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Damage-associated molecular patterns (DAMPs) are an ancient form of tissue-derived
danger or alarm signals that initiate cellular signaling cascades, which often initiate
defined defense responses. A DAMP can be any molecule that is usually not exposed
to cells such as cell wall components, peptides, nucleic acid fragments, eATP and other
compounds. DAMPs might be revealed upon tissue damage or during attack. Typically,
DAMPs are derived from the injured organism. Almost all eukaryotes can generate and
respond to DAMPs, including plants. Besides the molecules mentioned, certain volatile
organic compounds (VOCs) can be considered as DAMPs. Due to their chemical nature,
VOCs are supposed to act not only locally and systemically in the same plant but
also between plants. Here, we focus on damage-induced volatiles (DIVs) that might
be regarded as DAMPs; we will review their origin, chemical nature, physiochemical
properties, biological relevance and putative function in plant–plant communications.
Moreover, we discuss the possibility to use such airborne DAMPs as eco-friendly
compounds to stimulate natural defenses in agriculture in order to avoid pesticides.
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INTRODUCTION

As other eukaryotic organisms, plants are able to perceive typical, endogenous cell molecules
or fragments thereof, when these are released at increased concentrations into the extracellular
space. This occurs during cellular stress or mechanical damage upon herbivore and pathogen
attack. Subsequently, the endogenous compounds contribute to activate local and systemic defense-
related responses or the plant innate immunity (Howe and Jander, 2008; Boller and Felix, 2009).
The whole dynamic immunity response is induced by the recognition of specific insect-derived
[herbivore-associated molecular patters (HAMPs) (Mithöfer and Boland, 2008)] or pathogen-
derived [pathogen-associated molecular patters (PAMPs) (Ausubel, 2005)] signals, and signals from
the injured plant cells. These latter signaling molecules function as danger signals, stress signals,
(endogenous) elicitors, alarmins, or damage-associated molecular patterns (DAMPs). Although
various synonyms exist for the aforementioned molecules, the term DAMP is to our knowledge
the most prominent example and will be further referred to in this review. With the increasing
acceptance of the “damaged-self recognition” concept (Heil, 2009) for plants, the number of
DAMPs, their putative reception and signaling and the corresponding literature continuously
increased. Thus, here we avoid providing another collection of DAMPs and refer to recent reviews
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that give comprehensive overviews (Boller and Felix, 2009;
Heil and Land, 2014; Gust et al., 2017; Quintana-Rodriguez
et al., 2018; Hou et al., 2019; Ferrusquía-Jiménez et al., 2020).
Nevertheless, some typical examples must be mentioned such
as peptides, cell wall components, nucleic acid fragments, and
extracellular ATP (eATP). However, a new putative class of
DAMPs that would be unique for plants (Heil and Land, 2014)
will be addressed in the following: volatile DAMPs.

In recent years, plant-derived volatile organic compounds
(VOCs) gained much attention as cues in plant–plant
communication. However, the concept of VOCs released
by attacked plants transmitting information to warn neighboring
individuals is far from posing as a novelty, being described almost
40 years ago in various caterpillar-infested tree species (Baldwin
and Schultz, 1983; Rhoades, 1983). Criticism regarding the lack
of true replication and artificial experimental conditions (Fowler
and Lawton, 1985) resulted in the rejection of this popular
phenomenon known as “talking trees.” It took almost 20 years
to revisit and revive the concept of plant–plant communicating
via volatile cues by intensely searching for evidence of VOC-
induced plant protection against herbivory (Heil and Karban,
2010; Karban et al., 2014). This review focuses specifically on
wounding-/damage-induced plant volatiles that fulfill the criteria
of DAMPs in stricto sensu. We highlight their chemical nature
and their ability to induce defense responses in neighboring
plants and critically examine their putative role in the field.

A SHORT SURVEY OF PLANT
VOLATILES

A plethora of studies is available highlighting the versatility of
VOCs and in particular of herbivory-induced plant volatiles
(HIPVs). Apart from activating direct and indirect plant defenses
against herbivores, HIPVs are also known to mediate a diverse
array of interactions between plants and insects (Turlings
et al., 1990; De Moraes et al., 1998, 2001; Hoballah and
Turlings, 2001). In numerous plant species HIPVs are involved
in repelling herbivores, attracting their predators of a higher
trophic level as well as upregulating and priming defense
responses (Kessler and Baldwin, 2002; Arimura et al., 2004;
Engelberth et al., 2004; Kessler et al., 2006; Arimura and
Pearse, 2017). Although plants release distinct volatile bouquets
with differing compositions and concentrations depending on
the given stimulus, e.g., herbivory, mechanical wounding, or
touch (Mithöfer et al., 2005; Bricchi et al., 2010; Meents et al.,
2019), many taxa share common constituents (McCormick
et al., 2012). The most well-known representatives described
within the past decades are terpenoids, phenylpropanoids as
well as fatty acid and amino acid derivatives (Figure 1)
(Dudareva et al., 2004, 2006).

Among the most ubiquitous VOCs emitted after mechanical
damage, herbivory, or microbial infection are green leaf volatiles
(GLVs, for a full review see, Ameye et al., 2018) named after their
typical odor of freshly cut green leaves. GLVs are C6 alcohols,
aldehydes, and esters such as (Z)-3-hexenal, (E)-2-hexenal, (Z)-3-
hexen-1-ol, and (Z)-3-hexen-1-yl acetate generated via oxidation

of fatty acids such as linoleic and α-linolenic acid within the
oxylipin pathway (for example, see, Matsui, 2006).

Considering the largest class of plant secondary metabolites,
terpenes provide a wide array of volatile compounds which
are subdivided depending on the number of C5 units
(Dudareva et al., 2004; McCormick et al., 2012). The main
representatives of this family are hemiterpenes (C5; e.g.,
isoprene), monoterpenes [C10; e.g., linalool, (E)-β-ocimene],
sesquiterpenes [C15; (E)-β-caryophyllene, (E,E)-α-farnesene,
α-humulene], and homoterpenes displaying irregular structures
such as (E)-4,8-dimethyl-1,3,7-nonatriene (DMNT; C11) and
(E,E)-4,8,12-trimethyltrideca-1,3,7,11-tetraene (TMTT; C16)
(Boland et al., 1992; Maffei et al., 2011; McCormick et al.,
2012). The formation of the abovementioned terpenes from
the basic C5 building blocks occurs via two compartmentalized
pathways: the cytosol-localized mevalonate pathway (MVA)
and the methylerythritol phosphate (MEP) pathway localized in
the plastids (Dudareva et al., 2004). Both pathways are strictly
enzymatically regulated by a large family of terpene synthases
(Dudareva et al., 2013).

Another structurally diverse category of VOCs are the
shikimate pathway-derived phenylpropanoids and benzenoids,
originating from the amino acid phenylalanine. Sharing a
single or multiple benzene rings, these two classes undergo
miscellaneous modifications such as acetylation, hydroxylation
or methylation, thereby creating a variety of side chains and
resulting compounds (Dudareva et al., 2004, 2006). Being often
specific to certain plant species and genera, methyl salicylate
(MeSA), benzaldehyde, chavicol, eugenol, phenylethanol, and
benzylalcohol are typical compounds of this category which
can be found in numerous volatile bouquets (Dudareva et al.,
2006; Arimura and Pearse, 2017). By performing radioactive
labeling studies, several other amino acid-derived VOCs ranging
from, e.g., isothiocyanates, sulfides, nitriles, oximes, and amines
have been discovered over the years (Dudareva et al., 2006;
McCormick et al., 2012). One of the key volatiles released
after herbivore damage is indole, which is biosynthesized via
anthranilate as an intermediate product in the tryptophan
pathway (Paré and Tumlinson, 1996; Frey et al., 2000).

In the context of plant volatiles and their effects on
atmospheric chemistry, short-chain oxygenated volatiles
(oxVOCs) such as formic and acetic acids, formaldehyde,
acetone, methanol, and ethanol, have gained increasing
importance in research respective to climate change and
contribution to formation of aerosol particles and ozone
(Seco et al., 2007).

MECHANICAL DAMAGE-INDUCED VOCs

While studies investigating HIPVs became increasingly popular
over time, volatiles solely induced by and emitted after
mechanical damage [from now on damage-induced volatiles
(DIVs)] without any contribution of other organisms, were
predominantly shortly mentioned or being considered as not
representative for natural processes. In more recent years, VOCs
received increasing attention as a DAMP-related cue whilst
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FIGURE 1 | Representative damage-induced volatiles (DIVs). Shown are structures and the biosynthetic origin (indicated by different colors) of the main DIVs
involved in defense response induction (↑) and released after wounding or mechanical damage only. Compounds of the oxylipin pathway appear early within
seconds to minutes, other compounds later within minutes to hours.

serving as reliable responses upon damage in various plant
tissues. In Figure 2 different key players involved in volatile
induction and their relationship among each other are depicted.
Particular studies by Quintana-Rodriguez et al. (2018) placed
volatiles emitted upon wounding-induced tissue damage in the
absence of elicitors in an entirely new context. They pointed
out that such DIVs are synthesized upon cell disruption and
possess the ability to trigger systemic responses and herbivore
resistance, therefore functioning as a DAMP in plants (Figure 3)
(Heil, 2009; Duran-Flores and Heil, 2016). However, it is also
conceivable that DIVs are generated downstream of classical
DAMPs such as oligosaccharines or peptides and therefore should
be seen as second messengers rather that the initial signals. Most
likely, DIVs are synthetized de novo after damage. However, here
we must discriminate two situations. First, synthesis is initiated
within seconds upon tissue damage by constitutively present
enzymes as in case of GLVs. Second, synthesis is induced only
upon damage perception within hours as for example in case
of phenolic compounds and many terpenes. In any case the
release of all these volatile compounds can be considered as early
and late damage-induced responses, respectively; in contrast to
classic DAMPs which are not synthesized upon damage. Only
some stored terpenes are released immediately upon disruption
of tissue containing pre-existing secretory structures.

Considering that damaging of a plant without the introduction
of foreign molecular patterns (e.g., insects) completely omits
evolutionary factors such as arms race (Heil, 2009), investigation
of the underlying mechanisms will improve the understanding
of “ancient” plant defense responses. Thus, we next would like
to take a closer look which volatiles are actually released solely
upon mechanical damage without associated herbivore feeding or
other stress factors in order to identify DIVs, which might serve
as potential ancient DAMPs.

One of the most well-known DIVs is the characteristic
smell of freshly cut grass, mainly caused by the emission of
GLVs. Karl et al. (2001) identified predominantly C6 compounds

FIGURE 2 | Scheme of the relationship between groups of volatile
compounds induced upon herbivore feeding and tissue damage. Herbivore
feeding provides chemical signals, HAMPs (herbivory-associated molecular
patters), and causes tissue damage, which in turn generates DAMPs
(damage-associated molecular patters). The combination of HAMPs and
DAMPs induce the emission of HIPVs (herbivory-induced plant volatiles),
which all belong to the huge group of VOCs (volatile organic compounds) that
includes GLV (green leaf volatiles), terpenes and aromatic compounds.
DAMPs are also generated by tissue damage/wounding alone. DIVs
(damage-induced volatiles) represent a sub-group of DAMPs, due to their
volatile character; all DIVs belong to HIPVs. For simplicity damage-induced
electrical signals are neglected.
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FIGURE 3 | Model of damage-induced volatile (DIV) emissions that trigger intra- and interspecific defense responses in plants. Upon wounding events without
contribution from other organisms, plants release specific DIVs possessing the ability to upregulate molecular and chemical defense mechanisms within the same
individual as well as in neighboring plants up to a distance of 1 m. The signal intensity and distance of DIVs is highly dependent on environmental factors such as
tropospheric reagents (ozone), temperature, radiation as well as the direction of airflow. All of the aforementioned conditions can drastically reduce the effectiveness
of DIV signaling by lowering it to a ∼20 cm radius.

including (Z)-3-hexenal, (E)-2-hexenal, hexenol, hexanal, and
acetaldehyde to be emitted within minutes after lawn mowing
and lasting for several hours in the field, therefore causing this
distinct bouquet. The rapid emission reported in this field study
confirmed previous findings in aspen (Populus tremuloides),
beech (Fagus sylvatica), and clover (Trifolium repens), where
cutting of leaves with scissors elicited a release of (Z)-3-hexenal
within 1–2 s paving the way for the release of the aforementioned
compounds plus hexenyl acetates (Fall et al., 1999). The
sensitivity of such measurements was immensely improved by
new measuring techniques, such as proton−transfer−reaction
mass spectrometry (PTR-MS), enabling monitoring of the release
of selected VOCs simultaneous and on-line in the laboratory
or in the field.

In addition to the aforesaid rapidly emitted GLVs, mechanical
wounding has been shown to generate a variety of DIVs in
many different species ranging from common agricultural crops
(tomato, Solanum lycopersicum; potato, Solanum tuberosum;
lima bean, Phaseolus lunatus), model organisms (Arabidopsis
thaliana; common liverwort, Marchantia polymorpha), herbs,
shrubs, and grasses (sagebrush, Artemisia tridentata; common
reed, Phragmites australis; Plantago lanceolata) to even trees
(aspen, Populus tremula; beech, Fagus sylvatica; poplar, Populus
nigra). Although the emission of such DIVs occurs in a species
and/or cultivar dependent manner, similar constituents are found
in the emitted bouquets.

Jackson and Campbell (1976) observed the release of the
plant hormone ethylene after excision of petiole segments
from tomato plants. In the following years the list of known
DIVs became increasingly refined, adding β-caryophyllene,
(E)-β-farnesene, germacrene D, and β-bisabolene discovered

in potato and common broad bean (Vicia faba), to the mix
(Agelopoulos et al., 1999). Headspace analyses in A. thaliana
revealed, apart from GLVs, an increased emission of various
terpenoids (β-ionone, β-cyclocitral), sulfides (dimethyl disulfide,
dimethyl trisulfide), alcohols (3-pentanol, 1-penten-3-ol, 2-ethyl-
1-hexanol), and ketones (3-pentanone, 1-penten-3-one) after
rubbing of the leaf midrip with carborundum powder (Van
Poecke et al., 2001). Using a more common wounding approach
by punching holes into lima bean leaves, Arimura et al. (2000)
paved the way for extensive VOC studies using this species by
demonstrating the upregulated release of, e.g., DMNT, MeSA,
α-pinene (in addition to previously mentioned compounds).
From the 2000s onwards, more and more DIVs comprising
methyl jasmonate (MeJA) in sagebrush (Preston et al., 2001),
linalool and linalool oxide in damaged wheat (Triticum aestivum)
(Piesik et al., 2006), acetaldehyde, methanol, isoprene, and
additional C6 compounds in common reed (Loreto et al., 2006),
the essential oils pulgeone and menthone in the medicinal plant
Minthostachys mollis (Banchio et al., 2005), as well as C8 VOCs
in the model liverwort species Marchantia polymorpha (Kihara
et al., 2014), were identified and further investigated. In addition
to DIVs found in agriculturally relevant species such as cotton
(Gossypium hirsutum), Brussel sprouts (Brassica oleracea), and
sweet potato (Ipomoea batatas) (Röse and Tumlinson, 2005;
Connor et al., 2007; Meents et al., 2019), more recent studies
included traditional medicinal plants and trees (Fontana et al.,
2009; Martins et al., 2017; Kanagendran et al., 2018; Portillo-
Estrada and Niinemets, 2018). Although the inclusion of a
wider array of species highlights common DIV constituents, the
potential as a functional DAMP yet remains to be verified for the
majority of them. Quintana-Rodriguez and colleagues compiled
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valuable information regarding VOCs triggering responses at
multiple levels, identifying, e.g., GLVs, methanol, and MeJA
as resistance-enhancing compounds (Duran-Flores and Heil,
2016; Quintana-Rodriguez et al., 2018). In recent studies,
a combination of wounding and additional abiotic stresses
(e.g., gasses, temperatures, dark treatments) revealed more
volatile profiles in various species (Loreto et al., 2006; Brilli
et al., 2011; Kanagendran et al., 2018). However, the focus
of these investigations was mainly on the combined stress
treatments, just mentioning DIVs for the sake of completeness
of individual effects and not for its sole purpose. Apart from
studies investigating the physiological and ecological role of
DIVs, research unraveling the impact of wounding on plant
volatile composition during food processing has also entered
the global industry (Moretti et al., 2002; Farneti et al., 2013;
Zeng et al., 2016).

WOUNDING VERSUS WOUNDING –
PITFALLS IN STANDARDIZATION

A crucial aspect of all studies implementing artificial wounding
is the standardization and reproducibility of such methods,
especially regarding the comparability of obtained results. As
discussed by Heil, mechanical damage was shown to be sufficient
to induce responses in various species that are comparable
to those observed after herbivore feeding – however not in
all cases (Heil, 2009). The ambiguity of reports containing
artificial wounding is mainly caused by the flexibility of the
treatment itself. As recently highlighted by Waterman et al.
(2019), the execution of mechanical damage can comprise
cutting, scratching, piercing, grinding, or pinching of leaf
areas differing in size whilst in- or excluding the midrip;
therefore resulting in highly variable responses even within the
same species (Mithöfer et al., 2005). Regarding its effect on
VOC release, artificial wounding is known to produce elevated
DIV levels (see above) although not as intense and diverse
as during herbivory (Fontana et al., 2009; Holopainen and
Gershenzon, 2010). These shortcomings were omitted by adding
specific elicitors or oral secretion obtained from the respective
herbivore. Furthermore, the construction of a robotic caterpillar
(‘MecWorm’) revealed that continuous mechanical damage
simulates herbivory more accurately than single wounding
events, yielding DIV patterns comparable to actual herbivory
(Mithöfer et al., 2005). Taken together, although the possibility
of standardized wounding patterns to study DAMPs and DIVs
in a comparable manner exists, the extent of reported artificial
damage still varies tremendously.

WHICH DIVs CAN ELICIT DOWNSTREAM
RESPONSES ON A MOLECULAR LEVEL?

While DAMPs activate defense-related signaling such as
membrane depolarization, cytosolic Ca2+ concentration
changes, generation of reactive oxygen species (ROS),
MAPKinase activation, octadecanoid (jasmonate) and/or

salicylic acid (SA) signaling, as well as downstream defense
responses like the expression of digestion inhibitors and of
defense-related genes (Duran-Flores and Heil, 2016; Li et al.,
2020), our knowledge of VOC-induced defense-related responses
is still fragmentary. In particular studies on early signaling events
are missing. To answer the question whether any of the volatiles
mentioned above could actually function as a DAMP, either
systemically or between plants, it is crucial to consider whether
they are (i) emitted after mechanical damage only and (ii) possess
the ability to trigger detectable downstream responses on a
molecular or physiological level. Although the exact mechanism
of volatile perception still remains an enigma, evidence for
perception of DIVs in trees, e.g., sugar maple (Acer saccharum)
and poplar (Populus x euroamericana), was already found by
Baldwin and Schultz (1983). This study demonstrated that
airborne cues emitted from trees with artificially torn leaves
triggered an enhanced accumulation of phenolic compounds
and condensed tannins in nearby undamaged individuals. Over
the following 20 years, an extensive amount of research was
published, identifying specific DIVs and their ability to induce a
plethora of responses in a broad spectrum of species ranging from
trees, shrubs (sagebrush) to crops (cotton, tomato, potato), and
model organisms (A. thaliana). The main observed responses to
DIVs included accumulation of secondary metabolites, especially
phenolic compounds and tannins (Baldwin and Schultz, 1983;
Zeringue, 1987; Choi et al., 1994), upregulation of proteinase
inhibitor gene expression and proteinase inhibitor biosynthesis
(Farmer and Ryan, 1990; Reid, 1995), activation of defensive
oxidative enzymes (Karban et al., 2000) by compounds such
as MeJA or ethylene, which could even lead to an enhanced
herbivore resistance (Karban et al., 2003).

A groundbreaking study by Arimura et al. (2000) continued
to disentangle the impact of individual compounds in the
upregulation of defense-related genes in lima bean. It was
demonstrated that only VOCs emitted by T. urticae-infested
leaves resulted in the upregulation of defense-related genes
encoding pathogen-related (PR) proteins including PR-2
(β-1,3-glucanase), PR-3 (chitinase), as well as lipoxygenase
(LOX), phenylalanine ammonia-lyase (PAL), and farnesyl
pyrophosphate synthetase (FPS), whereas exposure to VOCs
from artificially damaged plants only slightly triggered PR-2
gene upregulation. Although VOC emission profiles revealed
the presence of (Z)-3-hexenol, α-pinene, (E)-β-ocimene,
DMNT, α-copaene, junipene, β-caryophyllene, and MeSA
after artificial wounding by punching holes into the detached
leaves, the available concentration of the individual compounds
was seemingly not sufficient to trigger defense mechanisms.
Follow-up studies with whole plants revealed that GLVs such
as (Z)-3-hexenol, (E)-2-hexenal, and (Z)-3-hexenyl acetate
were in fact able to induce the expression of defense genes
in non-infested plants (Arimura et al., 2001; Farag et al.,
2005). Findings by Bate and Rothstein (1998) corroborated the
importance of C6- GLVs (mainly (E)-2-hexenal) triggering plant
defense response genes in A. thaliana. Additionally, the potential
of DIVs such as DMNT or β-ocimene to activate transcript
accumulations, if present in high enough amounts, was shown by
their individual application resulting in upregulation of several
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defense genes (Arimura et al., 2000). A similar observation was
made by Meents et al. (2019) showing that VOCs released after
mechanical wounding with tweezers or the application of DMNT
only induced several defense genes and trypsin inhibitors in
sweet potatoes in a cultivar- and concentration-specific manner.
Both studies highlight the potential of single components as
putative DAMPs; however the experimental setup, execution
and magnitude of artificial wounding, air exchange, incubation
time, and concentration of applied volatiles need to be critically
taken into account.

More recent findings focused on the effect of mainly HIPVs
in intra- and interspecific plant signaling, omitting artificial
treatments and placing VOC signaling in a more ecological
context. Matthias Erb and his team found the mainly herbivory-
induced aromatic compound indole (Figure 1) to be a potent
priming agent in maize (Zea mays) which increased the
accumulation of defense-related phytohormones and volatiles
in undamaged neighboring plants (Erb et al., 2015). Although
the indole-mediated priming response was specific for maize
only, exposure to synthetic indole triggered the emission of
DMNT, α-pinene, and (E)-β-caryophyllene also in cotton and
cowpea (Vigna unguiculata) (Erb et al., 2015). This highlights the
potential of indole as a putative universal information transmitter
among various species based on the fact that – although in
small amounts only – it can be found in other species as well
(Zeng et al., 2016; Li et al., 2019; Meents et al., 2019). Again,
the mode of damage seems to play a crucial role for defense
upregulation, based on studies showing the occurrence of small
amounts of indole only after continuous mechanical wounding
in certain species (Bricchi et al., 2010; Zeng et al., 2016; Meents
et al., 2019) and not after single wounding events (Zhuang
et al., 2012). These observations highlight that VOCs mainly
declared as HIPVs are not necessarily limited to herbivory,
but might also act as a damage-inducible priming agent and
triggering DAMP mechanisms with sufficient indole released
after wounding. Taken together all of these findings, there is a
strong evidence for some DIVs regulating as volatile DAMPs
various plant responses via different pathways.

How these DAMP signals act on and in neighboring plants and
the receiving tissue is still not known. For sure, plants harbor
the potential to perceive and transmit volatile signals. Some
scientists highlighted the ability of DIVs to further induce VOC
emissions in the receiver plant, e.g., via upregulating ethylene
biosynthesis genes in lima bean (Arimura et al., 2002), local and
systemic terpene production in tomato (Farag and Paré, 2002),
or production of HIPVs-mimics in cotton, tobacco (Nicotiana
attenuata), or maize as a response to MeJA or (Z)-3-hexen-1-
ol (Halitschke et al., 2000; Rodriguez-Saona et al., 2001; Ruther
and Kleier, 2005). Especially airborne MeJA connects different
possible pathways, being taken up by the plant and consecutively
converted into jasmonic acid and its active conjugates (Tamogami
et al., 2008). Jasmonic acid and its conjugates are then able to
regulate defense responses including VOC emission; sometimes
in cooperation with peptide signaling as shown for prosystemin
in tomato (Degenhardt et al., 2010). However, as shown for sweet
potato, DIV-induced defense is not necessarily connected with
the activation of the jasmonate pathway (Meents et al., 2019).

These observations support the possibility of dual functions of
certain volatile DAMPs such as DMNT, which could act with
and without including known defensive pathways. Moreover,
such DAMPs can either directly initiate defense as in the case of
sweet potato (Meents et al., 2019) or being involved in priming
(Erb et al., 2015).

It should be noticed that DIVs must also be seen in the original
sense of tissue damage; i.e., this cue is not necessarily exclusively
triggered in the event of an herbivore or pathogen attack
but might be involved in activation in vital wounding repair
mechanisms within the damaged individual, therefore serving as
a shortcut. However, to our knowledge, volatile DAMPs-related
to wound healing processes in plants have not been described yet.

SPECIFICITY, STABILITY, AND RANGE
OF INFLUENCE

One recurring point of controversy has been the distance over
which HIPV signals can be received by plants (Baldwin et al.,
2002; Karban et al., 2003; Kessler et al., 2006). Recent work
has shown that vascular constraints on systemic induction
can be overcome with HIPVs (Karban et al., 2006; Frost
et al., 2007; Heil and Bueno, 2007), as hypothesized by
Farmer (2001) and Orians (2005). However, the potential of
emitted VOCs to trigger a systemic response in the emitter
or conspecific individuals is a complex interplay of various
factors starting from released concentrations of active compound,
cue specificity, stereochemistry-related configuration, field vs
laboratory conditions, and the distance to the emitter (Figure 3)
(Preston et al., 2004).

Among several well-studied volatiles, MeJA gained increasing
attention from the 90s on after a study by Farmer and Ryan
(1990) finding its emission significantly increased after excision
of branches from sagebrush. Being conducted in enclosed bell
jars only, Karban and colleagues transferred this knowledge to
the field, performing further experiments demonstrating that
wild tobacco plants growing near clipped sagebrush exhibit
less herbivore damage than individuals without a wounded
neighbor present (Karban et al., 2000), highlighting the defensive
ability of DIVs. Upon further characterization of the emitted
plume after mechanical damage in sagebrush, Preston et al.
(2004) identified cis-MeJA as the main released epimer compared
to the trans conformation. Subsequent experiments aiming to
reproduce the emission of MeJA via application of lanolin
paste or aqueous sprays revealed that neither cis- nor trans-
MeJA elicited direct defenses in N. attenuata when applied
in concentrations consistent with sagebrush emissions. This
study exquisitely addressed that besides structural specificity,
the application and the released amount of compounds is a
crucial aspect making it tremendously difficult to treat plants
in physiologically relevant quantities in order to reproduce
observations made in the field.

Follow-up field studies on sagebrush conducted by Karban
et al. (2006) found air contact and proximity of conspecific
plants to be key to intra- and interplant communication. It was
shown that adjacent conspecifics of clipped sagebrush were not
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only influenced within a range of 15 cm but even up to 60 cm.
Additionally, a downwind airflow toward the neighboring plant
was necessary to establish volatile-mediated contact, ultimately
triggering induced resistance among branches as well as within
the wounded individual itself which was not observed by clipping
and trapping released DIVs (Karban et al., 2000, 2006). In the
case of neighboring tobacco plants, 5 days of exposure to clipped
sagebrush increased the overall resistance for the whole season
with up to 48% decreased herbivore damage (Karban, 2001;
Karban et al., 2003). All of these findings underlined the possible
longevity of volatile-based protective mechanisms even across
different species, however suffering limitations based on airflow
and spatial distribution of such cues. Considering the proximity
of neighboring individuals, MeJA-based communication appears
to be useful in sagebrush due to adjacent plants growing within a
maximum distance of 60 cm apart (Karban et al., 2006) including
the branches of the clipped individual itself.

Apart from warning neighboring (potentially eavesdropping)
individuals, DIVs might also provide a fast and efficient
mechanism of within-plant-signaling, reaching further locations
of the wounded plant itself as has been demonstrated in lima
bean, poplar, blueberry (Vaccinium corymbosum), and sagebrush
(Karban et al., 2006; Frost et al., 2007; Heil and Bueno, 2007;
Rodriguez-Saona et al., 2009; Heil and Adame-Álvarez, 2010).
Depending on the growth form, Heil and Karban predicted
that large and anatomically complex plants (especially lianas
and vines) are more prone to use VOC-mediated protective
mechanisms, omitting a time-consuming signaling cascade via
the vascular system (Heil and Karban, 2010). Evidence for this
hypothesis and the distance over which VOCs can travel was
found in lima bean plants grown in the field. Heil and Adame-
Álvarez (2010) demonstrated that cues from emitter plants
triggered with JA or benzothiadiazole (BTH) increased secretion
of extrafloral nectar as an output for resistance in independent
receiver plants at a distance up to 50 cm. Interestingly, over
80% of the leaves located around a single leaf at this range still
belonged to the same plant, therefore inducing resistance mainly
in the same individual (Figure 3) (Heil and Adame-Álvarez,
2010). Additional findings were presented by Girón-Calva et al.
(2012) highlighting the specificity of plant perception in lima
bean, depending on the applied VOC and the dose and exposure
time. Taken together, volatiles are representing a cue for within-
plant-signaling as well as an alarm signal for surrounding plants
of a possible threat, however in a limited range from 15 up to
60 cm, which was extended to 100 cm by work of Piesik et al.
(2010) for some cereal crops and recently by Sukegawa et al.
(2018) in a mint (Mentha × piperita) emitter – soybean (Glycine
max) receiver system.

HOW ATMOSPHERIC EFFECTS CAN
SHAPE VOLATILE DISTRIBUTION
PATTERNS

In nature, plants are exposed to a vast number of environmental
stimuli and stress factors, leading to drastic physio-chemical
changes in the plant. These external factors are often omitted in

studies that are performed in the laboratory. As addressed in a
review by Holopainen and Gershenzon (2010), the co-occurrence
of biotic and abiotic stresses such as high temperatures, nutrient
availability in the soil, and increasing herbivore attacks, can
significantly alter the volatile profiles in plants. These effects
can be additive and result in an increased VOC emission, as
observed in maize and lima bean (Gouinguené and Turlings,
2002; Vuorinen et al., 2004) under high temperature or ozone
stress combined with herbivory, or prioritize a single response,
e.g., anti-pathogen instead of anti-herbivore defense (Rostás
et al., 2006). Strikingly, after degradation or condensation on
leaf surfaces VOCs can play an entirely different biological role
(Holopainen and Gershenzon, 2010).

As worked out recently, many different physico-chemical
parameters can affect the occurrence and concentration of
released VOCs in the close environment. Their particular vapor
pressure, but also temperature, wind speed, relative humidity,
and radiation are such factors (Figure 3) (Douma et al., 2019).
In addition, an important key factor for volatile communication
is the atmospheric lifetime of emitted VOCs which can range
from 30 s up to several days (Atkinson and Arey, 2003). As
stated again by Douma and colleagues, the chemical class of
a certain compound is less important than its reactivity with
atmospheric oxidants, biosynthesis rate, and volatility (Douma
et al., 2019). Thus, the longevity of such a signal strongly depends
on the presence of reactive radicals (OH, NO3, O3) and the
number of C double bonds (Mofikoya et al., 2017). Especially
ozone, known as the most important tropospheric air pollutant
in rural areas (Ashmore, 2005), is highly reactive with a variety
of VOCs (Pinto et al., 2007). As demonstrated by Blande et al.
(2010) in laboratory studies, this can lead to a significantly
decreased signaling distance and, hence, limited plant–plant
communication. In numbers, the exposure of T. urticae-infested
lima beans to 80 ppb ozone (representing concentrations of
semi-urban areas) reduced VOC signaling distances from 70 cm
(control) to 20 cm, mainly due to degradation of compounds
such as (E)−β−ocimene, DMNT, and TMTT. Additionally,
recent field studies revealed that priming of cabbage (Brassica
oleracea var. capitata) after exposure to HIPVs of Pieris brassicae-
infested neighbors was significantly disturbed (Girón-Calva
et al., 2017) by elevated tropospheric ozone levels, therefore
inhibiting a crucial VOC-mediated protective mechanism of
plant communication. However, this adverse effect does not apply
to all compounds and plant responses. Compounds such as
MeSA or 2-butanone were not significantly affected and exposure
to even higher ozone concentrations (160 ppb) stimulated
extrafloral nectar production in lima bean, representing an
increased defense mechanism (Blande et al., 2010). Apart from
its influence in the plant itself, oviposition by P. xylostella
was generally lower in plots under elevated ozone (Mofikoya
et al., 2017), indicating that behavioral patterns by the herbivore
are also altered in the process. The question whether this
activation of defensive mechanisms might be used as a plant
protection strategy or simply puts the plant under constant
stress, still remains to be answered. All of these findings create
a rather puzzling image regarding the benefit or drawback of
air pollutants on plants and their VOCs; however representing
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a major external factor that has to be considered when applying
VOCs in the field.

VOLATILE DAMPs – ARE THEY USEFUL
IN AGRICULTURE?

Over the last decades, numerous studies proposed the use of
plant-based VOCs (DIVs as well as HIPVs) for crop protection as
means for an environment-friendly pest management (Table 1).
All having the same aim, various strategies have been suggested
targeting different volatile-based mechanisms. Groundbreaking
field studies by Pickett and colleagues (Cook et al., 2007;
Hassanali et al., 2008; Pickett et al., 2014) introduced the
push-pull-system by intercropping repellant and attractant plant
species, luring pests toward attractive odors whilst protecting the
important crop from damage.

Following up, various publications aimed to identify suitable
crop species and cultivars based on their natural ability to release
and induce VOC-mediated defenses in adjacent plants. Studies
by Piesik et al. (2010) investigated the influence of mechanical
damage and herbivory on the VOC emission in common cereals,
e.g., wheat, barley (Hordeum vulgare), and oat (Avena sativa),
revealing tremendous differences in quantities of especially GLVs
emitted by injured plants. These species-specific differences in
DIV quantity could even be observed in different cultivars of
the same species in sweet potato (Meents et al., 2019). In both
cases, herbivory resulted in the emission of higher amounts and
more different VOCs compared to mechanical injury. However,
low amounts of released DIVs after mechanical damage were
already sufficient to induce the release of GLVs in uninjured crop
plants within 1 m distance (Figure 3) (Piesik et al., 2010). The
ability of DIVs to trigger an upregulated VOC release in adjacent
plants might serve as an interesting starting point of signal
amplification within an agricultural land plot. Supposing that
artificial wounding of few individuals can trigger upregulation of
VOCs in uninjured neighbors, which subsequently serve as relays
amplifying the signal, it would be intriguing to test whether it
could actually prime or induce resistance in larger areas of one
plot. However, the feasibility of this concept strongly depends
on the intensity and frequency of the given stimulus, stability
and complexity of the signal, the ability of the receivers to
perceive and respond to the given stimulus, the longevity of
the response, and whether there is a trade-off between defense
and yield. At this point, it might be worth to mention a very
recent study demonstrating that among released VOCs – GLVs
in particular – were the best candidates to indicate herbivore
occurrence, suggesting their longer presence in the environment
compared with other VOCs (Douma et al., 2019).

Independent of initial stimuli or wounding events, studies
by Sukegawa et al. (2018) suggested mint species due to their
constitutive emission of resistance-enhancing volatiles as suitable
companion plants for soybean, Brassica rapa, and kidney bean
(Phaseolus vulgaris). Cultivation or pre-incubation for up to
7 days in the greenhouse next to mint plants resulted in lowered
herbivore damage and transcript accumulation of defense marker
genes for up to 8 days. These promising findings confirmed

previous studies in potato by Vucetic et al. (2014) highlighting
the potential of constitutively emitted aromatic VOCs to elicit
defense or priming in crop species. Another field study showed
convincingly that repeated weeding-induced release of DIVs
from goldenrod (Solidago altissima) plants reduced both leaf and
seed damage in soybeans. It could be further shown that at least
three different goldenrod-derived monoterpenes were involved
in the induction of the respective soybean defense (Shiojiri et al.,
2017). However as critically pointed out by Sukegawa et al.
(2018), one has to consider whether the recipient crop species
(such as soybean) is grown in large monocultures in the field,
which might drastically attenuate the beneficial effect of mint as
companion plants, making it more suitable for small scale house
gardening and glasshouse cultivation.

Another interesting principle regarding volatile-based
protection comprises the addition of a third trophic level.
Various studies (Dicke et al., 1990, 2003; Turlings et al., 1990;
Takabayashi and Dicke, 1996; Arimura et al., 2009; Baldwin,
2010) revealed that plants release distinct volatile blends upon
herbivory in order to attract natural enemies of the attacking
herbivore. Making direct use of this knowledge, researchers
tested common HIPVs such as DMNT or (Z)-3-hexenyl acetate
among many others, in field studies regarding their attractiveness
toward parasitoids. In the process, MeSA as both a DIV and an
HIPV, was revealed to be a promising candidate for commercial
application due to its luring ability of predatory mites, bugs,
and lacewings whilst repelling aphid plant pests (Dicke and
Sabelis, 1987; Dicke et al., 1990; Drukker et al., 2000; Ozawa
et al., 2000; James, 2003, 2005). Although being able to bait
certain insect species in hop yards over a distance of 15 m away
from the dispenser, studies using commercially available MeSA
lures in strawberry (Fragaria × ananassa) fields did not result
in decreased local pest abundance (Lee, 2010). This study just
posing as an example, it nevertheless reveals the complexity of
this strategy due to the predator’s preferences and the potential
lack of a rewarding system.

Combining aforementioned strategies, studies by von Mérey
et al. (2011) constructed dispensers in maize fields releasing
synthetic GLVs in order to induce and/or prime defense in
neighboring plants while simultaneously monitoring predator
and herbivore attractiveness. Although GLV-exposed maize
plants emitted increased concentrations of sesquiterpenes, the
hypothesis this would improve herbivore resistance could not
be maintained but caused even higher numbers of herbivores,
depending on the distance to the dispenser. Another crucial
aspect is again the emitted concentration of each compound
especially in complex mixtures, since repellent cues can be turned
into attractants in the process or covering the desired function,
especially when presented in the wrong context (D’Alessandro
and Turlings, 2005; Mumm and Hilker, 2005; Snoeren et al.,
2010). As addressed by Heil and Walters (2009) (VOC-mediated)
induced systemic resistance seems to come with ecological costs.
This effect is again highly species-specific and strongly dependent
on the applied volatile, which was shown in a field study
where lima bean and pepper (Capsicum annuum) were exposed
to low doses of (Z)-3-hexenyl acetate for 7 days (Freundlich
and Frost, 2019). Volatile treatment resulted in increased leaf
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TABLE 1 | Overview of plant-derived DIVs and their application in the field.

Compound/molecule class Classification Emitter/source Receiver plant Applied VOC dosage Distance
emitter-receiver

Response References (and ref.
therein)

Methyl jasmonate (MeJA) DIV Artemisia tridentata (clipped) Nicotiana attenuata 20–30 ng/g FW/h 15 cm ↑Polyphenol oxidase
↑Herbivore resistance

Karban et al., 2000

Methyl jasmonate (MeJA) DIV Artemisia tridentata (clipped) Artemisia tridentata n.a. 0–60 cm ↑Herbivore resistance Karban et al., 2006
Methyl jasmonate (MeJA) DIV Dispenser (Chem-Tica

sachet)
Vitis labrusca (var. Concord) 1 g; 7 mg/d released 0–30 m ↑Parasitoid abundance James and Grasswitz,

2005
Methyl salicylate (MeSA) DIV MeSA dispenser (Predalure) Fragaria × ananassa 2 g /lure 0–10 m →Pest abundance Lee, 2010
Methyl salicylate (MeSA) DIV Dispenser (Chem-Tica

sachet)
Vitis labrusca (var. Concord) 5 g; 40 mg/d released 0–30 m ↑Parasitoid abundance James and Grasswitz,

2005
Methyl salicylate (MeSA) DIV Dispenser (Chem-Tica

sachet)
Vitis labrusca (var. Concord) 5 g; 60 mg/d released 0–30 m ↑Parasitoid abundance James and Price, 2004

Methyl salicylate (MeSA) DIV Dispenser (Chem-Tica
sachet)

Humulus lupulus 5 g; 60 mg/d released 0–30 m ↑Parasitoid abundance James and Price, 2004

(Z)-3-Hexenyl acetate DIV Dispenser (Chem-Tica
sachet)

Vitis labrusca (var. Concord) 1 g; 7 mg/d released 0–30 m ↑Parasitoid abundance James and Grasswitz,
2005

(Z)-3-Hexenyl acetate DIV Lanolin paste Phaseolus lunatus 30 ng/µl;
10 ng/h released

1 m ↑Height and biomass
↑Flower and fruit
production
↓Herbivore damage
↓Cyanide production

Freundlich and Frost,
2019

(Z)-3-Hexenyl acetate DIV Lanolin paste Capsicum annuum (var.
Cayenne)

30 ng/µl; 10 ng/h released 1 m ↓Height and biomass
↓Flower and fruit
production
→Herbivore damage

Freundlich and Frost,
2019

(E)-β-Caryophyllene DIV/ HIPV* Zea mays ssp. parviglumis n.a. n.a. 1 m ↑Parasitoid abundance Rasmann et al., 2005
n.a. DIV/ HIPV◦ Mangifera indica (var. Criollo) n.a. n.a. 20 cm ↑Parasitoid abundance Carrasco et al., 2005
VOC mixture
monoterpenes, GLVs,
terpenes, N- and S-
containing VOCs, DMNT,
(Z)-3-hexenyl acetate,
(E)-β-ocimene

DIV/HIPV Brassica oleracea (var.
Capitata)

Brassica oleracea (var.
Capitata)

n.a. 30 cm ↑VOC emission (priming) Girón-Calva et al., 2017

VOC mixture
(E)-2-hexenal,
(Z)-3-hexen-1-yl acetate,
(E)-β-ocimene

DIV Solidago altissima (cut) Glycine max (cv. Hyokei
Kuro-3)

500 mg cut S. altissima
pieces

0–15 m ↓Leaf damage
↓Spodoptera litura
damage

Shiojiri et al., 2017

GLV mixture
(Z)-3-hexenal, (E)-2-hexenal,
(Z)-3-hexenyl acetate

DIV Dispenser Zea mays (var. Tuxpeño
Sequía)

0.2 ml <0.1–1 m ↑Sesquiterpene emission
↑Herbivore damage
↑Herbivore abundance
→Parasitism rate

von Mérey et al., 2011

(E)-β-farnesene HIPV/cVOC (GMO) Triticum aestivum (cv.
Cadenza)

n.a. Maximum 30.7 µg/plant/h
released

0.5 m →Grain yield
→Aphid abundance
→Parasitoid abundance

Bruce et al., 2015

VOC mixture
1,8-cineole, menthone,
menthol

cVOC Mentha × piperita (cv. Candy) Glycine max (cv.
Tanba−Kuro) Brassica rapa

Phaseolus vulgaris (cv.
Nagauzuramame)

n.a. 50–100 cm ↓Herbivore damage
↑Defense genes

Sukegawa et al., 2018

Push-pull-intercropping
systems

DIV/cVOC For a full review see Pickett et al., 2014

Plant extracts DAMP For a full review see Quintana-Rodriguez
et al., 2018

DIV, damage-induced volatiles; HIPV, herbivore-induced volatiles; cVOC, constitutive volatiles; GLV, green leaf volatiles; GMO, genetically modified organism; n.a., not applicable. ↓ decrease; ↑ increase;→ no change.
*VOC emission induced by herbivore feeding. ◦Beneficial effect observed after herbivory only.
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and flower formation, overall taller growth and decreased
herbivory in lima bean plants, however coming at the cost of
a reduced cyanide induction (trade-off). An entirely different
output was observed in pepper, producing fewer flowers and
fruits conjoined with reduced above- and belowground biomass
and unaltered herbivore damage. These observations illustrate
the effect of a single VOC on traits such as reproductive fitness
and growth in a species-specific manner which very carefully
needs to be considered while choosing a suitable VOC-plant
pairing in agriculture. Having a large scale application of volatile
treatments in agriculture in mind, in addition to the compounds’
environmental compatibility and efficacy also their production
costs must be considered, which may become a limiting factor.

CONCLUSION

Within the past decades, plant-based signaling compounds
became increasingly popular as eco-friendly priming compounds
or resistance boosters in the fields of biotechnology and
agriculture. Unfortunately, up to now most of the proposed
concepts have not yet proven to be successful enough to pose
as viable alternatives for conventional crop protection strategies.
This observation is mainly based on the variety of drawbacks
addressed by Brilli et al. (2019) which still need to be further
discussed and overcome in the future. However, new concepts
exploring the potential of DAMPs as plant protective compounds
found especially eDNA (Ferrusquía-Jiménez et al., 2020) to
be a new candidate for application in the field. In addition
to such treatments directly spraying compounds produced by
wounded plant tissues on unwounded crops, we would like to
focus onto damage-induced volatile compounds (DIVs). These
DIVs are (i) specifically synthesized and emitted upon tissue
disruption and (ii) can serve as intra- and interplant signals
initiating immune responses as well. Due to their generation
upon injuries or damage, these compounds can also be classified

as DAMPs. Mainly GLVs but also DMNT and indole fulfill
the criteria to be classified as volatile DAMPs in stricto sensu.
Their airborne nature opens new possibilities for applications but
also reveals new challenges. A general issue is the volatile-based
communication itself, involving the plant as an emitter as well
as a receiver. On the one hand, even in conspecific plants a high
genetic identity does not guarantee a functioning communication
between varieties as shown for sweet potato (Meents et al., 2019).
On the other, VOC-emitting plants do not necessarily release
“private messages” and may attract unwanted organisms as well as
advantage eavesdropping adjacent plants competing for nutrients
(Gershenzon, 2007). The intensity and longevity of the volatile
“messages” itself is highly fluctuating as well since environmental
conditions can strongly reduce the efficiency of the particular
volatile compound not only on a physico-chemical level but
simply by fast dilution due to strong winds. On a physiological
scale, the cost-benefit ratio for the emitting plant and the effect
on conspecific individuals need to be further investigated to prove
an actual profit and not simply a trade-off. Taken together, up to
this point DIVs pose as a promising approach for DAMP-based
crop protection – however, mainly restricted to a controlled and
space-limited area such as phytochambers and greenhouses.
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