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Rising global temperatures due to climate change are affecting crop performance in
several regions of the world. High temperatures affect plants at various organizational
levels, primarily accelerating phenology to limit biomass production and shortening
reproductive phase to curtail flower and fruit numbers, thus resulting in severe
yield losses. Besides, heat stress also disrupts normal growth, development, cellular
metabolism, and gene expression, which alters shoot and root structures, branching
patterns, leaf surface and orientation, and anatomical, structural, and functional aspects
of leaves and flowers. The reproductive growth stage is crucial in plants’ life cycle, and
susceptible to high temperatures, as reproductive processes are negatively impacted
thus reducing crop yield. Genetic variation exists among genotypes of various crops to
resist impacts of heat stress. Several screening studies have successfully phenotyped
large populations of various crops to distinguish heat-tolerant and heat-sensitive
genotypes using various traits, related to shoots (including leaves), flowers, fruits (pods,
spikes, spikelets), and seeds (or grains), which have led to direct release of heat-
tolerant cultivars in some cases (such as chickpea). In the present review, we discuss
examples of contrasting genotypes for heat tolerance in different crops, involving many
traits related to thermotolerance in leaves (membrane thermostability, photosynthetic
efficiency, chlorophyll content, chlorophyll fluorescence, stomatal activity), flowers (pollen
viability, pollen germination, fertilization, ovule viability), roots (architecture), biomolecules
(antioxidants, osmolytes, phytohormones, heat-shock proteins, other stress proteins),
and “omics” (phenomics, transcriptomics, genomics) approaches. The traits linked to
heat tolerance can be introgressed into high yielding but heat-sensitive genotypes of
crops to enhance their thermotolerance. Involving these traits will be useful for screening
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contrasting genotypes and would pave the way for characterizing the underlying
molecular mechanisms, which could be valuable for engineering plants with enhanced
thermotolerance. Wherever possible, we discussed breeding and biotechnological
approaches for using these traits to develop heat-tolerant genotypes of various
food crops.

Keywords: heat-stress, crops, tolerance, agriculture, physiology

INTRODUCTION

The Earth’s increasing average surface temperature due to
climate change is proving to be stressful for all phases of
plant growth and development, particularly in tropical and
subtropical countries (Li B. et al., 2018). Among abiotic stresses,
high temperature stress is a major factor disrupting plants’
performance (Wahid et al., 2007). Each plant species has its
own maximum, optimum and minimum temperatures, known
as cardinal temperatures. Temperatures below or above these
thresholds causes stress (Wahid et al., 2007). Above optimum
(high-temperatures) affect plant’s morphological, physiological,
biochemical and molecular traits, which ultimately leads to
poor growth and yields (Hasanuzzaman et al., 2013). The
impact of high-temperature (heat) stress depends on intensity,
timing, duration of stress and type of plant species (Wahid
et al., 2007). Although all stages of plant development can
be negatively impacted by heat stress, reproductive stages of
crop are relatively more sensitive than vegetative stages (Prasad
et al., 2008b, 2017). Heat stress during seed germination
reduces germination percentage, seedling emergence, and radicle
and plumule growth in germinated seedlings, resulting in
abnormal seedlings with poor seedling vigor (Hasanuzzaman
et al., 2013). At later vegetative stages, heat stress adversely
affects photosynthesis, leaf area development leading to lower
biomass production; whereas, stress during reproductive stages
of development results in lower seed numbers and decrease
seed size resulting in lower yields (Bita and Gerats, 2013;
Prasad et al., 2017). Different crops and their genotypes
vary in their heat sensitivity, the response is generally
stage-and trait-specific, which can reveal mechanisms related
to heat tolerance (Bita and Gerats, 2013; Prasad et al.,
2017). Thus, genotypes having contrasting heat sensitivity
have been identified in several crops (detailed below), that
yielded vital information on various traits controlling heat
tolerance (Figure 1).

IMPACT OF HEAT STRESS

Heat stress can have damaging effects (direct and indirect) on
all stages of plant growth and development (Kaushal et al.,
2016). Phenological stages differ in their sensitivity to heat
stress, and vary between species and genotypes of same species.
Various plant tissue injuries have been observed under heat
stress, such as leaf and twig scorching, leaf, branch and stem
chlorosis and necrosis, leaf senescence and abscission, root
and shoot growth inhibition, flower drop, and fruitdamage,

which consequently reduce plant productivity (Vollenweider
and Günthardt-Goerg, 2005). Heat stress primarily affects the
stability of plasma membranes, several proteins, cytoskeleton
organization, and the efficiency of cell enzymatic reactions
and creating metabolic disparity (Xu et al., 2006). Heat-stress-
induced oxidative stress causes peroxidation of membrane
lipids, proteins, and nucleic acids (Mittler et al., 2004). Due
to reduced membrane stability, electrolyte leakage increases,
which intensifies the membrane injuries (Wahid et al., 2007).
Physiological processes, such as photosynthetic activity and
sucrose metabolism, are highly sensitive to heat stress (Berry
and Bjorkman, 1980). At the subcellular level, disruption of
structural organization of thylakoids and loss of grana stacking
in chloroplasts are the primary sites of heat injury (Sharkey,
2005), which lead to changes in electron transport to PSII (Lu
and Zhang, 2000). Heat stress also damages PSII and inhibits its
repair due to the generation of reactive oxygen species (ROS)
(Allakhverdiev et al., 2008). Heat stress affects enzymes in Calvin
cycle, including RuBisCo and RuBisCo activase (Camejo et al.,
2005; HanumanthaRao et al., 2016; Bindumadhava et al., 2018),
which hampers photosynthesis and photorespiration. Heat
stress during reproductive stages adversely affects seed-set and
yield in many food legumes, such as chickpea (Cicer arietinum)
(Kaushal et al., 2013), mungbean (Vigna radiata) (Kaur et al.,
2015; HanumanthaRao et al., 2016), peanut (Arachis hypogaea)
(Prasad et al., 1999a,b) and lentil (Lens culinaris) (Bhandari et al.,
2016) and cereals, such as wheat (Wahid et al., 2007; Prasad and
Djanaguiraman, 2014), sorghum (Sorghum bicolor) (Prasad et al.,
2015), barley (Hordeum vulgare) (Barnabás et al., 2008), and
maize (Zea mays) (Kumar et al., 2012). During the reproductive
stage, gametogenesis and fertilization are highly sensitive to
heat stress, which impairs meiosis in both male and female
organs, affects pollen germination and pollen tube growth,
reduces ovule viability and ovule size, alters stigmatic and
style positions, reduces stigma receptivity, disturbs fertilization
processes, affects embryo fertilization, and impedes endosperm
growth (Farooq et al., 2017; Prasad et al., 2017). Heat stress
hastens the rate of grain filling, but reduces the duration of grain
filling, as reported in wheat (Prasad et al., 2008a; Farooq et al.,
2011), which may be due to direct effects of heat stress on the
source–sink relationship that reduce photoassimilate supply to
developing seeds (Calderini et al., 2006). The detrimental effects
of heat stress can be alleviated by developing crop varieties with
improved heat tolerance. The most popular approach used by
many plant researchers has been screening a large population
to identify contrasting genotypes for elucidating physiological,
biochemical, and molecular mechanisms governing heat
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FIGURE 1 | Screening traits for developing heat tolerant genotypes. Different traits based on leaf, growth, pollen grains biochemical and yield can be used for the
selection of genotypes. Cell membrane thermostability (CMT), canopy temperature depression (CTD), carbon isotope discrimination (CID), stay green trait (SGT),
chlorophyll fluorescence, stomatal conductance, photosynthetic rate and sucrose are the traits that can be assessed from leaves. However growth pattern such as
plant biomass, plant height, and RSA of different genotypes can also be compared for selection of contrasting genotypes. Similarly, reproductive wellness of
genotypes can be checked by using pollen based traits such as pollen viability test, pollen germination test and pollen tube length. The mitigation of cellular stress by
genotypes can be compared by analysis of oxidative stress damage (production of free radicals) and production of antioxidants, metabolites and heat shock proteins
(HSPs) whereas yield based traits such as seed number, seed weight, seed filling rate and duration can also be employed for selection purpose.

tolerance. Understanding such mechanisms will pave the way for
improving crop genotypes under heat stress. Here, we discuss
how heat stress impacts traits related to stress tolerance in
contrasting genotypes of various crops to provide further clues
for breeders and agronomists for improving the selection of
heat-tolerant genotypes across crop species. Heat stress is often
accompanied by drought stress; the impacts of heat stress are
worsened in drought-stressed plants, which are manifested in
various organizational changes in plants (Sehgal et al., 2017),
hence, wherever possible, we have also included some examples
where genotypes of crops have been screened against combined
heat and drought stress situations.

MECHANISMS GOVERNING
THERMOTOLERANCE

Plants can endure two types of mechanisms to cope with heat
stress: (1) basal thermotolerance (inherent ability of plant) and
(2) acquired thermotolerance (induced by pre-exposure to higher
but non-lethal temperatures) (Bokszczanin and Fragkostefanakis,
2013). Acquired thermotolerance has an important role to play in
plant survival (Kotak et al., 2007). Hence, the heat stress response
is a genetically controlled process that can be stimulated by mild
or sub-lethal temperatures and further trigger the onset of heat-
stress response in plants (Charng et al., 2006). The heat-stress
response in plants is mainly conserved via cellular compartments
and regulatory networks (Wahid et al., 2007). Plants have evolved
various short-term acclimation mechanisms and long-term
adaptations in response to heat stress. Short-term acclimation

mechanisms include leaf orientation, transpirational cooling, and
changes in membrane lipid composition (Wahid et al., 2007).
For longer term adaptations, plants activate heat-stress tolerance
mechanisms, such as heat stress sensing through various sensors
and regulating downstream signal transduction pathways (e.g.,
lipidome, metabolome, transcriptome, and proteome) to modify
gene expression to ensure survival (Sung et al., 2003; Bokszczanin
and Fragkostefanakis, 2013; Dang et al., 2013).

Major adaptive mechanisms that induce thermotolerance in
plants include amplified production of thermoprotectants, such
as secondary metabolites, compatible solutes, ROS scavenging
mechanisms, and heat-shock proteins (HSPs) (Nakamoto and
Hiyama, 1999; Sakamoto and Murata, 2002; Wahid et al., 2007;
Mittler et al., 2012). During severe heat stress, ROS generated
as a byproduct of aerobic metabolism negatively affect cellular
metabolism, such as peroxidation of lipid membranes and
damage to nucleic acids and proteins (Bita and Gerats, 2013).
Plants activate enzymatic and non-enzymatic ROS scavenging
systems to defend this ROS production. The main ROS
scavenging enzymes are superoxide dismutase (SOD), catalase
(CAT), peroxidase (POX), ascorbate peroxidase (APX), and
glutathione reductase (GR), and the non-enzymatic systems
include ascorbic acid (ASC) and glutathione (GSH) (Suzuki
et al., 2012). Elevated levels of these antioxidants are crucial
for imparting thermotolerance in plants (Awasthi et al., 2015).
Thus, to cope with heat stress, plants synthesize and accumulate
more stress proteins, including HSPs, which are well-defined
molecular chaperones involved in protein folding, and proper
aggregation, translocation, and degradation under normal and
stress conditions, and essential for sustaining cellular stability
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(Vierling, 1991). Five major families of HSPs/chaperones are
HSP60, HSP70, HSP90, HSP100, and the small HSP (sHSP)
family (Wang et al., 2004), which play an important role in
the mitigation of heat-stress effects, especially protecting native
proteins from denaturation. The accumulation of secondary
metabolites, such as carotenoids, isoprenoids, and flavonoids,
augments high-temperature stress tolerance by preventing
peroxidase activity (Havaux, 1998; Loreto et al., 1998; Rivero
et al., 2004). The accumulation of compatible solutes, viz. sugars
(trehalose), sugar alcohols (polyols), proline, glycine betaine,
tertiary, and quaternary ammonium compounds, also provides
heat-stress tolerance in plants (Sakamoto and Murata, 2002). Due
to their low molecular weight, these molecules can buffer the
cellular redox potential under heat stress. Phytohormones, such
as salicylic acid, abscisic acid, brassinosteroids, and polyamines,
also play a significant role in providing thermotolerance to plants
(Ahammed and Yu, 2016; Sharma et al., 2020).

GROWTH-BASED PARAMETERS

Most studies on contrasting genotypes have measured biomass,
plant height, and root growth, with significant variations
identified in various crops subjected to heat stress, either in
laboratory or field experiments, which has resulted in using these
traits to quantify the impact of heat stress. Some examples of the
impacts of heat stress on these traits are described below.

Plant Height
Vegetative growth can be assessed as plant height to distinguish
heat-stress tolerant genotypes (Debnath et al., 2016). In Brassica
juncea L., high temperature (34◦C) after the induction of
flowering significantly affected plant height when grown in
the field, declining by 18.9–30.5% (mean 22.3%), relative to
the control. Genotypes BPR-538-10, NRCDR-2, RH-0216 had
lower heat susceptibility, based on plant height, than genotypes
RGN193, NPJ112 and SKM531 (Chauhan et al., 2009). Heat
stress (>40◦C) reduced plant height in 20 maize genotypes in
the field (Debnath et al., 2016), with the most heat-tolerant
genotype (DTPYC9F119) declining by 2.31% compared with
a 72.2% reduction in the most heat-sensitive genotype LM13.
Assessment of five potato cultivars (L1: 84.194.30; L2:86.61.26;
L3: 87HW13.7, L4: DG81-68, and L5: Desiree) under controlled
environment of combined heat (30 + 1◦C) and drought stress
(PEG 8000) for 21 days revealed severe effects all the cultivars on
plant height, when both the stresses were together, except L2 and
L3 (Handayani and Watanabe, 2020).

Seedling growth could be a potentially useful trait for early
screening against heat stress. For instance, in some tropical
parts of Africa, surface temperatures of tropical soils at planting
time can exceed 50◦C for hours to restrict the germination
and seedling growth (Setimela et al., 2007). Hence, seedling
heat tolerance is critical for adequate crop establishment in the
semi-arid tropics. In a study carried out on sorghum (Sorghum
bicolor) in Zimbabwe, seedling tolerance was estimated as heat
tolerance index (HTI; defined as a ratio of resumed coleoptile
growth after a controlled heat shock, compared to normal

growth). Genetic parameters of HTI were assessed by crossing
four sorghum lines having varying HTI, with three tester lines,
and deriving F1, F2, F3, BC1, and BC11 families for generation
means analysis. HTI was found to be highest (0.71) in Line
IS20969 from Egypt, while an experimental line (290R), from
the University of Nebraska, had the lowest at 0.51. The study
revealed that additive and dominance effects contributed to
coleoptile elongation under normal conditions, but only additive
effects were significant in recovery growth. Epistatic effects were
observed in both normal and heat-stressed environment. General
combining ability (GCA) effects for HTI were highly marked in
both conditions, but specific combining ability (SCA) effects were
negligible. These results showed that it is achievable to enhance
seedling heat tolerance and, thus, improve plant populations of
sorghum in tropical areas where hot soil temperatures occur.

Root System Architecture
The structure, spatial, and temporal configuration of the plant
root system is called root system architecture (RSA) (de Dorlodot
et al., 2007). The organization of primary and secondary roots is
determined by RSA at the macroscale (Smith and De Smet, 2012).
Root microstructure, such as fine root hairs, root tips and their
interactions with soil and soil microorganisms responsible for
water and mineral uptake, is determined by RSA at the microscale
(Wu et al., 2018). Most resources are heterogeneously distributed
in the soil, and the spatial and temporal distribution of roots
determines the crop’s ability to exploit resources (Brussaard et al.,
2007). Better understanding of RSA allows us to determine the
impact of environmental conditions and management practices
on crops, which can help to reduce the difference between genetic
potential and actual average yields (Garnett et al., 2009; Judd
et al., 2015; Ryan et al., 2016). RSA has a vital role in plant–soil–
microbe interactions and resolves the crosstalk with beneficial
soil microbes in the rhizosphere (Ryan et al., 2016).

Across fluctuating environments, RSA is an important
characteristic for adaptability. Therefore, we can improve crop
performance in terms of increased root traits, such as allocation,
morphological, anatomical, or developmental plasticity (Sultan,
2000). There is a direct relationship between individual RSA
plasticity and yield, which is related to more stable plant
performance across changing environments in various species
(Sadras, 2009; Niones et al., 2012, 2013). Root branching is
important for improving the root surface area, enabling the plant
to reach more distant reserves of water and nutrients and improve
soil anchorage. In plants, heat stress generally reduces primary
root length, lateral root density (number of lateral roots per unit
primary root length) and angle of emergence of lateral roots
from the primary root, but has little effect on average lateral root
length (McMichael and Quisenberry, 1993; Nagel et al., 2009).
Root growth has a lower optimal growing temperature than
shoot growth and is thus more sensitive to rising temperatures
(Huang and Gao, 2000; Xu and Huang, 2000). Plant heat
tolerance is directly influenced by root morphological features.
Among Kentucky bluegrass (Poa pratensis) cultivars, increased
root number and root length contributed to variations in
heat tolerance (Lehman and Engelke, 1993). Root phenotyping
of 577 common bean (Phaseolus vulgaris L.) genotypes in
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variable environments of heat, drought, and nutrient deficiency
revealed significant relationships between seed yield and seedling
basal root number, seedling adventitious root abundance, and
seedling taproot length. Under heat stress, adventitious root
number had a positive relationship (13%) with seed yield.
Mesoamerican genotypes of common bean yielded higher than
Andean genotypes under heat stress (Strock et al., 2019). In
canola, heat stress reduced stem diameter by 8.4%, cross-sectional
area by 17.3%, and aboveground biomass by 11.5% in two
genotypes; genotype 13C204 (heat-sensitive) had smaller stem
diameter, cross-sectional area, root length, root surface area, root
biomass, and root volume than Invigor 5440 (heat-tolerant) (Wu
et al., 2017). In another study, heat stress reduced lateral root
elongation (–38%), number of axile roots (–30%), elongation
rate of primary root (–26%), root dry weight (–39%), leaf water
potential (–59%) and leaf area (19%) in heat-sensitive maize
lines K64R, Ac7643, and Ac7729TZSRW when the temperature
increased from 28 to 37◦C. The heat-tolerant lines H16, CML444,
and SC-Malawi were least affected by high temperature (Trachsel
et al., 2010). In maize, screening of 10 genotypes for combined
heat and drought stress (40◦C/60%) revealed DK 6789, NT 6621
as tolerant and genotypes FH 988 and FH 1137 as sensitive on the
basis of root tolerance indices (Ayub et al., 2020).

Biomass
Wheat seedlings grown for 7 days under normal conditions
and then subjected to heat stress (42◦C for 2 h) in a growth
chamber revealed growth differences between genotypes (Gupta
et al., 2013). In general, heat stress reduced growth (shoot/root
dry weight and shoot/root length). Heat-tolerant genotypes (Raj-
4037 and PBW590) retained more shoot and root length and
dry weight than heat-sensitive genotypes (PBW502, DBW16,
DBW17, WH1021, and PBW550) (Gupta et al., 2013). In a
field experiment, heat stress (30/20◦C) reduced wheat biomass,
relative to optimum conditions (25/15◦C), but heat-tolerant
genotypes (MW-8, BW-4, and BW-3) maintained more biomass
than heat-sensitive genotypes (MW-7, MW-6, and BW-5)
(Rahman et al., 2009). Heat stress (>32/20◦C) significantly
reduced chickpea biomass by 22–30%, relative to those grown
under normal temperatures; heat stress had a smaller effect
on the biomass of heat-tolerant genotypes (ICC15614 and
ICCV92944) than heat-sensitive genotypes (ICC5912, ICC10685)
(Kaushal et al., 2013). Similarly, in a field experiment on
alfalfa (Medicago sativa), heat stress (38/35◦C) reduced plant
biomass, relative to the control (25◦C), more so in heat-
sensitive Wl712 than heat-tolerant Bara310SC (Wassie et al.,
2019). Field studies on lentil revealed that heat stress (>32/20◦C)
significantly reduced plant biomass, relative to the control (Sita
et al., 2017a); genotypes IG3263, IG2507, IG3297, IG3312,
IGG3327, IG3330, IG3546, IG3745, IG4258, and FLIP2009
retained more biomass (termed heat-tolerant) than genotypes
IG2519, IG2802, IG2506, IG2849, IG2821, IG2878, IG3326,
IG3290, IG3973, IG3964, IG4242, DPL15, DP315, IG4221, and
IG3568 (termed heat-sensitive). Likewise, heat stress (>40/28◦C)
significantly reduced mungbean biomass (up to 76%), relative
to the control (34/16◦C) in the field, due to the inhibition
of vegetative growth and acceleration in reproductive growth.

Genotypes EC693357, EC693358, EC693369, Harsha, and ML
1299 produced more biomass under heat stress (heat-tolerant)
than genotypes EC693363, EC693361, KPS1, EC693370, and
IPM02-3 (heat-sensitive) (Sharma et al., 2016). A study on
potato (Solanum tuberosum) revealed that warmer temperatures
(31/29◦C) severely affected plant biomass in two genotypes—
Norchip (heat-tolerant) and Up-to-date (heat-sensitive)—grown
in controlled environment chambers (Lafta and Lorenzen, 1995).
Both genotypes had similar total dry mass under controlled
conditions (19/17◦C), but heat stress (31/29◦C) reduced total dry
mass by up to 44% in Norchip and 72% in Up-to-date. Leaf,
stem, shoot, and tuber dry and fresh weights followed the same
trend under high temperature in both genotypes. At Niger, West
Africa (ICRISAT Sahelian Centre research farm (13◦ 29« N, 2◦
10« E; 221 m above sea level), field experiments were performed
to evaluate heat tolerance of groundnut (Arachis hypogaea L.)
using physiological traits identified in a yield model [crop growth
rate (C), reproductive duration (Dr) and partitioning (p)]. After
screening 625 diverse groundnut genotypes, under irrigation
during the hottest months (February to May), 16 contrasting
genotypes, selected on the basis of combination of high pod yield
and partitioning coefficient, revealed that crop growth rate was a
powerful factor affecting pod yield. Pod yield of most genotypes
decreased by more than 50% because of heat stress (40◦C) at the
time of flowering and pod formation. The findings showed that
estimates of p would be vital as a dependable selection criterion,
compared to yield, for identification of heat tolerant genotypes.
The breeders should explore strategies to maximize the crop
growth rate and partitioning in genotypes growing under warm
environments (Ntare et al., 2001). Under combined heat and
drought (36/26◦C without irrigation) stresses, Biomass was used
as a trait for evaluation of 3 tomato cultivars (Arvento and two
heat tolerant; LA1994 and LA2093) (Zhou et al., 2017) resulting
in identification of “Areventro” cultivar as more tolerant than
“LA1994” and “LA2093” genotypes (Zhou et al., 2017).

LEAF-BASED TRAITS

Heat stress causes serious leaf injuries, yellowing of leaves
(chlorosis), tissue death (necrosis), especially tips and margins,
wilting, and drying, resulting in severe loss of functionality
(Wahid et al., 2007). Various traits have been used to assess heat
damage, with genotypes contrasting for heat tolerance identified
based on these traits.

Tissue Damage
Tissue damage can be assessed by measuring membrane damage
based on electrolyte leakage, which is a reliable indicator of
heat sensitivity in several crop species. The primary target of
environmental stress is the cell membrane (Chen et al., 2014;
Sita et al., 2017b). Heat stress loosens chemical bonds within
the molecules of biological membranes by accelerating the
kinetic energy and movement of molecules across membranes,
which results in membrane fluidity by protein denaturation or
increased unsaturated fatty acids (Savchenko et al., 2002). Under
high temperature, protein denaturation, increased membrane
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fluidity, and enzyme inactivation decreases protein synthesis and
degradation, and alters membrane integrity (Howarth, 2005).
The tertiary and quaternary structure of membrane proteins
changes with heat stress and enhances membrane permeability,
as evident from increased ionic leakage, which is an indicator
of decreased cell membrane thermostability (CMT) (Wahid
et al., 2007). Damage to leaf membranes occurs due to the
direct effects of high temperature, photo-oxidation of chlorophyll
pigments, impaired electron flow, inhibition of carbon fixation,
and water loss from leaves. Damage to membranes impairs
photo-assimilate production in leaves (Prasad et al., 2017). Under
high temperature, the relationship between CMT and crop yield
varies from plant to plant. CMT has been used as an indirect
measure of heat stress tolerance in plant species, such as sorghum
(Sullivan, 1997; Marcum, 1998), soybean (Martineau et al., 1979),
potato and tomato (Chen et al., 1982), sorghum, wheat (Blum
et al., 2001), cotton (Ashraf et al., 1994; Cottee et al., 2010), lentil
(Sita et al., 2017a), chickpea (Kaushal et al., 2013), mungbean
(Sharma et al., 2016), and barley (Wahid and Shabbir, 2005). Abro
et al. (2015) identified several heat-tolerant cotton genotypes
with high membrane thermostability at 50◦C in the laboratory
environment, which could be used for breeding purposes to
develop heat-tolerant genotypes. During the late developmental
phase of plants, membrane stability tends to decrease (Ahmad
and Prasad, 2011). For breeding purposes, significant variations
in membrane thermostability among genotypes could be used to
improve selection (Hemantaranjan et al., 2014).

In wheat grown under high temperatures (45◦C for 2 h),
genotypes (Raj4037, PBW373) with high CMT (58.20, 55.43)
during grain filling performed better than those (Raj4083,
DBW16, PBW550) with low membrane thermostability
(48.15, 50, 51.96). Under controlled conditions, membrane
thermostability was maximum in WH1021 (64.13) and
minimum in DBW16 (51.11) (Gupta et al., 2013). Similarly,
CMT was markedly higher in heat-tolerant (56.83%) than
heat-sensitive (31.43%) wheat genotypes during grain filling.
Based on CMT, Bala and Sikder (2017) identified heat-tolerant
wheat genotypes BAW-1143, BARI Gom-25, BARI Gom-
26, and Prodip. At the seedling stage in wheat, CMT had a
positive correlation with grain yield, grain weight (Saadalla
et al., 1990), and biomass (Blum et al., 2001), indicating the
effectiveness of this trait for assessing heat tolerance. In rice at
40◦C, thermostability was closely related to crop yield potential
(Maavimani and Saraswathi, 2014). In a comparative study
of rice and maize grown under controlled high temperatures
(40/35◦C and 45/40◦C), the rice genotypes (PR116, PR118)
had greater electrolyte leakage (27.4–40.2%) than the maize
genotypes (PMH1, PMH2) (19.2–26.2%) (Kumar et al., 2012).
Similarly, among three rice cultivars, F60 and F733 were
more heat-susceptible than F473 when grown at 40◦C, with
greater electrolyte leakage (20 and 15%) (Sanchez-Reinoso
et al., 2014). Likewise, Yadav et al. (2014) used CMT as an
effective screening parameters for selecting heat tolerant
lines in Pearl millet. From the same study, the authors also
identified H77/29-2 × CVJ-2-5-3-1-3 hybrid as heat tolerance
based on seedling thermotolerance index. Under combined
stresses (drought-42–45% of irrigated conditions) and heat

(> 32/20◦C), the drought tolerant chickpea genotypes were
found to tolerate the two stresses more effectively than heat
tolerant genotypes. For instance, genotypes ICC1356 (drought-
tolerant) showed less damage to membranes than genotype
ICC3776 (drought-sensitive), when subjected to both the stresses
(Awasthi et al., 2017).

In legumes, a few studies have identified heat-tolerant
and heat-sensitive genotypes. Based on the membrane
stability test, chickpea was most sensitive to heat stress,
relative to other legumes such as pigeon pea, groundnut, and
soybean (Devasirvatham et al., 2012). Contrasting chickpea
genotypes exposed to high temperatures (40/30◦C and 45/35◦C)
varied markedly, with heat-tolerant genotypes (ICCV07110,
ICCV92944) showing less membrane damage (22.6, 20.6%)
than heat-sensitive genotypes (ICC14183, ICC5912) (30.4,
33.3%) (Kumar et al., 2013). A similar test conducted at
37/27◦C reported up to 25% electrolyte leakage in chickpea
seedlings (Pareek et al., 2019). A heat-tolerant genotype
(ICC1205) had low electrolyte leakage (13–14%), indicating
better cell membrane integrity. Screening of cowpea genotypes
exposed to heat stress also revealed less leaf electrolyte leakage
(35.8–36.7%) in heat-tolerant genotypes (H36, H8-9, DLS99)
during flowering and pod set than heat-susceptible genotypes
(CB5, CB3, DLS127) (66.2–79%) (Ismail and Hall, 1999). In
lentil, heat tolerance was related to less membrane damage
(<20%) in heat-tolerant genotypes (IG2507, IG3263, IG3745,
IG4258, and FLIP2009) than heat-sensitive genotypes (IG2821,
IG2849, IG4242, IG3973, IG3964) (> 30%) at 38/28◦C and
40/30◦C in a controlled environment (Sita et al., 2017a). In
another study, lentil genotypes (Ranjan, Moitree, 14-4-1,
IC201710, and IC208329) were reported as heat-tolerant based
on cell membrane stability under field and growth chamber
studies at 34◦C (Choudhury et al., 2012). Barghi et al. (2013)
reported the highest CMT in genotype Qazvin (98.13%)
and regarded it as heat-tolerant, whereas genotype B4400
(33.19%) had the lowest CMT (heat-sensitive). Under high
temperature (38/35◦C), screening of 15 Medicago cultivars
for CMT identified Bara310SC and WL712 as heat-tolerant
(24.07%) and heat-sensitive (53.2%) cultivars, respectively,
having minimum and maximum electrolyte leakage, respectively
(Wassie et al., 2019).

Cotton displays heat sensitivity at various growth stages.
Cotton genotypes grown in a controlled environment under
optimal conditions (35/21 ± 2◦C) for 30 days and then exposed
to high temperature (46/30 ± 2◦C) at the reproductive stage, by
gradually increasing temperature by 2◦C per day, were screened
for CMT—cultivars FH-900, MNH-552, CRIS-19, and Karishma
emerged as relatively heat-tolerant (thermostable) and FH-634,
CIM-448, HR109-RT, and CIM-443 as heat-susceptible (Rahman
et al., 2004). In a similar study at > 32◦C, cotton genotypes
B557 and NIAB-78 showed minimum electrolyte leakage (<40%)
and were regarded as tolerant compared to genotypes MNH-
554, FH682 and FH900 which showed maximum electrolyte
leakage (>50%) (Rana et al., 2011). Abro et al. (2015) reported
cotton varieties NIA-80, NIA-81, NIA-83, NIA-84, NIA-M-30,
NIA-M31, NIA-HM-48, NIA-HM-327, NIA-H-32, NIA-HM-
2-1, NIA-Bt1, NIA-Bt2, NIA-Perkh, CRIS-342, CRIS-134, and
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NIAB-111 and check variety Sadori as heat-tolerant using CMT
as a screening parameter in both heat-stressed (44◦C) and
non-stressed (32◦C) temperature regimes. Other similar studies
where cotton genotypes were differentiated by CMT into heat-
tolerant and heat-sensitive were conducted by Karademir et al.
(2012); 15 genotypes; > 40◦C) and Singh K. et al. (2018); 37
genotypes; > 40◦C).

Likewise, in cucumber, contrasting genotypes were identified
based on membrane stability under heat stress (40/32◦C)—L3466
and Desi cucumber as heat-tolerant and Suyo Long and Poinsett
as heat-sensitive (Ali et al., 2019). In tomato, 2 h exposure to high
temperature (45◦C) altered CMT more in heat-sensitive variety
Campbell-28 (> 45%) than heat-tolerant variety Nagcarlang
(<20%) (Camejo et al., 2005). In another study on 44 tomato
lines, exposure to 44◦C for 4 h after 1 week of vegetative stage
increased electrolyte leakage in heat-sensitive genotypes (32.92
µmhos/cm) more than heat-tolerant genotypes (22.2 µmhos/cm)
(Hameed et al., 2015). Similar studies have screened tomato
genotypes for heat tolerance using membrane thermostability
(Sangu et al., 2015; Alsamir et al., 2017). Thus, CMT is an effective
trait for identifying stable and heat-tolerant genotypes.

Canopy Temperature Depression
At the whole crop level, leaf temperatures decrease below
air temperature when water evaporates. Canopy temperature
depression (CTD)—the difference between air temperature (Ta)
and canopy temperature (Tc)—acts as an indirect measure of
transpiration (Reynolds et al., 2001) and plant water status (Araus
et al., 2003). A positive CTD value is observed when the canopy
is cooler than the air (CTD = Ta–Tc) (Balota et al., 2008). CTD
is a heritable trait that can be measured on cloudless days with
an infrared thermometer (Reynolds et al., 1998). Plants transpire
through open stomata to maintain canopy temperature in a
metabolically comfortable range. Under stress, plants close their
stomata for some period, which increases the canopy temperature
(Kashiwagi et al., 2008). Canopy temperature is affected by soil
water status, wind, evapotranspiration, cloudiness, conduction
systems, plant metabolism, air temperature, relative humidity,
and continuous radiation (Reynolds et al., 2001). To assess heat
tolerance, many traits can be used as selection criteria, but,
CTD is considered to be best as a single reading integrates
scores of leaves (Reynolds et al., 1994, 1998; Fischer et al.,
1998). Yield potential and the metabolic fitness of crop plants
under specific environmental conditions are determined by
CTD (Kumari et al., 2013). A study on barley revealed a
strong link between epicuticular leaf wax QTL and CTD, and
that wax load influences plant canopy temperature (Awika
et al., 2017). Based on phenotypic variation, CTD can act
as a desirable criterion for heat-tolerant genotype selection
(Mason and Singh, 2014). CTD is a mechanism of heat escape
and has a strong genetic correlation with yield (Reynolds
et al., 2001). Heat-tolerant genotypes of wheat had higher CTD
than heat-sensitive genotypes, indicating their greater ability to
maintain a cooler canopy environment (Gare et al., 2018). In
another study, the CTD value in wheat was correlated with
heat resilience (Pradhan et al., 2012). In 102 durum wheat
genotypes tested under late-sown conditions, CTD had a strong

positive correlation with days to maturity (Gautam et al., 2015),
confirming that CTD is an effective selection criterion in plant
breeding (Seema et al., 2014). Leaf area having more greenness
and CTD are strongly interrelated in wheat and with grain yield,
grain-filling duration, and biomass (Kumari et al., 2013). Stay-
green genotypes have high CTD values due to transpirational
cooling, resulting in lower canopy temperatures (Reynolds et al.,
1994; Fischer et al., 1998). In stay-green lines, low CTD values
delayed senescence (Kumari et al., 2013). Leaf width in wheat
had a high correlation with canopy temperature under heat
stress (Mohammadi et al., 2012). In durum wheat, CTD had a
positive correlation with biological yield and spike number/m2

at first spikelet emergence and 50% inflorescence stages. At
three growth stages (first spikelet emergence, 50% inflorescence,
and completion of anthesis), harvest index had a negative
correlation with CTD (Bahar et al., 2008). Screening of Indian
and CIMMYT wheat germplasm for the stay-green trait and
CTD revealed higher CTD values in the stay-green genotypes
due to transpirational cooling and lower canopy temperatures
(Kumari et al., 2013). In wheat (Triticum aestivum), heat stress
reduced CTD by 39.7% at the grain-filling stage (Joshi et al.,
2016). Timely sown wheat had higher CTD than late-sown wheat
(Saxena et al., 2016), with genotypes HD2932, HD2864, HD3095,
HI8703, and HUW234 identified as heat-tolerant due to their
higher net photosynthesis, relative water content, membrane
stability index and CTD than the other tested genotypes (Saxena
et al., 2016). Additional management factors, such as the use
of farmyard manure and NPK, improved physiological traits
(light interception, CTD, and flag leaf chlorophyll content) in
wheat (Badaruddin et al., 1999). In seven rice varieties, CTD was
closely related to stomatal conductance and leaf photosynthetic
rate (Takai et al., 2010). Rice varieties Takanari and TUAT1-5-
6a had lower leaf temperatures and higher stomatal conductance
and leaf photosynthetic rates than the other varieties tested under
cloudy conditions. Infrared thermography, as a simple method
of evaluating varietal differences in stomatal conductance via
CTD, is feasible even under cloudy conditions. In chickpea,
water potential, osmotic pressure, relative leaf water content,
and seed yield had a negative correlation with CTD (Sharma
D. K. et al., 2015). Heat-tolerant chickpea genotypes ICCVs
95311, 98902, 07109, and 92944 had higher CTD than sensitive
genotypes ICCVs 07116, 07117, and 14592, which had negative
CTD values (Devasirvatham et al., 2015). In mungbean, CTD
had a significant positive correlation with seed yield, and a
negative correlation with root traits, such as lateral branch
number and dry root weight (Raina et al., 2019). Greater
pod number and pod to node ratio was associated with CTD
in pea (Tafesse et al., 2019). In cotton, the involvement of
CTD in heat tolerance was indicated (Cornish et al., 1991),
with additive, dominance, and epistatic components involved
in its inheritance (Khan et al., 2014). In another study on
cotton, crop development stage had no effect on CTD, which
was significantly correlated with seed yield (Karademir et al.,
2018). Canopy temperature in cotton increased under combined
heat and drought stress treatment (>36◦C and 35% irrigation)
(Carmo-Silva et al., 2012), as compared to control. Low canopy
temperature was noticed in cotton cultivar Pima S-6 (S6),
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which was reported as tolerant, unlike high canopy temperature
in Monseratt Sea Island (MS), termed as sensitive, under
combined stress.

Stomatal Conductance
Under heat stress, regulating the transpirational mechanisms is
a possible strategy for selecting heat-tolerant varieties (Condon
et al., 2007). As leaves open their stomata, the rate of gaseous
exchange may create differences in stomatal behavior that can
be recorded by a leaf porometer (Chandra et al., 2017; Priya
et al., 2018). Fully opened stomata increase the diffusion of CO2
and, at the same time, increase transpiration and photosynthetic
efficiency in wheat (Condon et al., 2007). Consequently, stomatal
regulation is an important factor that governs plant growth and
survival. Therefore, stomatal conductance (gS) is a useful trait
for determining photosynthetic and transpiration rates. Stomatal
conductance increases with rising temperature (Urban et al.,
2017). Crawford et al. (2012) suggested that plants acclimatize to
high temperatures by evaporating more water, thereby keeping
their canopies cool despite the presence of fewer stomata.
Similarly, semi-dwarf spring wheat cultivars had strong positive
correlations between gS and photosynthetic rate, cooler canopies
and yield (Fischer et al., 1998). Heat-tolerant advanced cotton
lines (e.g., Pima S-6) developed by Cornish et al. (1991) had
higher stomatal conductance and photosynthetic rates under heat
stress, which was possibly due to cooling effect of plants through
stomata. The stomatal conductance of 50 cotton genotypes was
measured under high temperature (45–50◦C/20–30◦C day/night)
in a glasshouse, and identified five heat-tolerant genotypes
(NIAB-111/2, BH-160, MNH-554, N-313, BH-163, Mutant-94)
(Khan et al., 2008). Similarly, 41 wheat lines of different origin
were screened for higher gS, which was associated with heat
tolerance (36/30◦C for 1 week) (Sharma K. D. et al., 2015). Heat-
tolerant genotypes with high gS also had higher photosynthetic
efficiency under severe heat stress; therefore, this trait acts as
a useful genetic tool for developing heat tolerance. Stomatal
conductance increased in heat-stressed tomato plants, relative
to control conditions (Camejo et al., 2005). In another study,
heat-tolerant tomato genotypes maintained higher stomatal
conductance under stressed conditions (36/28◦C), relative to the
control (26/18◦C). Further, heat stress severely affected stomatal
anatomy and stomatal number in heat-sensitive genotypes,
relative to heat-tolerant genotypes (Zhou et al., 2015).

Multiple screening parameters, including stomatal
conductance, were used to screen 15 common bean genotypes
for heat tolerance in a greenhouse chamber (Traub et al., 2018).
Five genotypes—SB761, SB776, SB781, Jaguar, and TB1—were
screened at three temperature regimes (35/30, 40/35, 45/40◦C).
Stomatal conductance increased with increasing temperature
until 40/35◦C—after which, it declined—genotype TB1 had
the highest values for stomatal conductance. In mungbean
genotypes, gS increased up to 40/30◦C but declined significantly
under heat stress at 43/30◦C and 45/32◦C, contributing to a
rise in leaf temperature (Kaur et al., 2015). In another study on
mungbean, gS was used to differentiate between heat-tolerant
and heat-sensitive genotypes (Sharma et al., 2016). Using a
similar approach, Sita et al. (2017a) identified heat-tolerant lentil

genotypes (IG2507, IG3263, IG3745, IG4258, and FLIP2009)
on the basis of stomatal conductance, with gS increasing with
increasing temperature up to 38/28◦C in heat-tolerant genotypes.
Heat-tolerant genotypes also had higher gS values under late-
sown than normal-sown conditions; in contrast, heat-sensitive
genotypes were unable to maintain higher gS under heat stress. In
chickpea, heat-tolerant (ICC1356, ICC15614) and heat-sensitive
genotypes (ICC4567, ICC5912) genotypes were selected on
the basis of leaf and seed traits (Awasthi et al., 2014)—heat-
tolerant genotypes maintained higher stomatal conductance and
photosynthetic function than heat-sensitive genotypes under
similar conditions and produced more seed yield. Evaluation of
three varieties of tomato (Nagcarlang, Hybrid 61 and Moskvich)
against combined heat and drought stresses (25–45◦C; 20%
irrigation; 2 days), revealed that genotype Hybrid 61 performed
better by maintaining higher stomatal conductance and having
lower leaf temperature than other two varieties (Nankishore
and Farrell, 2016), suggesting this trait to be useful even under
stress combinations.

Carbon Isotope Discrimination
(CID,113C)
Carbon isotope discrimination has become an important tool
for interpreting photosynthetic rate and water use efficiency
(WUE) in plant species (Sheshshayee et al., 2003; Bindumadhava
et al., 2011). 12C (98.89%) and 13C (1.11%) are the two stable
carbon isotopes (non-radioactive) in the global carbon pool.
Small but significant amount of 13C (heavy isotope) incorporated
in the organic and inorganic matter during CO2 fixation by
carboxylating enzymes. These small differences in 13C abundance
are expressed as Carbon isotope ratio and analyzed with
isotope ratio mass spectrometer (IRMS) (Farquhar et al., 1989).
Composition of carbon isotopes in plant tissue samples show
photosynthetic ability governed by RuBisCO in mesophyll tissues
(Bindumadhava et al., 2005, 2011, Impa et al., 2005). Lower
values of CID represent lower stomatal conductance (limited
diffusion of CO2) and vice versa (Bindumadhava et al., 2011).
Further, under high temperature, leaf water status declines due
to reduced root hydraulic conductivity, resulting in stomatal
closure (Hairat and Khurana, 2016). Therefore, lower CID
values at high temperature can be ascribed to indicate declined
root absorption and stomatal closure. In barley, carbon-13
discrimination is a useful indicator of high yield (Craufurd et al.,
1999), and could be a sound screening parameter for identifying
heat-tolerant genotypes. Heat-tolerant (C306, K7903) and heat-
sensitive (HD2329) wheat genotypes were identified from CID
values and other physiological traits. The heat-tolerant genotypes
had higher mean CID values at high temperature (42◦C) than the
heat-sensitive genotypes. This study demonstrated that the heat-
tolerant genotype maintained stomatal opening by accumulating
osmolytes, such as proline, to maintain osmotic pressure for
water absorption (Hairat and Khurana, 2016).

Photosynthetic Pigments
Heat stress negatively affects photosynthesis by decreasing leaf
pigment content and damaging leaf ultrastructure. Chloroplasts
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play a vital role in photosynthesis as one of the most heat-
sensitive organelles (Krause and Santarius, 1975; Ogweno et al.,
2008; Abdelmageed and Gruda, 2009). Decreases in total
chlorophyll content and changes in the chlorophyll a/b ratio
have been correlated with reductions in photosynthesis during
heat stress, due to reduced “antenna (pigment units)” size and
thus reduced light-harvesting (Blum, 1986; Harding et al., 1990;
Shanmugam et al., 2013). The stay-green (SGR) trait, or delayed
leaf senescence, is a crucial trait that allows plants to retain
leaves in an active photosynthetic state under high temperature
to maintain the assimilation process and increase crop yield
(Gregersen et al., 2013; Kumari et al., 2013). Stay-green rice
genotypes exhibited high photosynthetic activities under heat
stress, resulting in high yields (Jagadish et al., 2015).

Chlorophyll content is an integrative trait that is correlated
with stomatal conductance, photosynthetic rate, and
transpiration (Del Blanco et al., 2000; Netto et al., 2005),
and considered a good criterion for screening for heat-
stress tolerance. In the current era of global climate change,
introduction of the SGR trait is vital for developing heat-
resistant cultivars (Kumari et al., 2013). The SGR trait has
been linked to increased yield production in many crops under
heat stress, including wheat, barley, rice, maize, and cowpea
(Kumari et al., 2007; Borrell et al., 2014; Kobata et al., 2015;
Gous et al., 2016; Abdelrahman et al., 2017). The stay-green
trait has helped to identify heat-tolerant wheat cultivars that
maintain yields at high temperatures (Vijayalakshmi et al.,
2010). A significant correlation was detected between heat
tolerance and the stay-green trait in 936 elite wheat genotypes
(Kumari et al., 2007), suggesting that delayed senescence
is an essential selection criterion for heat adaptability. The
stay-green characteristic of wheat cultivar Mairaj-2008 was
correlated with higher grain yield under heat stress than other
lines that lacked the stay-green trait (Nawaz et al., 2013).
Genotypes with delayed leaf senescence or stay-green traits
have been associated with thermotolerance, due to the longer
grain-filling period and thus higher yields, relative to genotypes
lacking these traits (Reynolds et al., 1997; Vijayalakshmi et al.,
2010). Delayed leaf senescence enhances the transpiration use
efficiency, resulting in higher yields. Thus, the stay-green trait is
beneficial for retaining active photosynthesis under heat stress
(Bavei et al., 2011).

The stay-green trait was used to identify three
promising heat-tolerant wheat genotypes [CB-
367 (BB#2/PT//CC/INIA/3/ALD“S”), CB-333 (WL
711/3/KAL/BB//ALD “S”), and CB-335 (WL711/CROW
“S”//ALD#1/CMH 77A] based on maximum grain development
and survival under heat stress (32◦C for 4 weeks) (Rehman et al.,
2009). Two recombinant inbred lines (RILs) of wheat, SB062
and SB003, were exposed to 7-day heat shocks (32.7/21.6◦C
day/night) in a growth chamber during the vegetative or
reproductive stage. SB062 maintained leaf greenness for
longer than SB003 under heat stress and identified as heat-
tolerant; in addition, delayed leaf senescence appeared to
play a role in maintaining grain size in SB062 under heat
stress (Ullah and Chenu, 2019). Lu et al. (1997) suggested
that higher stomatal conductance and photosynthetic rate are
functionally important for higher heat tolerance and yields.

A high temperature (38/28◦C) treatment for 6 days under
controlled conditions in a greenhouse modified chlorophyll
content in two contrasting maize genotypes; DTPYC9F119
maintained higher leaf chlorophyll content (identified as heat-
stress tolerant) than K64R (identified as heat-stress susceptible)
(Debnath et al., 2016; Singh et al., 2020). In another study,
12 barley genotypes were exposed to heat stress (> 40◦C) for
107–119 days in the field—genotypes L3, L6, L8, and L10 had
longer stay-green duration and higher yields under heat stress
than the other genotypes. Fifteen cotton genotypes were screened
for thermotolerance (40◦C) in the field—genotypes AGC375
and AGC208 were identified as heat-tolerant based on their
chlorophyll content (Karademir et al., 2012). In a similar study,
cotton genotype Sicot 53 had higher thermotolerance than Sicala
45 (Cottee et al., 2007). In rice, cultivar N44 was identified as
heat-tolerant (exposed to 38◦C for 25 days in the field during the
reproductive stage), with its higher chlorophyll content under
heat stress than N-22 (Bahuguna et al., 2015).

Chlorophyll content was used to screen for heat tolerance
in several lentil genotypes after exposure to heat stress
(>32/20◦C) in a growth chamber at the vegetative and
reproductive stage. Heat-tolerant genotypes IG3263 and IG2507
had more chlorophyll than heat-sensitive genotypes IG4242
and IG3964, which was positively correlated with yield (Sita
et al., 2017a). In chickpea, genotypes were selected for heat
tolerance based on the SGR trait; plants were exposed to gradual
increasing temperatures (2◦C per day) from 27/18◦C to 42/25◦C
day/night for 8 days in a growth chamber; at which time,
genotype ICC16374 (heat-sensitive) had lower leaf chlorophyll
content than JG14 (heat-tolerant) (Parankusam et al., 2017).
Likewise, Kaushal et al. (2013) identified two heat-tolerant
(ICC15614, ICCV92944) and two heat-sensitive (ICC10685,
ICC5912) chickpea genotypes based on chlorophyll content,
after exposure to heat stress (>32◦C/20◦C) in the field during
reproductive development. The stay-green trait could be used
as a morphological indicator for thermotolerance in tomato, as
in wheat (Sharma D. K. et al., 2015; Zhou et al., 2015). The
stay-green trait contributes to high yield in tomato exposed
to heat stress (Zhou et al., 2015). Tomato’s ability to stay-
green and maintain photosynthesis during heat stress at different
developmental stages, especially anthesis, could be vital for
reproductive growth and yield (Zhou et al., 2017). Heat-sensitive
tomato genotypes do not stay-green under heat stress due to
the decline in chlorophyll and carotenoid contents, and show
early chlorosis and withered leaves (Vijayalakshmi et al., 2010;
Zhou et al., 2015).

Chlorophyll Fluorescence
Chlorophyll fluorescence (Fv/Fm ratio) is a relatively sensitive
indicator of direct or indirect effects of abiotic stress on
photosynthesis (Schreiber and Bilger, 1993). The relationships
between primary photosynthetic reactions and chlorophyll
fluorescence are crucial as they provide information on the plant’s
photosynthetic capability and its acclimation capacity under
stressful environmental conditions (Lichtenthaler, 1987; Kalaji
et al., 2018). Of the photosynthetic apparatus, photosystem II
(PSII) is the most heat-labile cell structure (Vacha et al., 2007).
As damage to PSII is often the first response when plants are
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subjected to heat stress, PSII response studies can reveal the
primary effects of heat stress on plants (Mathur et al., 2011;
Van der Tol et al., 2014); measuring chlorophyll a fluorescence
is an effective and non-invasive technique to identify damage
to PSII efficiency (Baker and Rosenqvist, 2004; Baker, 2008).
The ratio between variable fluorescence (Fv) and maximum
fluorescence (Fm), or Fv/Fm, reflects the maximum quantum
efficiency of PSII (Butler, 1978), and is one of the most heat-
affected fluorescence parameters. A decline in Fv/Fm is frequently
observed when plants are subjected to abiotic stress, including
heat (Willits and Peet, 2001; Molina-Bravo et al., 2011; Sharma
et al., 2012). There is a negative linear correlation between
Fv/Fm and the maximum quantum yield of photosynthesis, when
measured as O2 evolution (Demmig and Björkman, 1987; Kao
and Forseth, 1992) and CO2 fixation (Ogren and Sjostrom, 1990).
Screening methodologies using chlorophyll fluorescence to detect
and quantify damage in photosystem II (PSII) and thylakoid
membranes in response to temperature stress have been used in
several cereal crops, including barley (Rizza et al., 2011), wheat
(Balouchi, 2010), maize (Sinsawat et al., 2004), legume crops
[chickpea, groundnut, pigeon pea (Cajnus cajan), and soybean]
(Srinivasan et al., 1996; Herzog and Chai-Arree, 2012), and
horticultural crops, including strawberry (Fragaria ananassa)
(Ledesma et al., 2004; Kadir et al., 2006), tomato (Willits and
Peet, 2001), grapes (Vitis vinifera) (Kadir et al., 2007), and various
tropical and subtropical fruits (Yamada et al., 1996; Weng and
Lai, 2005). Therefore, chlorophyll fluorescence is a promising tool
for detecting stress-induced injuries and thermotolerance (Méthy
et al., 1994) but its successful implementation in crop breeding
programs requires careful selection of suitable fluorescence
parameters (Malaspina et al., 2014).

Heat-tolerant wheat lines with tolerance to high temperatures
during grain filling had greater Fv/Fm ratios than heat-sensitive
lines in warmer irrigated environments, which were linked to
higher grain yield (Shefazadeh et al., 2012). The physiological
state of thylakoid membranes, as determined by chlorophyll a
fluorescence, identified heat-tolerant wheat cultivars with high
chlorophyll fluorescence (Ristic et al., 2007). Various wheat lines
were exposed to heat stress for 3 days at 40◦C in controlled
conditions; the lines having high chlorophyll fluorescence (Fv/Fm
0.836)—830, 1313, 1039, 1223—were less sensitive to heat in
terms of growth and photosynthesis than the other lines, and
were identified as heat-tolerant (Sharma et al., 2014). Similarly,
genotypic variation for chlorophyll fluorescence parameters
exists in rice under heat stress (29◦C for 25 days at anthesis) in
a growth chamber; N22 genotype maintained high Fv/Fm (0.75)
under heat stress, and was identified as heat-tolerant, relative to
the low Fv/Fm (0.70) in Vandana (Sailaja et al., 2015). Modified
chlorophyll fluorescence imaging was used to screen 20 wild
barley (Hordeum spontaneum) genotypes exposed to heat stress
(45◦C, 1 h) in growth chambers, and identified HOR10478 as
the most heat-sensitive and HOR12818 as the most heat-tolerant
genotypes (Jedmowski and Brüggemann, 2015). Oukarroum et al.
(2016) also differentiated heat tolerance in 10 varieties of barley.
After 2 weeks of growth, detached leaves were exposed to a short-
term heat treatment at 45◦C for 10 min in a growth chamber,
which decreased chlorophyll fluorescence; notably, varieties Ig,

Im, and Tz had high chlorophyll fluorescence (heat-tolerant) and
Ma, Ra and Igr had low chlorophyll fluorescence (heat-sensitive).

In many legumes, chlorophyll fluorescence has been used
to identify genotypes that tolerate heat stress. In lentil,
photosynthetic efficiency was measured as PSII function (Fv/Fm
ratio) in a natural environment by exposing plants to heat
stress (above 32/20◦C) during the reproductive stage. Heat-
tolerant genotypes—IG2507, IG3263, IG3297, IG3312, IG3327,
IG3546, IG3330, IG3745, IG4258, and FLIP2009—maintained
high chlorophyll fluorescence (Fv/Fm 0.71) under heat stress,
relative to heat-sensitive genotypes—IG2821, IG2849, IG4242,
IG3973, IG3964—which had the lowest Fv/Fm values (0.58) (Sita
et al., 2017a). Nine common bean lines were measured for
changes in chlorophyll fluorescence under heat stress at flowering
(2 h at 45◦C) in a greenhouse; thermotolerant lines 83201007
and RRR46 had higher Fv/Fm values under heat stress than the
heat-sensitive line Secuntsa (Petkova et al., 2009). In another
study, 12 varieties and lines of common bean were exposed to
42◦C in the field during the reproductive period; two genotypes
(Ranit and Nerine) maintained Fv/Fm values at 42◦C, relative
to the controls at 26◦C, and were considered heat-tolerant.
These two genotypes also showed good productivity and quality
and can be used as parental lines in bean breeding programs
(Petkova et al., 2007). Likewise, 41 mungbean lines were grown
outdoors and exposed to high temperatures (>40/28◦C) during
the reproductive stage; several promising heat-tolerant lines
(EC693358, EC693357, EC693369, Harsha, and ML1299) were
identified, with high Fv/Fm ratios (0.73–0.75 units) compared to
sensitive lines (0.61–0.67 units), which would not only serve as
useful donor/s for breeding programs, but also as suitable base
plant source to gain insight into heat-stress-induced effects in
cell metabolism (Sharma et al., 2016). In chickpea, heat stress
(>30◦C) in the field during the reproductive stage reduced Fv/Fm
more (0.48, 0.41) in two heat-sensitive genotypes ICC10685 and
ICC5912, than in two heat-tolerant genotypes ICC15614 and
ICCV92944 (0.64, 0.60) (Kaushal et al., 2013; Awasthi et al.,
2014). A field experiment conducted in two winter seasons at
three locations with known differences in temperature in NE
South Africa, involving four chickpea genotypes, showed. that
two genotypes, which were tolerant to heat stress had chlorophyll
fluorescence (Fv/Fm) of 0.83–0.85 at the warmer site, while the
two sensitive genotypes showed lower Fv/Fm of 0.78–0.80; these
values correlated positively with grain yield. The two tolerant
genotypes had higher photosynthetic rates, starch, sucrose and
grain yield than the sensitive genotypes at the warmer site.
The observation revealed that chlorophyll fluorescence and leaf
carbohydrates are suitable tools for selection of heat tolerant
chickpea genotypes under field conditions (Makonya et al., 2019).
Screening of 15 alfalfa (Medicago sativa L.) genotypes by exposing
seedlings to 38/35◦C day/night for 7 days in a growth chamber
identified Bara310SC (Fv/Fm 0.79) and WL712 (Fv/Fm < 0.79)
as heat-tolerant and heat-sensitive cultivars, respectively (Wassie
et al., 2019), showing that Fv/Fm is an effective tool for
phenotyping contrasting genotypes for heat tolerance.

The heat susceptibilities of 67 tomato genotypes were
evaluated in a climate chamber—the genotypes with higher
Fv/Fm under heat stress (36/28◦C for 4 days or 40◦C for 7 h),
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maintained their physiological status, relative to genotypes with
lower Fv/Fm (Zhou et al., 2015). The two genotypes with the
highest Fv/Fm ratios (heat-tolerant group; T1, T2; 0.82, 0.80 units)
and two with the lowest Fv/Fm ratios (heat-sensitive group; S1
and S2; 0.74, 0.77 units) were selected for further study (Zhou
et al., 2015). Another study screened wild genotypes and cultivars
of tomato in a growth chamber at 33◦C—wild tomato varieties
Pe and Pr1 had the highest temperature stress tolerance with
high Fv/Fm ratios (0.56, 0.58), while the cultivated species were
more sensitive to temperature stress with lower Fv/Fm ratios
(0. 28, 0.38) (Zhou et al., 2018).

Chlorophyll fluorescence was used to screen cotton
landraces—6-week-old cotton plants were subjected to heat
stress at 45◦C in a growth chamber to determine thermotolerance
in terms of photosynthetic ability, independent of agronomic
yield and productivity. Three genotypes (TX2287, TX2285,
and TX761) maintained high photosynthetic efficiency (Fv/Fm
0.57), relative to sensitive genotype (Fv/Fm 0.46) (Wu et al.,
2014). In another growth chamber study, a commercial set
of eight cotton genotypes was screened for heat tolerance by
subjecting to heat stress (>35◦C); four genotypes (SG215BR,
ST474, and DP444BG/RR) had relatively high Fv/Fm indicating
that they suffered less from stress, while Sphinx and Acala Riata
had low Fv/Fm, indicating temperature sensitivity (Bibi et al.,
2004). In a related study, screening of 15 cotton genotypes
for thermotolerance (40◦C) in the field identified genotypes
AGC375 and AGC208 as heat-tolerant, based on their superior
chlorophyll fluorescence (Karademir et al., 2012). Imposing
combined drought and heat stress significantly affected
the photosynthetic efficiency of chickpea (Cicer arietinum)
genotypes, in a study conducted in outdoor conditions at two
different sowing times [November (<32–20◦C at the time of
reproductive stage; control) and in February (>32–20◦C at
the time of reproductive stage; heat stress during pod filling)],
while drought was applied during both sowing times during pod
filling (at ∼75% podding) by withholding water until maturity.
The photosynthetic efficiency (Fv/Fm) of the leaves decreased
more in plants subjected to drought stress (54–74%) than to
heat stress alone (9–46%) and the combined heat + drought
stress treatment showed the greatest reduction in photosynthetic
efficiency (68–83%), with the smallest reduction occurring in the
drought-tolerant genotype (ICC8950), compared to drought-and
heat sensitive genotypes (Awasthi et al., 2017).

Photosynthetic Rate
Heat stress affects plant characteristics such as the stay-green
trait, chlorophyll content, and chlorophyll fluorescence, which
influences the photosynthetic rate (Sharkey, 2005). Hence,
photosynthetic rate can be used as a screening parameter for the
selection of heat-tolerant genotypes. Variation in photosynthetic
rate among plant species in response to heat stress has
been well-documented. For example, a heat-shock treatment
(45◦C for 2 h at the fourth true leaf stage) reduced the net
photosynthetic rate (Pn) of two tomato cultivars, more so
in Campbell-28 (heat-sensitive) than wild Nagcarlang (heat-
tolerant) (Camejo et al., 2005). High temperature deactivates
RuBisCo, which could be involved in reducing photosynthetic

rate (Sharkey, 2005). Another study on tomato compared the Pn
of one cultivated (Ly from Solanum lycopersicum) and six wild
(Ha from S. habrochaites, Pe from S. pennellii, Pi1 and Pi2 from
S. pimpinellifolium, Pr1 and Pr2 from S. peruvianum) genotypes
grown at high temperature (33◦C) in a growth chamber—Ly,
Ha, Pi1, and Pi2 had lower Pn than the control, while Pe,
Pr1, and Pr2 showed higher Pn indicating their heat tolerance
(Zhou et al., 2018). Plants of the tomato cultivar “Liaoyuanduoli”
grown in greenhouse exposed to heat stress (35◦C after 15
DAS led to a significant change in photosynthetic apparatus as
damage of chloroplast membrane and at the same time, the
thylakoids loosely distributed with lesser grana, thus, changed
chloroplast ultrastructure might have declined the Pn (Zhang
et al., 2014). In rice, heat tolerant genotype (N22) could maintain
photosynthetic activity for a longer time after anthesis and thus
could produce higher grain weights, compared to heat-sensitive
genotypes (IR20, IR53, IR46) (Gesch et al., 2003).

Soybean cultivars (IA3023 and KS4694) and PI lines
(PI393540 and PI588026A) expressed heat tolerance and
susceptibility with high and low Pn, respectively (Djanaguiraman
et al., 2019). The soybean cultivars had less thylakoid membrane
damage than the PI lines. In an earlier study on soybean
genotype K03−2897, high-temperature stress (38/28◦C) for 14
days at the flowering stage significantly decreased leaf Pn,
due to anatomical and structural changes (increased thickness
of palisade and spongy layers and lower epidermis) in cells
and cell organelles, particularly damage to chloroplasts and
mitochondria (Djanaguiraman and Prasad, 2010). Two heat-
tolerant chickpea genotypes (Acc#RR-3, Acc#7) had higher
Pn than two heat-sensitive genotypes (Acc#2, Acc#8) at high
temperature (35/30◦C), which may have been due to increased
RuBisCo activity (Makonya et al., 2019). In another chickpea
study, 56 genotypes were exposed to high temperatures in the
field from the flowering stage to crop maturity (maximum
temperatures 25–40◦C)—the tolerant genotypes (PUSA1103,
PUSA1003, KWR108, BGM408, BG240, PG95333, JG14, BG)
had higher Pn than the sensitive genotypes (ICC1882, PUSA372,
PUSA2024) (Kumar et al., 2017). Similarly, the response of
four chickpea genotypes to a natural temperature gradient in
the field at the flowering stage identified two heat-tolerant
genotypes (Acc#RR-3, Acc#7) with high Pn and two heat-
sensitive genotypes (Acc#2, Acc#8) with lower Pn; these results
were validated in a climate chamber experiment set at 30/25◦C
and 35/30◦C (Makonya et al., 2019). Improvement of heat
stress tolerance by stabilizing PSII system through introducing
IbOr gene in transgenic potato (Goo et al., 2015), sweet potato
(Kang et al., 2017), and in alfalfa (Wang et al., 2015) is worth
mentioning. Heat, drought and their combination limited the
Photosynthetic rate of lentil (Lens culinaris Medikus), particularly
during reproductive growth and seed filling. In recent study eight
lentil genotypes two drought-tolerant (DT; DPL53 and JL1), two
drought-sensitive (DS; ILL 2150 and ILL 4345), two heat-tolerant
(HT; 1G 2507 and 1G 4258) and two heat-sensitive (HS; 1G
3973 and 1G 3964) sown at the normal time (November), at the
time of seed filling (30/20◦C), or sown late (February) to impose
heat stress (> 30/20◦C (day/night) and drought maintained
by water withheld (50% of field capacity) from the start of
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seed filling to maturity. The photosynthetic rate (Pn) decreased
significantly more under drought stress (33.4–56.6%) than heat
stress (13.3–43%), as compared to the control plants. Under the
combined stress, Pn declined more (57–82% reduction), less so
in the heat and drought tolerant genotypes compared to sensitive
(Sehgal et al., 2017).

Sucrose
Leaf photosynthates are largely transported to sink organs
in the form of sucrose, and sucrose synthase (SS) is a key
enzyme for sucrose to enter a variety of metabolic pathways
(Lu et al., 2005). Down-regulation of SS indirectly inhibits
carbohydrate production, eventually reducing yield and quality.
Maintaining sucrose levels is vital during stressed conditions,
which depend on its synthesis and hydrolysis. Heat-stressed
plants had significant reductions in the activity of key enzymes—
sucrose phosphate synthase (SPS) and SS—involved in sucrose
synthesis. The availability of sucrose to reproductive organs is
crucial for sustaining their function (Kaushal et al., 2013). Heat-
tolerant genotypes are expected to stabilize the photosynthetic
process better than heat-sensitive genotypes. Measuring sucrose
concentrations reveals the photosynthetic status of plants under
heat stress (Awasthi et al., 2014). A large core-collection of
chickpea genotypes screened or heat tolerance (32/20◦C) in a
natural environment identified two heat-tolerant (ICC15614,
ICCV92944) and two heat-sensitive (ICC10685, ICC5912)
genotypes. The heat-sensitive genotypes had significantly greater
inhibition of RuBisCo (carbon-fixing enzyme), SPS, and SS than
the heat-tolerant genotypes, and thus produced less sucrose
than the tolerant genotypes (Kaushal et al., 2013). Heat-sensitive
genotypes produced far less leaf sucrose than heat-tolerant
genotypes, which impaired its supply to developing reproductive
organs (flowers, pods, and seeds) in sorghum (Prasad and
Djanaguiraman, 2011), tomato (Li et al., 2012), and chickpea
(Kaushal et al., 2013).

In wheat, heat-tolerant genotypes (PBW343 and C306)
exposed to heat stress (>25◦C) in the field had higher SS
activity and thus higher sucrose contents in grain than heat-
sensitive genotypes (PBW521, PBW522) (Bavita et al., 2012).
Limitations in sucrose supply may disrupt the development and
function of reproductive organs (Prasad and Djanaguiraman,
2011; Snider et al., 2011). In lentil, sucrose production is
vital for leaf and anther function, and has been correlated
with SPS activity in natural high-temperature environments
(> 32/20◦C). Heat-tolerant lentil genotypes (IG2507, IG3263,
IG3297, IG3312, IG3327, IG3546, IG3330, IG3745, IG4258,
and FLIP2009) produced more sucrose in their leaves (65–
73%) and anthers (35–78%), than heat-sensitive genotypes
(IG2821, IG2849, IG4242, IG3973, IG3964), which was associated
with superior reproductive function and nodulation in tolerant
genotypes (Sita et al., 2017a). Thus, heat stress negatively affects
sucrose metabolism due to the inhibition of carbon fixation
and assimilation (Awasthi et al., 2014). Sucrose concentrations
in leaves and anthers and SS and SPS activities declined
significantly in two mungbean genotypes (SML832 and SML668)
exposed to heat stress (>40/25◦C day/night) outdoors and in
a controlled environment, more so in SML668 (heat-tolerant)

than SML832 (heat-susceptible) (Kaur et al., 2015). Tomato
cultivars exposed to heat stress in growth chambers (31/25◦C
day/night) or greenhouses (32/26◦C day/night) revealed four
genotypes (FLA7516, Hazera3018, Hazera3042, and Saladate) as
heat-tolerant with high sucrose contents in the mature pollen
grains, and three genotypes (Grace, NC8288, and Hazera3017) as
heat-sensitive, with 50% less sucrose than the tolerant genotypes
(Firon et al., 2006).

Expression of the sucrose transporter gene, OsSUT1, is
important for maintaining photo-assimilate supply to grains.
In rice exposed to high-temperature stress (31/26◦C) in a
glasshouse, cultivar Genkitsukushi (heat-tolerant) had higher
expression of OsSUT1 in stems than Tsukushiroman (heat-
sensitive), indicating that sugar transport is more effective in
Genkitsukushi than Tsukushiroman under heat stress, which
improves grain quality (Miyazaki et al., 2013).

BIOCHEMICAL TRAITS

Heat sensitivity is linked to the expression of several cellular
molecules, including antioxidants (Wilson et al., 2014), HSPs
(Xu et al., 2011) osmolytes (Bita and Gerats, 2013), and
phytohormones (Sharma et al., 2020). These molecules assist
cells to adapt, repair, and survive in adverse temperature
environments; hence, measuring the extent of their expression
in contrasting genotypes grown under heat stress might reveal
mechanisms regulating the heat response.

Oxidative Stress and Antioxidants
Heat stress negatively affects cellular metabolism due to extensive
ROS production that can severely damage lipids, proteins,
and nucleic acids (Bita and Gerats, 2013). Plants protect
themselves from ROS production by activating enzymatic and
non-enzymatic processes (Bita and Gerats, 2013). The main ROS-
scavenging enzymes are superoxide dismutase (SOD), catalase
(CAT), peroxidase (POD), ascorbate peroxidase (APX), and
glutathione reductase (GR), and the non-enzymatic system
includes ascorbic acid (ASC) and glutathione (GSH) (Suzuki
et al., 2012). Genotypes can be selected based on their enzyme
expression level, with more prominent activities among heat-
tolerant than heat-sensitive genotypes (Kumar et al., 2013).
Genotypes respond differently to heat stress due to variation
in their antioxidant systems. Hence, this trait is useful for
identifying heat-tolerant genotypes.

Two tomato cultivars differing in heat sensitivity (Sufen14,
Jinlingmeiyu) were raised in a greenhouse in optimum
temperature (26/18◦C) and heat-stressed (38/30◦C for 6 days
with 2 days recovery). Jinlingmeiyu had lower activities of
SOD, POD, APX, and MDA (malondialdehyde) and lower
proline content than Sufen14, suggesting the involvement of
these enzymes in imparting heat tolerance in Sufen14 (Zhou
et al., 2019). Categorization of 50 Brassica juncea genotypes
into tolerant, moderately tolerant and susceptible genotypes
after exposure to 45◦C was based on oxidative damage tolerant
genotypes had less lipid peroxidation and higher POD, CAT,
and GR activities than moderately tolerant and susceptible
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genotypes (Wilson et al., 2014). In contrast, Brassica juncea
seedlings grown under optimum (25◦C) and high (45◦C)
temperatures had higher MDA and lipoxygenase (LOX) activities
of antioxidants (SOD, CAT, POX, APX, and GR) in the
thermosensitive genotype (NPJ-119) than the thermotolerant
genotype (NRCDR-02) suggesting variations in the response of
antioxidatnts, which might be stage-or plant-specific (Rani et al.,
2012). Wheat genotypes were differentiated into heat-tolerant
(C306), intermediate heat-tolerant (HD2285), and heat-sensitive
genotype (HD2329) by subjecting them to heat stress (8 and
23 days after anthesis) by delaying the sowing time: C306 had
higher relative water content, ASC, APO, CAT, and SOD and
lower lipid peroxidation and H2O2 content than HD2285 and
HD2329 (Sairam and Srivastava, 2000).

In chickpea plants raised under natural conditions and heat
stressed at 50% flowering (30/20, 35/25, 40/30, and 45/35◦C) in
growth chambers, tolerant genotypes (ICCV07110, ICCV92944)
had lower MDA concentration and H2O2 content than sensitive
genotypes (ICC14183, ICC5912), which was attributed to their
higher activity levels of APX, GR, and ASC (Kumar et al.,
2013). Forty-one mungbean genotypes exposed to heat stress
(>40/28◦C) in the field revealed that heat-tolerant genotypes
(EC693357, EC693358, EC693369, Harsha, and ML1299) suffered
less oxidative damage (1.52–2.0-fold increase MDA; 1.59–1.96-
fold increase H2O2) than sensitive genotypes (2.2–2.4-fold
increase MDA; 2.21–2.93-fold H2O2) (Sharma et al., 2016).
The heat-tolerant genotypes also significantly increased APX
activity (by 1.48–1.77-fold), relative to susceptible genotypes
(1.27–1.37-fold) and similar response was observed for GR
activity. However, heat-tolerant and heat-sensitive genotypes
had similar increases in CAT activity. Similarly, 38 lentil
accessions screened for heat tolerance (>35/20◦C) during the
reproductive stage revealed less oxidative damage (MDA and
H2O2 contents increased) and higher SOD, CAT, APX, and GR
activities—involved in detoxification—in heat-tolerant genotypes
(IG2507, IG3263, IG3745, IG4258 and FLIP2009) than heat-
sensitive genotypes (IG2821, IG2849, IG4242, IG3973, IG3964
(Sita et al., 2017a). Concurrence of heat and drought stress will
do more damage at the biochemical level. Oxidative damage
and antioxidant mechanisms responding toward combined stress
were reported in tomato cultivars. Two cultivars of tomato (CV1;
Sufen14 and CV2; Jinlingmeiyu) were raised in green house
conditions to compare the cultivar difference. Treatment (Heat
stress-38/30◦C, and drought stress-no irrigation) were given to
28 days old seedlings for six days. Significant increase in ROS
such as H2O2 and O2− were reported in both the cultivars than
control (26/18◦C). Their studies showed that CV2 had lower
activity of enzymes-peroxidase, ascrobate peroxidase, superoxide
dismutase, malondialdehyde (MDA) and proline content than
CV1, under combined stress on day 6, clearly depicting cultivar
differences with respect to antioxidant activity (Zhou et al., 2019).

Metabolites
Plant metabolites are low molecular weight compounds
involved in stress tolerance. They play a crucial role in
maintaining the redox homeostasis of cells and stabilizing
cell membranes and proteins (Wahid et al., 2007) through

various intermediate/precursor compounds, such as compatible
solutes, signaling agents, and antioxidants (Kaplan et al.,
2004). Metabolites are categorized into primary and secondary
metabolites. Primary metabolites that are specifically upregulated
in response to abiotic stress are amino acids (proline),
polyamines (spermidine, spermine, putrescine), carbohydrates
(sucrose, hexoses, polyhydric alcohols), and glycine betaine.
Similarly, secondary metabolites include phenolic compounds
(flavonoids, isoflavonoids, anthocyanins), terpenoids (saponins,
tocopherols), and nitrogen-containing metabolites (alkaloids
and glucosinolates) (Rodziewicz et al., 2014). Under heat stress,
plants restructure their metabolites to help the cells to maintain
homeostasis via the production of stress-induced compounds
(Serrano et al., 2019). Activation of heat-shock factors, such as
HSFA2 and HSFA3, increases the level of metabolites such as
galactinol and its derivatives in response to heat stress (Song
et al., 2016). Therefore, metabolites may serve as a useful tool
for selecting heat-tolerant varieties under high-temperature
stress. Comparing heat-tolerant and heat-sensitive genotypes can
identify metabolite markers that are constitutively expressed and
allow selection of superior germplasm.

Seed metabolomic analysis performed on contrasting soybean
genotypes (PI587982A, heat-tolerant; A5279 and DP3478,
heat-sensitive) revealed 25 metabolites that differed between
genotypes, including tocopherol isoforms, ascorbate precursors,
flavonoids, two amino acids, and amino acid derivatives
(Chebrolu et al., 2016). At 36◦C, 10 flavonoids were more
abundant in the seeds of the heat-tolerant genotype than the
heat-sensitive genotypes, along with several tocopherols (major
antioxidants). Moreover, the heat-tolerant genotype had higher
levels of a precursor of L-ascorbic acid biosynthesis—gulono-
1,4-lactone—than the heat-tolerant genotypes. Overexpression
of these stress-induced compounds provides thermotolerance
to soybean seeds, which ultimately perform better in terms
of seed vigor, seed germination, seed weight, and oil content.
Metabolomic analysis of rice spikelets in a heat-tolerant
(N22) and heat-sensitive (Moroberekan) genotype revealed
that N22 accumulated more metabolites than Moroberekan,
including carbohydrates (glucose 6-phosphate, fructose 6-
phosphate, glucose, maltose, and other sugars), compatible
solutes, and amino acids (leucine, isoleucine, and valine). N22
had lower levels of trehalose, sugar phosphatases, malic acid,
and galactaric acid than Moroberekan under heat stress (Li X.
et al., 2015). In wheat, a comparative analysis of metabolites in
transgenic wheat (PC27 and PC5) and its wild type (varying in
heat sensitivity), exposed to heat stress (40◦C for 4 h) during
heading revealed 25 metabolites that were highly expressed
in transgenic wheat, including proline, three sugar alcohols
(inositol, mannitol, and xylitol), pyruvic acid, and other amino
acids (glycine, alanine, serine, valine, and tyrosine) (Qi et al.,
2017). The metabolite profiling approach is an effective way to
accurately screen and select the best-performing genotypes.

Proline is a multifunctional amino acid with diverse roles
in maintaining cellular redox balance by dissipating excess
of reducing potential (Rivero et al., 2004). Proline levels are
upregulated under stress conditions as its biosynthesis is an
adaptive response to reduce excess NADPH produced in response
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to the halt in CO2 fixation in the Calvin cycle due to stomatal
closure (Berry and Bjorkman, 1980). Moreover, under stress
conditions, proline is involved in osmotic adjustment, ROS
scavenging, and as an energy source. Therefore, high proline
contents under high-temperature stress can be used to screen
heat-tolerant genotypes. Twenty wheat genotypes were screened
for heat tolerance by exposing them to 25 or 35◦C, and
measuring proline content and membrane damage (Ahmed and
Hasan, 2011). Heat-tolerant genotypes (Bijoy, Sufi, Kanchan,
Fang 60, BAW 1059, BL 1883, BL 1022, IVT 7, IVT 8,
IVT 9, IVT 10, and BAW 917) had higher proline contents
(>200%) and less membrane damage (<50%) than heat-sensitive
genotypes (Shatabdi, PRODIP, BAW 1064, Gourab, Pavon 76,
Sonara, Kalyansona, and IVT 6). Thirty-five-day-old seedlings
of different cabbage cultivars, including Chinese cabbage and
their hybrids, were exposed to two temperature regimes (25 or
35◦C) at the flower bud stage and assessed for heat tolerance
based on proline contents in stalks, flower buds, and leaves—
heat-tolerant cultivars (Yoshin, Kenshin, and full white) had
higher proline levels than heat-sensitive cultivars (YR Kinshun,
Chihiri 70, and Large leaf) (Hossain et al., 1995). Six cotton
cultivars (Sicala, Acala 1517-88, Molopo, Alpha, Delta Pine
Acala90, and OR19) were tested for genetic variability against
combined heat and drought stress. Stress treatment (Heat
stress; 40◦C without irrigation for 15 days) were imposed on 3
weeks old seedlings. Stress treatment were increased the proline
content in all the genotypes but the accumulation was more
in tolerant genotypes (Alpha, Delta Pine Acala90, and OR19)
compared to sensitive genotypes (Sicala, Acala 1517-88, Molopo)
(De Ronde et al., 2000).

Heat-Shock Proteins
During rapid heat stress, plants synthesize and accumulate
specific proteins called heat-shock proteins (HSPs) (Howarth,
1991); this is a universal response to high-temperature stress in
all organisms (Vierling, 1991). Heat-shock genes are upregulated
during stress to encode HSPs which are vital for plant survival
under such conditions (Chang et al., 2007). Three classes of
HSPs are distinguished, according to molecular weight—HSP90,
HSP70, and low molecular weight proteins. HSPs provide stress-
related chaperone functions in plants under stress conditions
(Reddy et al., 2010, 2016). Chaperones have a role in protein
synthesis, maturation, targeting, degradation, renaturation, and
membrane stabilization (Reddy et al., 2014, 2016). HSPs are
located in the cytoplasm, nucleus, mitochondria, chloroplasts,
and endoplasmic reticulum (Waters et al., 1996). Heat-stress
transcription factors (HSFs), located in the cytoplasm in an
inactive state, control HSP gene transcription and play a vital
role in plant thermotolerance. Specific HSPs have been identified
in response to high temperature, including HSP68 in the
mitochondria of potato, maize, soybean, and barley (Neumann
et al., 1994). The expression profiles of HSPs have been compared
in plant species/genotypes contrasting in heat sensitivity. For
instance, the higher heat tolerance of maize than wheat and rye
at 42◦C is correlated with the expression of five mitochondrial
low molecular weight HSPs (28, 23, 22, 20, and 19 kDa), as
opposed to only 20 kDa in wheat and rye (Korotaeva et al., 2001).

According to Sharma-Natu et al. (2010), HSP18 was upregulated
in developing grains of heat-tolerant wheat exposed to 3.2–3.6◦C
higher temperatures than normal. In other studies, HSP100
increased with heat stress in a tolerant wheat variety (Sumesh
et al., 2008). Similarly, HSP26 increased in heat-tolerant wheat
genotypes (K7903, C306) at 42◦C, relative to heat-sensitive
genotypes (PBW343, HD2329) (Hairat and Khurana, 2016). At
42◦C, the expression levels of five Hsps—Hsp26.7, Hsp23.2,
Hsp17.9A, Hsp17.4, and Hsp16.9A—were upregulated in the
heat-tolerant rice cultivar Co39, relative to the heat-sensitive
rice cultivar Azucena, and regarded as biomarkers for screening
rice cultivars for heat tolerance (Chen et al., 2014). At 40◦C,
potato cultivar Norchip synthesized small (sm) Hsps for longer
than other cultivars. In Norchip and Desiree, an 18 kDa small
(sm)HSP increased for up to 24 h, while in cultivars Russet
Burbank and Atlantic, the levels started to decline after 4 and
12 h respectively (Ahn et al., 2004). Anthers of a heat-tolerant
tomato cultivar had higher constitutive levels of HSP100 than
a heat-sensitive cultivar (Pressman et al., 2007). In chickpea,
HSP levels increased in genotype JG14 (heat-tolerant) more than
genotype ICC16374 (Heat-sensitive) when exposed to 42/25◦C
at anthesis (Parankusam et al., 2017). Likewise, in peanut, the
best-characterized aspect of acquired thermotolerance is HSP
production, with ICGS76, COC038, and COC068 selected as
heat-tolerant genotypes and COC812, COC166, Tamrun OL 02,
and Spanco selected as heat-sensitive (Selvaraj et al., 2011). In
another study, heat-tolerant peanut genotype ICGS 44 showed
higher HSP expression throughout the stress period than heat-
sensitive genotypes AK 159 and DRG 1 (Chakraborty et al.,
2018). Comparison of expression of heat shock proteins in
wheat cultivars (Katya and Sadovo) under combined heat and
drought stress (40◦C/56%) reported 100% elevation of HSP100
and HSP70 as compared to 60 and 10% elevation under
individual drought and heat stress in tolerant cultivar Katya
(Grigorova et al., 2011).

GENE/S EXPRESSION

Relatively few studies have been undertaken on changes
in gene expression in contrasting genotypes under heat
stress, but vital information has been garnered. In wheat,
two contrasting genotypes—Chinese spring (heat-sensitive)
and TAM107 (heat-tolerant)—were analyzed for changes in
gene expression upon exposure to heat stress (40◦C), using
Affymetrix Barley 1 GeneChip, and expressed sequence tags. The
analysis identified 6550 heat-responsive probe sets, accounting
for 11% of the total probe sets (Qin et al., 2008). Heat-
tolerant genotype (2199 probe set) had more heat-responsive
probe sets than the heat-sensitive genotype (2084 probe set),
which mainly belonged to HSPs, transcription factors, calcium
and sugar signaling pathways, phytohormones biosynthesis
and signaling, ribosomal proteins, RNA metabolism, and
primary and secondary metabolites (Qin et al., 2008). In
rice, contrasting genotypes N2219379 (heat-tolerant) and IR64
and N226264 (heat-susceptible) were compared for their heat
response at 38◦C using reproductive function and molecular
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approaches (González-Schain et al., 2016). Heat stress impaired
reproductive functions, such as pollen production, pollen
number, anther dehiscence, pollen germination, and stigma
receptivity, more so in the sensitive genotypes than the
tolerant genotype (Devasirvatham et al., 2012). Eighteen
heat-responsive genes, such as HSFA2a, OsFKBP62b, and
OsHSP17.9A had higher upregulation in tolerant genotypes
than sensitive genotype. Under heat stress, the expression of
HSFA2a increased 268-, 15-, and 3.2-fold in N2219379 (heat-
tolerant), N226264 (heat-sensitive), and IR64 (heat-sensitive),
respectively and that of OsFKBP62b increased by 108-, 10-, and
3-fold in N2219379, N226264, and IR64, respectively (González-
Schain et al., 2016). A study was conducted on 197 spring
wheat genotypes from ICARDA at two different locations, one
in Sudan (Wad Medani) and another one in Egypt (Sids),
to identify single nucleotide polymorphism (SNP) markers
association mapping. The study detected 111 significant marker-
trait associations; the wsnp_Ex_c12812_20324622 marker on
chromosome 4A was significantly correlated with yield at
both locations. Wheat genotypes carrying the cytosine base at
the wsnp_Ex_c12812_20324622 and wsnp_Ex_c2526_4715978
markers produced more yield, compared to those carrying the
alternative bases, by 15%, indicating the significance of involving
these markers for marker-assisted selection in breeding programs
to increase yield under heat stress. The best performing 20
high-yielding as well as heat-tolerant wheat genotypes, found
in this study, have been distributed across Central and West
Asia and North Africa (CWANA) and sub-Saharan Africa (SSA)
for potential direct release and/or use as parents after local
adaptation trials (Tadesse et al., 2019).

DNA methylation is one of the mechanisms of epigenetic
modifications that plays a crucial role in imparting stress
tolerance for various environmental stresses (Lukens and
Zhan, 2007). A study on heat-tolerant (Huyou 2) and heat-
sensitive (Fengyou 1) Brassica napus seedlings exposed to 45◦C
measured changes in DNA methylation levels and the cytosine
methylation pattern using Methylation Sensitive Amplification
Polymorphism (MSAP) analysis and RT-PCR (Gao et al., 2014).
Under heat stress, percentage of methylated bands was 10.7% in
Fengyou 1 (heat-sensitive) and 0.6% in Huyou 2 (heat-tolerant)
(Gao et al., 2014). The cytosine methylation was also higher
in the heat-sensitive genotype than the heat-tolerant genotype
suggesting involvement of methylation to heat stress sensitivity. It
has already been reported that superior crop genotypes avoid the
methylation process (Gao et al., 2014). The effects of combined
heat and drought stress on the gene expression in durum
wheat (Triticum turgidum subsp. durum) cultivar “ofanto” were
evaluated (Rampino et al., 2012). Plants were raised in the growth
chamber and stress conditions were introduced at booting stage;
heat stress- 30/22◦C for 2 days, then raised to 34/24◦C for
following 2 days, 40/32◦C for next one day and 42◦C for last
day and collected samples after 6 h of heat treatment, however,
drought conditions were maintained at 28% field capacity. Gene
expressions, analyzed through cDNA-AFLP studies, showed that
combined stress down-regulated 92 genes and up-regulated 132
genes. Many of these genes reported to control the expression
level of HSPs and dehydrins.

POLLEN-BASED TRAITS

In most plant species, reproductive tissues, mainly male
gametophytes, are more sensitive to heat stress than female
gametophytes (Djanaguiraman et al., 2018a), and the threshold
temperature for imposing damage in these tissues is lower than
that for vegetative tissues. Damage imposed by heat stress can
occur pre- or post-pollination, which impair fertilization and
ultimately reduce seed set (Prasad et al., 2008a, 2017; Prasad and
Djanaguiraman, 2014; Sage et al., 2015). Pre-pollination events
that are highly susceptible to high temperature are (1) meiosis I
and meiosis II of the microspore mother cell (Young et al., 2004),
(2) development and subsequent dissolution of the tapetum layer
(Farooq et al., 2011), and (3) exine and intine formation (Nahar
et al., 2016). Post-pollination events that are highly susceptible
to heat stress are (1) pollen load (Prasad et al., 1999b, 2006),
(2) pollen germination (Prasad et al., 2001), (3) pollen tube
growth (Prasad et al., 2001), and (4) fertilization (Prasad et al.,
2001; Barnabás et al., 2008; Hedhly, 2011; Sita et al., 2017b).
The development of male gametophyte under high temperature
is more susceptible than female gametophyte (Djanaguiraman
et al., 2018a; Liu et al., 2019). However, in peal millet (Pennisetum
glaucum), the female gametophyte was more sensitive than male
gameophyte (Djanaguiraman et al., 2018b). Several effects of heat
stress on reproductive function have been reported. For instance,
it reduced the fertility of the microgametophyte in Brassica (Rao
et al., 1992), and impaired meiosis in the male gametophyte
in tomato (Lycopersicon esculentum), which affected pollen
germination and pollen tube growth (Firon et al., 2006). Shriveled
pollen grains under high temperature may be why heat stress
prevents starch accumulation in anther walls and pollen grains
by disturbing the source–sink relationship that subsequently
leads to lower levels of soluble sugars for their development
(Pressman et al., 2002; Djanaguiraman et al., 2018a). Variation
in contrasting genotypes of various pollen traits; could be used
to identify and screen genotypes tolerant to high-temperature
stress. For instance, 12 field-grown cultivars of Brassica napus L.
were screened for heat tolerance based on pollen traits—pollen
viability, pollen germination and pollen tube length—at 33.7◦C
(Singh et al., 2008). Pollen grains were placed on a germinating
medium in Petri plates and artificially incubated by raising the
temperature by 5◦C at 5-hourly intervals from 10 to 35◦C for
30 h before measuring the three pollen traits. As a result, the
Brassica cultivars were divided into four groups—heat-tolerant
(Kadore, ARC98007, NPZ0591RR, and DSV06200), moderately
heat-tolerant (Plainsman, Kronos and DSV05102), moderately
heat-susceptible (DSV05101 and KS4085), and heat-susceptible
(KS4002, Ceres and KS3077). Thirty-four tomato genotypes were
tested under field conditions in a normal (27.1/15.5◦C) and
summer (39.2/24.4◦C) season for heat tolerance, which identified
three heat-tolerant genotypes (Pusa Sadabahar, FLA-7171, and
NDTVR-60) with high pollen germination and pollen viability,
relative to the heat-susceptible genotypes (Floradade and H-86)
(Srivastava et al., 2012). In another study, 17 tomato genotypes
were evaluated under heat stress (32/26◦C) for thermotolerance
on the basis of pollen traits (Paupière et al., 2017). The tomato
plants were raised in a greenhouse (25/19◦C), before being
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moved to climate chambers when the first flower appeared
for the subsequent heat treatment (32/26◦C). Thermotolerant
genotypes (LA2854, LA1478, and LA0417) had higher pollen
viability and pollen numbers than thermosensitive genotypes
(LA1719, LA1580, and SWEET4). Similarly, 18 rice (Oryza
sativa) genotypes varying in heat sensitivity were raised in a
greenhouse before being transferred to growth cabinets for high-
temperature exposure during anthesis—30◦C (control), and 35
and 38◦C (heat stress) In this study, two experiments were
conducted in two successive years, 1st year experiment involved
30◦C (control), and 35◦C and 38◦C (heat stress) for 2h on the
onset of anthesis while 2nd year experiment involved the same set
of conditions but heat stress exposure was raised to 6 h (Jagadish
et al., 2008). A lower fertility percentage was noticed at 38◦C for 6
h compared to 2 h. Genotype N22 had the highest spikelet fertility
(86%) and was selected as highly tolerant, while Azucena and
Moroberekan had <10% spikelet fertility, thus being the most
susceptible genotypes (IR64, CG14); the observations correlated
with superior pollen performance at high temperature (Jagadish
et al., 2008). In vitro pollen germination and pollen tube growth
were used to screen 14 cotton cultivars for heat tolerance by
raising the temperature by 10◦C at 5-hourly intervals from 10
to 50◦C for 24 h under controlled environment (Liu et al.,
2006). The study revealed that boll retention and boll number
per plant were strongly correlated with pollen germination and
pollen tube length. The genotypes were categorized into heat-
tolerant (Sumian 16 and HLY11), moderately tolerant (JC108,
Simian 3, Simian 4, and Lumian 584), moderately susceptible
(Zhongmiansuo 12, Zhongmiansuo 41, Zhongmiansuo 9409,
Xinyoumian 68, and Sumian 12), and susceptible (TS18, HLY15,
and NuCOTN33B).

In legumes, heat stress exposure (47◦C) to 44 soybean
genotypes identified heat-tolerant (DG 5630RR), heat-
intermediate (PI 471938), and heat-sensitive (Stewart III)
genotypes based on pollen germination and pollen tube
length (Salem et al., 2007). Similarly, heat-tolerant and heat-
sensitive mungbean genotypes were identified based on pollen
stainability (Suzuki et al., 2001). The plants were exposed to
high temperatures (38/28◦C) for 24 h in a growth chamber, with
pollen stainability recorded on flowers that opened 8–11 days
after heat treatment. The heat-tolerant genotype (Haibushi) had
higher pollen stainability (60%) than heat-sensitive genotypes
(<20%; Kentucky Wonder, Oregon, and Okinawa Local). Heat
stress (43/30◦C and 45/32◦C) in mungbean affected pollen
viability, pollen germination, and pollen tube length, more so
in the heat-tolerant genotype (SML832) than the heat-sensitive
genotype (SML668) in outdoor and controlled conditions
(Kaur et al., 2015; Bindumadhava et al., 2018). Exposure of
45 mungbean genotypes to high temperature (42◦C) during
flowering in the field produced fewer and more shriveled
pollen grains, and identified heat-tolerant genotypes (C693357,
EC693358, EC693369, Harsha, and ML1299) with superior
pollen traits (pollen germination, pollen viability) (Sharma et al.,
2016). In chickpea, reproductive traits such as pollen viability,
pollen germination, and pollen tube length were used to screen
a large number of chickpea genotypes for heat tolerance by
delaying sowing to expose plants to temperatures > 32/20◦C

(day/night); a few tolerant (ICC15614, ICCV92944) and sensitive
(ICC10685, ICC5912) genotypes were identified (Kaushal et al.,
2013). Another study identified heat-tolerant and heat-sensitive
chickpea genotypes using reproductive traits (Devasirvatham
et al., 2013) by exposing plants to high temperature (≥35◦C).
Pollen grains were more sensitive to high temperature than
stigmas in both controlled and field conditions. Genotype
ICC1205 was identified as heat-tolerant and ICC4567 as heat-
sensitive, with a positive correlation between reproductive and
yield traits. Lentil is sensitive to heat stress (>35◦C), which
adversely impairs pollen development and function, resulting
in poor pod yields. Based on pollen traits, Kumar et al. (2016)
identified heat-tolerant genotypes (FLIP2009-55L, IG2507,
and IG4258) after screening 334 lentil accessions for heat
tolerance under field conditions (>35/25◦C), with a positive
correlation between pollen viability and filled pods/plant. In
another field study, heat stress (>35/25◦C) reduced pollen
viability in lentil by up to 78–83% (Sita et al., 2017b), with
heat-tolerant genotypes (IG2507, IG3263, IG3745, IG4258, and
FLIP2009) maintaining higher pollen germination (48–50%)
than heat-sensitive genotypes (28–33%), which was positively
correlated with yield. In soybean, exposure of cultivars (i.e.,
IA3023 and KS4694) and plant introduction lines (PI) lines (i.e.,
PI393540 and PI588026A) to heat stress (36.5–38.6◦C) between
gametogenesis and full bloom, as compared to control treatment
(29.5–31.6◦C; optimum temperature) revealed that the cultivars
were more heat tolerant because of greater pollen germination
and less distortion in pollen shapes (Djanaguiraman et al.,
2019). Combined stress treatment damages the reproductive
stages mainly pollen grains to a larger extent (Sehgal et al.,
2017). Genetic variations among 38 cotton cultivars for heat
and drought were assessed using reproductive and physiological
traits. Among reproductive traits, pollen germination as well
as pollen viability were tested at two temperature regimes (30
and 38◦C) and cumulative heat and drought stress response
(CHDSRI) using photosynthetic and reproductive traits was
calculated. Based upon CHDSRI, 12 genotypes were categorized
as heat and drought sensitive, 20 as intermediate and 6 genotypes
as heat and drought tolerant (CT12214, MON11R124B2R2,
UA48, MON11R112B2R2, PHY367WRF, and PX53221 1WRF)
(Singh K. et al., 2018), which could be potentially used for
breeding programs.

YIELD-BASED PARAMETERS

Heat stress adversely affects the reproductive and seed-filling
stages, leading to severe reductions in crop yield and quality
(Sehgal et al., 2018). Various studies have confirmed that the
relative performance of plants in terms of yield under heat
stress was suitable for selecting genotypes with heat-tolerance
mechanisms/traits that can be used for crop improvement.
Various traits linked to yield have been used to identify genotypes
contrasting for heat tolerance.

Seed formation and seed filling is the last phase in the life cycle
of seed plants. Heat stress drastically affects seed development
and seed filling in many crop species, which consequently
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increases the fraction of abnormal and shriveled seeds. Seed
development starts from cell division; when seed cells are fully
formed, storage reserves start to accumulate in the seed (Egli,
1998). The direct effect of heat stress is reportedly on the
division and size of endosperm cells (Commuri and Jones,
1999), such that lower amounts of carbohydrates, proteins, lipids,
and starch accumulate in developing seeds. Heat stress also
accelerates the rate and duration of seed filling, resulting in more
abnormal seeds, which reduces crop yield. Heat stress reduces
seed yield by (i) reducing seed number, (ii) reducing seed weight,
and (iii) accelerating the seed filling rate (Farooq et al., 2017;
Prasad et al., 2017).

Seed Filling Rate and Duration
Heat stress hastens the seed filling rate and reduces the duration
of seed filling. In cowpea, raising the temperature from 15.5
to 26.6◦C shortened the seed filling duration by 14–21 days
(Nielsen and Hall, 1985). Heat stress impaired the growth of
the cotyledons, and reduced the number of endosperm cells and
cell expansion in the embryo, which had a negative effect on
photosynthate translocation in developing seeds and resulted
in shriveled seeds in maize (Jones et al., 1985; Munier-Jolain
and Ney, 1998). A heat-stressed environment (>32/20◦C) during
seed development increased the seed filling rate in six chickpea
genotypes, relative to the optimum temperature (Awasthi et al.,
2014). The same study revealed that heat stress decreased the
duration of seed filling more in heat-sensitive (ICC 4567) than
heat-tolerant (ICC1356, ICC15614) genotypes. High temperature
(25/20◦C) reduced the duration of grain filling by 30% and
increased the grain-filling rate by 20% in six wheat genotypes
(G1, G2, G3, G4, G5, G6), relative to the control (20/15◦C),
more so in heat-sensitive (G6) than heat-tolerant (G4) genotypes
(Yin et al., 2009).

Seed Number
Heat stress leads to poor pollination and fertilization, which
reduces seed number. In faba bean (Vicia faba L), seed number
declined with increasing temperature (Bishop et al., 2016). In
mungbean, heat-tolerant genotype (SML 832) produced more
seeds than heat-sensitive genotype (SML 668) under high
temperature (45/32◦C) in the field (Kaur et al., 2015). While
testing 24 genotypes of common bean in the greenhouse under
different temperature regimes (24/21◦C, 27/24◦C, 30/27◦C,
33/30◦C), 33/30◦C was the most damaging to plants with
respect to seed number and seeds/pod, with the reductions more
prominent in heat-sensitive genotypes (–66%; A55, Labrador,
Majestic, IJR) than heat-tolerant genotypes (–31%; Brio, Carson,
G122, HB1880, HT38, Venture) (Rainey and Griffiths, 2005).
Heat stress (36/27◦C) reduced seed number/pod in 46 of 48 lines
of cowpea (Vigna unguiculata) evaluated for heat tolerance in a
greenhouse; two heat-tolerant lines (B89-600 and TN88-63) did
not exhibit reduced seed numbers/pod (Ehlers and Hall, 1998).
The average number of seeds/pod varied in the heat-sensitive
genotypes (e.g., 3.3 in IT82E-60, 2.9 in Bambey 21 and 3.6 in
IT84S-2049), while those of the heat-tolerant genotypes had 6.3
in B89-600 and 8.1 in TN88-63 compared to control values

(e.g., 11 in IT84S-2049, 9.6 in IT82E-60, 7.4 in B89-600 and
6.4 in TN88-63).

Seed Weight
Seed weight represents the ultimate yield of the crop; hence it has
been reliably used as a trait to screen for heat tolerance (Sehgal
et al., 2018). Chickpea yields declined when genotypes were
exposed to various temperature ranges (35/25◦C, 40/30◦C, and
45/35◦C) in a growth chamber, relative to the control (30/20◦C)
(Kumar et al., 2013). At 40/30◦C, the seed weight of heat-sensitive
genotypes (ICC14183, ICC5912) declined by 37–45% compared
with heat-tolerant genotypes (ICCV07110, ICCV92944). At
45/35◦C, heat-tolerant genotypes also experienced a decline in
seed weight but heat-sensitive genotypes did not set any pods.
Similarly, mungbean genotypes grown outdoors in April, with
high temperatures (45/32◦C) coinciding with reproductive phase,
reduced seed weight by 48.3% in the heat-sensitive genotype
(SML668) and 35.1% in the heat-tolerant genotype (SML832),
relative to control (Sharma et al., 2016). Likewise, seed weight
of lentil grown at high temperature (>32/20◦C) in field declined
drastically compared to control plants (Bhandari et al., 2016),
more so in heat-sensitive genotypes (–50%; LL699 and LL1122)
than the heat-tolerant genotype (–33%; LL931). In common
bean, heat stress (33/30◦C) under field conditions was significant
for the selection of heat-tolerant (Brio, Carson, G122, HB1880,
HT38, Venture) and heat-sensitive genotypes (A55, Labrador,
Majestic, IJR), based on seed weight. At this temperature, seed
weight declined by 47% across genotypes, more so in heat-
sensitive genotypes (–88%) than heat-tolerant genotypes (–25%)
(Rainey and Griffiths, 2005). In cowpea, studies at two locations
with varying temperatures (Coachella (41/25◦C) and Riverside
(36/17◦C) assessed the effect of high temperature on the yield of
contrasting genotypes (Ismail and Hall, 1999). Yield parameters
such as seed weight and seeds/pod reduced drastically, as the
temperature increased, however, heat-tolerant genotypes (H36,
H8-9, DLS99) at higher temperature (41/25◦C) retained more
seed weight (193 mg/seed) than heat-sensitive genotypes (CB5,
CB3, DLS127), which had smaller seeds with an average weight
of 168 mg. Screening experiments on Pearl millet, conducted
over a period of 3–4 years (2009–2012) at ICRISAT, India,
involving 221 hybrid parental lines (both B- and R-lines), 53
germplasm accessions and 4 improved populations over 4-year
period showed large genetic variability in seed set at daily
maximum air-temperature of ≥ 42 ◦C during flowering. Five
hybrid seed parents (ICMB 92777, ICMB 05666, ICMB 00333,
ICMB 02333, and ICMB 03555) and a germplasm accession
IP 19877 with 61–69% seed set as compared to 71% seed set
in a heat tolerant commercial hybrid 9444 (used as a control)
was identified. A comparative study on 23 hybrids and their
parents for seed set at high air temperature (>42◦C) showed heat
tolerance as a dominant trait, indicating that heat tolerance in one
parent would be ample to generate heat tolerant hybrids in pearl
millet (Gupta et al., 2015). In sub-Saharan Africa, 24 elite durum
wheat breeding lines and cultivars were tested for adaptation
to warm environments at two stations: Kaedi, Mauritania and
Fanaye, Senegal. Top grain yield was recorded at 5,330 kg ha−1

and the average yield at 2,484 kg ha−1. Biomass and spike
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fertility (i.e., number of seeds produced per spike) were found
to be the most vital adaptive traits to warm environments. The
study showed three genotypes (“Bani Suef 5,” “DAWRyT118,” and
“DAWRyT123”) as the most stable and high yielding; while the
last two genotypes were the best performers (Sall et al., 2018).

Combined drought and heat stress were found to be greatly
detrimental for production potential of crops. Thus, lentil
genotypes were evaluated for their response to impacts of
combined drought and heat stress (drought tolerant: DPL53
and drought sensitive: LL699) (Sehgal et al., 2019). The heat
and drought (33/28◦C with 50% field capacity) treatments
were imposed to determine to effects on yield traits (seed
filling duration, seed filling rate, seed number/plant, and seed
weight/plant). Under combined stress, a decline in seed filling
duration by 5.4–8.9 days, seed growth rate by 44–60.2%,
seed number/plant by 35–48.7%, seed weight/plant by 47–59%
compared to control. This reduction pattern was more drastic
in heat sensitive genotype than heat tolerant genotype. A field
experiment on 300 maize inbred lines test-crossed to CML539
was conducted at multiple locations (Tlaltizapán, México (18◦41/c
N, 99◦07/c W, and 940 m asl), Kiboko, Kenya (2◦21/c S, 37◦72/c
E, and 975 m asl), Chiredzi, Zimbabwe (21◦01/c S, 31◦34/c E,
and 430 m asl), at the Nakhonsawan Field Crops Research
Center in Takfa, Thailand (15◦21/c N, 100◦30/c E, and 87 m
asl), and at the ICRISAT experimental station in Hyderabad,
India) to evaluate their response to reproductive stage drought
stress, heat stress, and combined drought and heat stress. The
study identified few lines (notably La posta Sequia C7-F64-
2-6-2-2 and DTpYC9-F46-1-2-1-2) having higher tolerance to
drought and combined drought and heat stress. The findings
indicated that tolerance to individual stresses was genetically
distinct from tolerance to combined stresses. The assessment
indicated that most of the current drought donors and key
inbreds used in widely grown African hybrids were sensitive
combined drought and heat stresses. The identified lines, as
mentioned above, need to be introduced into breeding programs
for maize (Cairns et al., 2013).

BREEDING FOR HEAT TOLERANCE
INVOLVING CONTRASTING GENOTYPES

Breeding techniques remain one of the inexpensive and viable
approaches for developing heat stress tolerance in crop plants
(Priya et al., 2018). Field-based screening of crop gene pool
and landraces for yield and heat stress tolerance in targeted
environments is a way to develop heat tolerant genotypes in
various crop plants (Craufurd et al., 1998; Hede et al., 1999;
Ntare et al., 2001; Jagadish et al., 2008; Scafaro et al., 2010;
Krishnamurthy et al., 2011; Dhanda and Munjal, 2012; Pradhan
et al., 2012). The breeders also focus toward yield and yield-
related traits under heat stress so that genotypes/progeny lines
with higher yield under heat stress can be selected. Varieties
possessing heat stress tolerance as well as higher yields will ensure
adequate food to the world’s burgeoning population under global
warming. To develop heat tolerant crop varieties, contrasting
donor parents are crossed, progenies advanced using various

crop breeding strategies and desirable heat tolerant segregants are
selected. Finally, heat tolerant homozygous lines are evaluated
for yield and other useful agronomic traits under appropriate
environments followed by possible release as a variety/ies. For
transfer of heat tolerance to high yielding but heat sensitive mega
crop varieties (varieties that occupy large area) from heat tolerant
landraces or wild relatives, backcross breeding with recurrent
parent remains an effective strategy as it allows for the recovery
of the genome of recurrent parent, thereby traits of mega variety,
with an addition of heat tolerance. To broaden the genetic
base for heat tolerance, next generation breeding schemes viz.,
development of Multiparents Advanced Generation Intercross
(MAGIC) and Nested Association Mapping (NAM) population
are also receiving wider attention (Li H. et al., 2018).

Morpho-physiological and phenological traits could play an
important role in contributing toward heat stress adaptation as
these could act as surrogate traits for selecting heat tolerance
(Reynolds et al., 2007). These physiological traits range from
early phenology (Gaur et al., 2015), canopy temperature (Kumar
et al., 2012; Mondal et al., 2013), chlorophyll fluorescence,
chlorophyll content (Ristic et al., 2007; Kumar et al., 2013),
cell membrane stability (Blum and Ebercon, 1981), stay green
trait or delayed senescence (Thomas and Howarth, 2000; Ristic
et al., 2007), pollen and pollen related traits (Devasirvatham
et al., 2010; Kaushal et al., 2013; Djanaguiraman et al., 2018,
Djanaguiraman et al., 2019) to water soluble carbohydrates in
stem (Schittenhelm et al., 2020). The physiological trait-breeding
has gained great attention for improving plant adaptation to
heat stress in various crop plants especially in wheat (Reynolds
et al., 2007; Reynolds and Langridge, 2016). A focus on selection
of physiological traits that are correlated with yield either
directly or indirectly could increase chances of accumulation
of yield contributing genes thereby ensuring higher plant yield
under heat stress (Reynolds and Langridge, 2016). In developing
heat tolerance in wheat, the cross-species gene transfer system
was used wherein three heat-tolerant accessions of Aegilops
tauschii (wild genotype) were crossed with bread wheat (Triticum
aestivum L.) cultivar “PBW 550” (Sehgal et al., 2011). The
BC1F4 lines derived from these crosses that possessed improved
cell membrane stability, TTC and chlorophyll retention under
heat stress were selected (Sehgal et al., 2011). For winter
sown crops, early phenology allows plants to escape heat stress
(Bueckert et al., 2015). For such crops, selection for earliness
could be an important option to develop crop varieties that
escape heat stress thereby escaping the damage caused by heat.
As reproductive processes are most vulnerable to heat stress,
physiological screening of genotypes for two reproductive traits,
i.e., better pollen viability and pollen germination under heat
stress could lead to the identification of heat tolerant genotypes
as stability of these two traits under heat stress will ensure
better fertilization, adequate seed set and improved grain yield
(Devasirvatham et al., 2013; Poli et al., 2013). Relying on higher
pollen germination and better seed setting capability Nguyen
et al. (2013) identified two sorghum R9403463–2-1 and IS8525
genotypes from a set of diverse sorghum genotypes originated
from United States, Australia, Africa and Asia. Likewise, several
promising genotypes viz., PI609489, AQL33/QL36; CCH2; IS
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8525 (Singh V. et al., 2015) due to their better seed setting
ability and Macia, BTx378, SC155 (Sunoj et al., 2017) having
better pollen germination capability and maintaining high
grain yield under heat stress were identified. Given the field
screening of large set of germplasm and hybrid parental lines
of Pearl millet under high temperature stress, a wide range
of genetic variability for seed setting was noted in under high
temperature stress (Gupta et al., 2015). Several parental lines
viz., ICMB 92777, ICMB 05666, ICMB 00333 along with IP
19877 germplasm accession exhibited better seed setting under
heat stress and thus could be used in developing heat tolerant
hybrid Pearl millet (Gupta et al., 2015). Likewise, Jukanti et al.
(2017) underscored the importance of CZH 233, CZP 9603,
CZI 2011/5, and CZMS 21A genotypes due to their better
seed setting higher capability of grain yield for developing
superior Pearl millet genotypes under heat stress. Likewise,
the potentiality of “Norchip” and “Désirée” potato cultivars in
potato breeding program for improving genetic gain because
of their better photo-assimilate transport from leaf to tuber
under heat stress has been discussed (Basu and Minhas, 1991;
Ahn et al., 2004).

Heat stress tolerance is a polygenic trait. Classical genetics
was earlier used to identify the genetic bases of heat tolerance
in various field and vegetable crops (Patel and Hall, 1988;
Marfo and Hall, 1992; Gupta et al., 2015; Jha et al., 2019), this
approach, however, could not completely explain the genetic
nature of heat stress tolerance because of its multigenic nature
(Upadhyaya et al., 2011). Subsequent advances in molecular
marker technology has allowed identification and precise
mapping of genes/QTLs governing heat stress tolerance several
crops such as rice (Gui-lian et al., 2009; Lei et al., 2013; Wei et al.,
2013; Li M. et al., 2018), maize (Inghelandt et al., 2019), wheat
(Mason et al., 2010; Pinto et al., 2010; Paliwal et al., 2012; Lopes-
Caitar et al., 2013; Sharma et al., 2017), chickpea (Paul et al.,
2018), cowpea (Pottorff et al., 2014), Brassica (Branham et al.,
2017) and tomato (Wen et al., 2019). Marker assisted selection
can be used to transfer heat tolerant QTLs/genomic region to
the elite but heat stress sensitive genotypes if genetic maps with
sufficient marker density are available (see Jha et al., 2014). The
approach has been successfully employed in rice (Ye et al., 2012;
Shirasawa et al., 2013), wheat (Pinto et al., 2010; Bennett et al.,
2012; Bonneau et al., 2013) and tomato (Grilli et al., 2007)
to transfer QTLs governing heat tolerance. Considering potato,
Trapero-Mozos et al. (2017) discussed the scope of introgression
of HSc70 allelic variant contributing toward enhancing yield
under heat stress into high yielding potato cultivars through
marker assisted breeding for improving heat tolerance in potato.
Advent of improved sequencing technologies that allow faster
sequencing of genomes at lower costs led to generation of profuse
SNP markers that enabled genome-wide association studies
(GWAS) for elucidating novel genomic regions controlling heat
stress tolerance. GWAS for identifying heat stress tolerance
genomic regions have been conducted in rice (Lafarge et al.,
2017), maize (Yuan et al., 2019), wheat (Maulana et al., 2018),
barley (Cantalapiedra et al., 2017), pea (Tafesse et al., 2020),
chickpea (Thudi et al., 2014; Jha et al., 2018; Varshney et al., 2019),
and in Brassica (Rahaman et al., 2018).

TRANSCRIPTOMICS

Previously cDNA-AFLP and microarrays were employed for
identifying heat tolerance genes in various crop plants (Bita et al.,
2011; Johnson et al., 2014). After the advent of crop-specific gene
chips, microarrays became the method of choice for estimating
changes in gene expression upon exposure to abiotic stress e.g.,
Gene Chip wheat genome array in wheat (Qin et al., 2008),
Affymetrix GeneChip R© Tomato Genome Array in tomato (Frank
et al., 2009), Affymetrix 22K Barley 1 Gene Chip microarray in
barley (Mangelsen et al., 2011) and Brassica 95k EST microarray
in Brassica (Yu et al., 2014). Microarray-based analysis by
Johnson et al. (2014) provided insights into various genes
involved in heat tolerance in sorghum. Major revolution in our
understanding of genes involved in heat stress tolerance occurred
after the advent of modern DNA sequencing technologies
that allowed sequencing of whole transcriptomes, a technique
called transcriptomics/transcriptome sequencing/whole genome
transcriptome sequencing/whole genome expression profiling.
Transcriptomics allowed identification of various heat tolerant
candidate genes with greater precision in rice (González-Schain
et al., 2016; Mangrauthia et al., 2016; Fang et al., 2018),
wheat (Liu et al., 2015), maize (Shi et al., 2017), chickpea
(Agarwal et al., 2016), and soybean (Gillman et al., 2019).
Transcriptome analysis of contrasting heat tolerant and sensitive
lines led to identification of 35 differentially expressed transcripts
between the contrasting rice lines, 21 of which were functionally
validated (Liao et al., 2015). The study suggested involvement
in oxidation-reduction, metabolic activity, defense response and
photosynthesis activity in heat tolerance (Liao et al., 2015). Zhao
et al. (2018) explored several Hsp20 family genes involved in
heat stress response across the whole genome in potato. A total
of 14 Hsp20 genes displaying up-regulatory role under heat
stress in potato was confirmed through real-time quantitative
PCR. RNA-seq analysis of maize seedling treated with heat
stress unveiled myriads of up and down regulated genes
related to photosynthesis, protein synthesis and biosynthesis of
various metabolites including zeatin, brassinosteroids (Frey et al.,
2015; Shi et al., 2017). Further, Zhao et al. (2019) unearthed
the involvement of 5,400 non-additive genes specific to heat
stress through transcriptome analysis of parental lines and F1
hybrid maize seedlings under heat stress conditions. RNA-seq
technology not only identified the genes for heat tolerance but
also the non-coding RNAs that were involved in regulating heat
stress responses in various crops (Wang et al., 2011; Xin et al.,
2011; Yu et al., 2013; Mangrauthia et al., 2017).

PROTEOMICS

Gene expression enhanced our understanding of mechanisms of
heat stress tolerance significantly, however, gene transcripts do
not directly influence plants’ responses to stresses. Instead the
proteins/enzymes, the gene products, modify plants’ metabolite
pool in response to external stimulus. To understand better, the
mechanisms of stress tolerance, studies of the proteome, i.e.,
entire set of proteins in a cell or organ were initiated. Prior to
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TABLE 1 | Few selective heat-tolerant genotypes identified for various crops involving various traits (details in the text).

Crop Traits used Screening method Promising heat-tolerant genotypes Country References

1. Cereals

Barley
(Hordeum
vulgare L.)

Stay green trait Field experiments (> 40◦C) L6 and L8 and L3 and L10 Iran Bavei et al., 2011

Chlorophyll fluorescence Growth chamber (45◦C) Ig, Im, and Tz North Africa Oukarroum et al., 2016

Wheat
(Tritium
aestivum L.)

Stay green trait Field experiments (32◦C) CB367(BB#2/PT//CC/INIA/3/ALD“S,”
CB = 333(WL711/3/KAL/BB//ALD“S”and
CB335(WL711/CROW“S”//ALD#1/CMH7
7A.917/3/HI666PVN“S”)

Pakistan Rehman et al., 2009

Canopy temperature
depression

Field experiment (41◦C) HD 2932, HD 2864, HD 3095, HI 8703,
HUW 234

India Saxena et al., 2016

Rice (Oryza
sativa L.)

Pollen-based Growth cabinets
(35◦C, 38◦C)

N22 United
Kingdom

Jagadish et al., 2008

Cell membrane thermostability Phytotron (40◦C) F473 America Sanchez-Reinoso et al.,
2014

Maize
(Zea mays L.)

Plant height Field experiments (>40◦C) DTPYC9F119 India Debnath et al., 2016

Root system architecture Growth chamber (37◦C) H16, CML444, SC-Malavi United States Trachsel et al., 2010

2. Legumes

Chickpea
(Cicer arietinum)

Photosynthetic rate Field environment (25 to
40◦C)

Pusa 1103, Pusa 1003, KWR 108, BGM
408, BG 240, PG 95333, JG 14, BG

India Kumar et al., 2017

Cell membrane thermostability Growth chamber (40–45◦C) ICCV07110, ICCV92944, ICC1205 India Kumar et al., 2013

Lentil
(Lens culinaris
Medik.)

Biomass
Stomatal conductance
Chlorophyll fluorescence
Chlorophyll content
Sucrose
Oxidative stress and
antioxidants

Field study (>32/20◦C) IG2507, IG3263, IG3745, IG4258, and
FLIP2009

India Sita et al., 2017a

Cell membrane thermostability Growth chamber (34◦C) FLIP2009, Ranjan, Moitree, 14-4-1,
IC201710, IC208329

India Choudhury et al., 2012

Mungbean
(Vigna radiata L.)

Pollen-based Biomass
Chlorophyll fluorescence
Oxidative stress and
antioxidants

Field experiments
(>40/28◦C)

EC693357, EC693358, EC693369,
Harsha, and ML 1299

India Sharma et al., 2016

Common bean
(Phaseolus
vulgaris L.),

Chlorophyll fluorescence Growth chamber (42◦C) Ranit and Nerine RS Bulgaria Petkova et al., 2007

Seed weight
Seed number

Field conditions
(27/24◦C, 30/27◦C, and
33/30◦C)

Brio, Carson, G122, HB1880, HT38,
Venture

Switzerland Rainey and Griffiths,
2005

Alfalfa (Medicago
sativa)

Biomass Chlorophyll
fluorescence
Cell membrane thermostability

Greenhouse and growth
incubators (38/35◦C)

Bara310SC China Wassie et al., 2019

Soybeans
(Glycine max L.
Merr.)

Photosynthetic rate Field experiments
(36.5–38.6◦C)

IA3023 and KS4694 United States Djanaguiraman et al.,
2019

Metabolites Lab experiments
(36◦C/24◦C; 46/26◦C)

PI587982A South America Chebrolu et al., 2016

Cowpea
(Vigna unguiculate
L. Walp)

Seed weight Field studies (41/25◦C) H36, H8-9, DLS99 United States Ismail and Hall, 1999

Seed number Greenhouse conditions,
(36/27◦C)

B89-600 and TN88-63 United States Ehlers and Hall, 1998

3. Oil seed crops

Indian Mustard
(Brassica juncea L)

Plant height Field conditions (34◦C) BPR-538-10, NRCDR-2, RH-0216 India Chauhan et al., 2009

Canola
(Brassica napus)

Pollen-based Field studies (10–35◦C) Kadore, ARC98007, NPZ0591RR, and
DSV06200

United States Singh et al., 2008

Root system architecture Growth chamber (32◦C) Invigor 5440 Canada Wu et al., 2017

Peanut
(Arachis
hypogaea L.),

Carbon isotope discrimination Polytunnels (40/28◦C) Spanish botanical type United
Kingdom

Craufurd et al., 1999

Peanut
(Arachis hypogea)

Heat shock proteins Controlled environment
(50◦C)

ICGS 76, COC038, COC068, COC050,
COC041

United States Selvaraj et al., 2011

(Continued)
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TABLE 1 | Continued

Crop Traits used Screening method Promising heat-tolerant genotypes Country References

Cotton
(Gossypium
hirsutum L.)

Cell membrane
thermostability

Field conditions (>44◦C) NIA-80, NIA-81, NIA-83, NIA-84,
NIA-M-30, NIA-M31, NIA-HM-48,
NIA-HM-327, NIA-H-32, NIA-HM-2-1,
NIA-Bt1, NIA-Bt2, NIA-Perkh, CRIS-342,
CRIS-134, NIAB-111 and check variety
Sadori

Pakistan Abro et al., 2015

Chlorophyll fluorescence Green house (30 and 40◦C) DP393, VH260 and DP 210 B2RF Africa Van der Westhuizen
et al., 2020

4. Vegetable
crops

Potato (Solanum
tuberosum L.)

Heat shock proteins Growth chamber (40◦C) Norchip, Desiree Baltimore Ahn et al., 2004

Tomato
(Solanum
lycopersicum L.)

Pollen-based Field conditions
(39.24/24.42◦C)

Pusa Sadabahar, FLA-7171, NDTVR-60 Japan Srivastava et al., 2012

Sucrose Growth chambers (31/25◦C)
or Greenhouses (32/26◦C)

FLA 7516, Hazera 3018, Hazera 3042,
and Saladate

Israel/United
States

Firon et al., 2006

Cabbage
(Brassica species)

Metabolites Control environment
(25–35◦C)

Yoshin, Kenshin and full white Japan Hossain et al., 1995

Cucumber
(Cucumis
sativus L.)

Cell membrane
thermostability

Growth room (40/32◦C) L-3466, Desi Cucumber Pakistan Ali et al., 2019

proteomics, proteins suspected to play role in heat tolerance were
analyzed by MALDI TOF MS/MS analysis, e.g., rice (Han et al.,
2009; Jagadish et al., 2010; Liao et al., 2014). Further advances
in proteomics strengthen our understanding of identification of
the proteins that confer thermotolerance in plants. Proteomics
analysis of two contrasting rice genotypes, N22 (tolerant) and
Gharib (sensitive), showed that heat tolerance of N22 was due
to higher capability of mediating renaturation of stress damaged
proteins, higher efficiency in repairing ribosomal protein, higher
upregulation of proteins involved in calcium signaling and
phytohormone synthesis and protein modifications under high
night temperature at early grain filling stage (Shi et al., 2013).
The functional role of proteins that contribute to heat tolerance
ranges from oxidation-reduction, cellular metabolic activity to
defense responses (Lu et al., 2017; Zhang et al., 2017). In this
context, Zhang et al. (2017) identified various proteins by analysis
of grains of contrasting heat tolerant rice lines by employing
isobaric tags for relative and absolute quantitation (iTRAQ)
methods (Zhang et al., 2017). Similarly, by employing iTRAQ
technique, Lu et al. (2017) identified 258 heat responsive proteins
from wheat leaf, most of which were involved in chlorophyll
synthesis, carbon fixation and redox regulation under heat stress.
Various proteins such as HSP, those related to anti-oxidant
mechanism, and glycolysis were involved in adaption of grape
to heat stress as revealed through iTRAQ analysis (Liu et al.,
2014). Proteomics analysis of ethylene pre-treated tomato pollen
by LC-MS/MS suggested that various proteins help in protecting
pollen development and function through higher abundance
of protein synthesis and upregulating stress protecting proteins
that maintain cellular redox state under heat stress (Jegadeesan
et al., 2018). Proteomics analysis by 2-DE technique allowed
identification of important heat shock proteins viz., HSP26,
HSP16.9, and unknown HSP/Chaperonin contributing to heat

stress tolerance in maize (Abou-Deif et al., 2019). Considering
contributory role of proteins adapting roots under heat stress,
Valdes-Lopez et al. (2016) reported the involvement of both
up and down regulatory proteins contributing to heat tolerance
in soybean root. Recently, proteomics analysis deduced that
protein phosphorylation and protein acetylation could regulate
heat tolerance by modulating photosynthesis protein in grape
(Liu et al., 2019). The proteins involved in heat tolerance
elucidated through proteomics analysis could serve as biomarkers
for identifying heat tolerant cultivars in various crop plants.
Participatory role of miR156 targeting SPL transcription factor
in A. thaliana (Stief et al., 2014), miRl60, miRl66, and miRl67 in
wheat and barley (Xin et al., 2010), IbmiR397 targeting laccase
gene in sweet potato (Yu et al., 2020) controlling heat stress
response are worth mentioning.

METABOLOMICS

Metabolomics, the study of metabolites in a cell or organ, enhance
our understanding of novel metabolites that contribute to plant
adaptation to heat stress (Bokszczanin and Fragkostefanakis,
2013). Metabolomics have unraveled the key metabolites ranging
from sugars, proteins and lipids participating in key biological
processes to anti-oxidants and defense molecules in response to
heat stress (Li T. et al., 2015; Chebrolu et al., 2016; Muhlemann
et al., 2018; Salvi et al., 2018). Metabolomics at specific plant
stages viz., seed germination, vegetative, reproductive, grain
formation and grain filling have broadened our understanding
of metabolites involved in heat stress responses at different
development stages (Wang et al., 2015; Mangrauthia et al.,
2016; Spicher et al., 2016; Templer et al., 2017; Muhlemann et al.,
2018; Qu et al., 2018; Thomason et al., 2018). Metabolomics
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provided novel insights into the role of various lipids viz.,
plastidic glycerolipids, oxidized glycerolipids in regulating heat
stress responses in wheat leaves (Narayanan et al., 2016),
that of α-tocopherol and plastoquinone in maintaining the
photosynthesis apparatus in tomato under heat stress (Spicher
et al., 2016) and that of galactinol in minimizing excessive
ROS activity in chickpea under heat stress (Salvi et al., 2018).
Metabolomics also emphasized the role of sugars in anthers
such as glucose−6−P, fructose−6−P, glucose, maltose and
myo−inositol in improving heat stress acclimation in N22
(heat-tolerant) rice genotype (Li X. et al., 2015). Likewise, the
ameliorative role of various anti-oxidant phenolic compounds
viz., flavonoids, flavonols, tocopherols in heat tolerance by
preventing ROS mediated negative effect on pollen tube
germination in tomato (Muhlemann et al., 2018) and also during
seed development in soybean (Chebrolu et al., 2016) are other
examples of the use of metabolomics in improving knowledge
of heat stress tolerance mechanisms. At post anthesis stage,
metabolites viz., drummondol, anthranilate appear to regulate
heat stress response in wheat flag leaves (Thomason et al.,
2018). The studies pinpoint that metabolomics along with system
biology approaches could significantly enhance significantly our
understanding of various metabolites produced in response to
heat stress (Janni et al., 2020) and would be a vital tool to develop
heat tolerant crops in agriculture.

CONCLUSION AND FUTURE
PERSPECTIVES

The past few decades have seen considerable developments
in genetics, biochemical, genomics, transcriptomics, proteomics
and metabolomics approaches to enhance the understanding
of heat stress tolerance. However, basal thermotolerance
remains the major tool to develop agronomically superior heat
tolerant cultivars for agricultural crops. Basal thermotolerance
is primarily evaluated by exposing small or large sets of
germplasm (accessions, cultivars, wild relatives) under controlled
(laboratory, screen/greenhouse) or natural field environments to
stressful temperatures. These tests have identified several sources
of heat tolerance in various crop gene pools and landraces, which
may act as potential candidates/donors of heat stress tolerance for
developing heat tolerant cultivars using conventional or modern
breeding approaches (Table 1). In some instances, heat tolerant
genotypes have been directly released as cultivars (as in Chickpea)
owing to their agronomic superiority. In addition to heat stress
tolerance, contrasting genotypes are also being evaluated for
diverse traits related to phenology, growth, physiology and
biochemistry, genes, and reproductive biology. Of the several
traits being evaluated for heat stress tolerance in crops, the
majority of studies have indicated pollen function to be highly
sensitive to heat stress, thus making it one of the vital selection
traits for heat tolerance. Evaluation of thousands of germplasm
or progeny lines for several traits associated with heat tolerance
in a short span of time is needed to fasten the breeding for heat
tolerance. High-throughput phenotyping that allows choosing
important traits as selection criteria for heat tolerance can

facilitate identification of genotypes for heat stress tolerance
as well as other desirable agronomic traits in a short span of
time but high throughput phenotyping requires high investment
and is available with only a few laboratories around the world.
In addition to it, remote sensing tools (UAVs with spectral
and thermal imaging camera) can be effectively deployed under
realistic field environments to screen thousands of germplasm
or progeny lines.

Plant heat tolerance being a quantitative trait is highly
influenced by G × E interactions and genetic inheritance of heat
tolerance remains challenging. Large scale DNA-based marker
development during the last decade led to mapping of QTLs
linked to heat tolerance in various crops (Jha et al., 2014; Janni
et al., 2020). Advances in sequencing technologies especially,
next generation sequencing (NGS), genotyping by sequencing
(GBS), and other high throughput genotyping platforms have
facilitated narrowing down of the heat tolerance QTL regions for
analysis of candidate genes (Xu et al., 2017; Kilasi et al., 2018;
Inghelandt et al., 2019; Tadesse et al., 2019). Given the huge
number of novel SNPs developed recently and GWAS in large
set of global crop germplasm, it became possible to identify novel
haplotypes/genomic regions controlling heat tolerance (Paul
et al., 2018; Varshney et al., 2019; Khan et al., 2020; Weckwerth
et al., 2020) and allowed for the assessment of genetic diversity
at nucleotide-scale. High throughput phenotyping coupled with
advanced imaging devices, unmanned vehicles and machine
learning, deep learning approaches and molecular genetics tools
can further enhance the accuracy of selection of genomic regions
associated with heat tolerance. The developments in marker
and sequencing technologies are expected to allow genome wide
marker profiling facilitating genomic selection for heat tolerance
(Tricker et al., 2018; Inghelandt et al., 2019) and thus, rapid
breeding for the development of varieties with novel genetic
combinations. Similarly, advances in proteomics, transcriptomics
and metabolomics will further unravel the complexity of heat
stress tolerance in crops by identifying missing links in the
current information. A combination of these approaches could
allow for the quantifying of plant heat stress responses, spatially
and temporally, at a large scale, thus narrowing the “genotype-
phenotype gap” (Fahlgren et al., 2015; Singh A. et al., 2015; Singh
A. K. et al., 2018; Pinto et al., 2016). Corresponding to breeding
approaches, current developments in the spatial and temporal
expressions of engineered genes or pathway engineering by
the targeted editing of genomes using CRISPR–Cas technology
can be used for development of heat tolerant designer crops.
A better knowledge of plant cellular mechanisms associated
with heat tolerance and increased yields would be vital to drive
essential gains in crop improvement, which can be greatly assisted
by exploring the genetic diversity in heat tolerance, and put
into practice by genome-scale breeding, precisely done gene
engineering and better agronomic management practices.
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