placement (Figure 1B). Ethylene
and auxin signaling possibly converges on the AIP1-2-ACT7
module to control root hair planar polarity (Figure 1B), since
expression of ACT7 and AIP1-2 is upregulated by auxin and
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ethylene in an auxin-dependent manner, respectively (Kandasamy
et al., 2001; Kiefer et al., 2015). However, whether the AIP1-2-
ACT7 module precisely determines the ROP placement site is
still unclear.

TWISTED DWARF1 (TWD1) is another actin-related key
regulator for root hair planar polarity (Figure 1B) (Zhu et al.,
2016). TWD1 is an FK506-binding protein originally identified
as a direct interactor of N-1-naphthylphthalamic acid (NPA), an
auxin-transport inhibitor (Figure 1B) (Geisler et al., 2003; Bailly
et al., 2008), and twd1mutant showed an apical shift of root hair
positioning, resembling NPA treatment of wild-type roots
(Figure 1A) (Zhu et al., 2016). TWD1 interacts with ACT7,
albeit indirectly, to remodel actin organization (Figure 1B) (Zhu
et al., 2016). The TWD1-mediated control of actin organization
has been shown to influence auxin redistribution in roots by
modulating the subcellular localization of both ABCB- and PIN-
type auxin transporters (Zhu et al., 2016). Therefore, the TWD1-
ACT7 module possibly mediates root hair planar polarity by
controlling auxin transport (Figure 1B). However, in the absence
of clear evidence, it still remains possible that abnormally
organized actin filaments in twd1 are responsible for root hair
misplacement, independent of the perturbed auxin transport.

Myosin, a motor protein involved in vesicle trafficking by
interacting with actin filaments, is required for tip growth of root
hair, based on the finding that the lack of a member of the
myosin family results in a shorter root hair phenotype (Park and
Nebenführ, 2013). However, whether actin-myosin interaction is
required for ROP placement and root hair positioning
remains elusive.

Microtubule
Microtubules (MTs), which consist of a-tubulin and b-tubulin,
play an essential role in determining plant cell shape, including
that of root hair (Hashimoto, 2015). Impaired MT organization
induced by MT-depolymerizing drugs, such as oryzalin, gives
rise to shorter and wavy root hairs (Bibikova et al., 1999). In
comparison, the knowledge concerning their role in root hair
positioning is limited; however, accumulated evidence indicates
their involvement in establishing root hair planar polarity.
Firstly, MTs are dynamically reorganized at the future hair
initiation site; transversely aligned cortical MTs are rearranged
into unique radial patterns (Figure 1B) (Pietra et al., 2013).
Furthermore, Bao et al. (2001) demonstrated that a reduction in
a-tubulin leads to multiple root hair formation from one cell,
reminiscent of ROP overexpressors (Figure 1A), implying the
role of MTs in proper ROP placement. Lastly, the engagement of
the MT-associated protein CLIP170-ASSOCIATED PROTEIN
(CLASP) and its genetic interactor SABRE (SAB) in establishing
root hair planar polarity has been recently reported (Figure 1B)
(Pietra et al., 2013). CLASP, known as a central regulator of cell-
division plane orientation, is required for properly determining
ROP placement; clasp mutant exhibits a basal shift of ROP foci
(Figure 1A). SAB, with an unknown molecular function,
localizes to the plasma membrane and regulates cortical MT
dynamics (Pietra et al., 2013). Unlike clasp, root hair positioning
shifts either apically or basally in sab (Figure 1A). Moreover, sab
clasp double mutant is indistinguishable from sab, suggesting
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that sab is epistatic to clasp in controlling planar root hair
polarity (Pietra et al., 2013). CLASP has been notably reported
to regulate the abundance of PIN2 protein, which is a central
auxin transporter in root epidermis, by regulating MT dynamics,
thereby playing an important role in auxin gradient formation
(Figure 1B) (Ambrose et al., 2013). It is still unclear whether
CLASP-SAB-guided MT reorganization directly sets ROP
proteins at the proper site or indirectly influences ROP
placement by controlling auxin transport (Figure 1B).

Kinesins are motor proteins that assist cells with transport of
molecules along microtubules. The armadillo domain-
containing putative kinesin MRH2 has been reported to
control root hair morphology by altering MT organization
(Yang et al., 2007), but kinesin involvement in root hair
positioning is still unclear.
SUMMARY AND FUTURE PERSPECTIVES

Root hair positioning provides an excellent model for planar
polarity, but some important questions and points are still open
as follows: 1) how does the cytoskeleton place ROPs at the future
initiation site? The cytoskeleton possibly acts as a scaffold of ROP
proteins, constraining ROP subcellular localization at the
initiation site. To support this view, in some cases, the
cytoskeleton affects polarity establishment by functioning as a
scaffold-like structure required for polarization of key molecules
(Inagaki and Katsuno, 2017; Liu et al., 2018; Raman et al., 2018).
For example, in leaf epidermal cells, actin filaments are
implicated in PIN protein recycling to the plasma membrane,
enabling polarized PIN localization (Xu et al., 2010). Recently,
Denninger et al. (2019) found that the accumulation of
ROPGEF3, which tethers and activates ROPs at the plasma
membrane, at the future hair initiation site precedes that of
ROPs; therefore, it is possible that the cytoskeleton places
ROPGEF3 at the future hair site and thereby determines the
Frontiers in Plant Science | www.frontiersin.org 4
ROP position. 2) The direct link between auxin signaling and the
cytoskeleton is still missing. Despite extensive studies on the
target genes of auxin response factors (ARFs), a transcription
factor family acting downstream of auxin signaling, there is still
no evidence showing that ARF directly regulates cytoskeleton-
related genes involved in root hair planar polarity (Okushima
et al., 2005; Schlereth et al., 2010; Boer et al., 2014). Note that it
remains possible that auxin affects cytoskeletal organization
through non-transcriptional responses, as is the case of leaf
cells wherein auxin alters cytoskeletal dynamics in a manner
that does not require ARF-dependent transcriptional responses,
thereby forming zigzag-shaped pavement cells (Xu et al., 2010).
3) In many tissues, actin filaments and MTs cooperatively
regulate many aspects of plant morphogenesis, including root
hair elongation (Takeuchi et al., 2017). However, their
cooperative actions have not been elucidated in terms of root
hair planar polarity. 4) Small GTPases other than ROPs might
participate in establishing root hair polarity. Indeed, a recent
study demonstrated that ARF-GAP that localizes to the hair
initiation is required for root hair positioning (Yoo et al., 2018).
However, whether and how the cytoskeleton is engaged in the
placement of other small GTPases is still unknown. The answers
to these important questions will help to better understand more
general principle of how polarity is established in plant cells.
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