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The capacity to actively release genetic material into the extracellular environment has
been reported for bacteria, archaea, fungi, and in general, for microbial communities,
but it is also described in the context of multicellular organisms, animals and plants. This
material is often present in matrices that locate outside the cells. Extracellular matrices
have important roles in defense response and disease in microbes, animal and plants
cells, appearing as barrier against pathogen invasion or for their recognition. Specifically,
neutrophils extracellular traps (NETs) in animals and root extracellular traps (RETs) in
plants, are recognized to be important players in immunity. A growing amount of
evidence revealed that the extracellular DNA, in these contexts, plays an active role in the
defense action. Moreover, the protective role of extracellular DNA against antimicrobials
and mechanical stress also appears to be confirmed in bacterial biofilms. In parallel,
recent efforts highlighted different roles of self (homologous) and non-self (heterologous)
extracellular DNA, paving the way to discussions on its role as a “Damage-associated
molecular pattern” (DAMP). We here provide an evolutionary overview on extracellular
DNA in extracellular matrices like RETs, NETs, and microbial biofilms, discussing on its
roles and inferring on possible novel functionalities.

Keywords: self-DNA, exDNA, extracellular matrix, self-DNA inhibitory effect, exDNA as a DAMP

INTRODUCTION

The presence of extracellular materials, organized as extracellular matrix (ECM), glycocalyx, or
mucus layers, has been described in both vertebrates (Huxley-Jones et al., 2007; Möckl, 2020)
and invertebrates (Har-el and Tanzer, 1993; Schröder and Bosch, 2016) as well as in plants
(Driouich et al., 2013) and microorganisms (Flemming and Wingender, 2010). Despite the specific
components may vary between clades or species, also in dependence of the specific cell types,
the extracellular organization mostly shares gel-like structures mainly composed of glycoproteins,
proteoglycans, and glycolipids (Theocharis et al., 2016).

The extracellular structures may fulfill relevant roles in terms of structure and functional
organization, contributing to fundamental processes like cell adhesion, migration, proliferation,
differentiation, and apoptosis. They can act as protective barriers in preventing pathogen invasion,
or represent advantageous habitats to facilitate symbiotic interactions, for example favoring
adhesion of microbial communities (Yue, 2014; Schröder and Bosch, 2016; Möckl, 2020).
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In vertebrates, among interesting examples of specialized
ECM production, there are those from cell types like fibroblasts,
contributing to the organization of the connective tissue,
chondrocytes, producing cartilage, and osteoblasts, producing
the bone matrix (Alberts et al., 2002). Noticeable, also
neutrophils, which are terminally differentiated killer cells in
vertebrates (Dale et al., 2008) and invertebrates (Jenne et al.,
2018), essential for both the innate and acquired immune systems
(Mantovani et al., 2011; Rosales et al., 2017), are known to
form specialized extracellular organization in terms of web-like
structures, that are called neutrophil extracellular traps (NETs),
and appear to have a relevant protective role against pathogens.

Similar structure organizations have been also described in
plants. For example, the root extracellular traps (RETs), by
analogy with the NETs, are identified as high molecular weight
compounds surrounding the plant root cap. They are mostly
composed by carbohydrates, and are produced by the root border
cells, playing a crucial role in plant defense (Hawes et al., 2011,
2016; Driouich et al., 2013).

The presence of extracellular structures has been extensively
described also in the microbial world, in microalgae, fungi,
bacteria, and archaea. These structures are generally associated
with biofilm formations. Indeed, biofilms are defined as an
agglomerate of microorganisms hold in a self-produced ECM.
Biofilm formation allows single cell microorganisms to acquire
a temporary multicellular lifestyle, facilitating survival in specific
conditions, or under specific environmental changes (e.g., levels
of oxygen and/or carbon; Monds and O’Toole, 2009; Kostakioti
et al., 2013), with possible roles in the increase of microbial
fitness and protection, as examples, from predation, desiccation,
starvation, and exposure to antimicrobials (O’Toole, 2003).

We here propose an overview of the current knowledge on the
role of extracellular DNA (exDNA) in extracellular matrices like
NETs, RETs, and biofilms, highlighting specificity and conserved
traits among different clades. The role of exDNA in these
matrices is also discussed in relationship with the evidence of the
inhibitory role of conspecific exDNA on cell growth (Mazzoleni
et al., 2015a,b), thus suggesting possible additional functions for
DNA in extracellular matrices.

Extracellular DNA
One of the current definitions of exDNA is “. . . located
outside the cell and originating from intracellular DNA by
active or passive extrusion mechanisms or by cell lysis”
(Ceccherini et al., 2009).

Extracellular DNA is abundant in many habitats, including
soil, sediments, oceans, and freshwater as well as the intercellular
milieu of metazoan (Nagler et al., 2018). In all these contexts,
the exDNA results from either cell lysis or active release, and
can be found in both the double and single stranded, as well
as more or less fragmented forms (Levy-Booth et al., 2007;
Ceccherini et al., 2009; Thierry et al., 2016; Nagler et al., 2018).
The fate of exDNA may include biotic degradation (mainly
due to ubiquitous extracellular and cell-associated DNases) and
abiotic (physical and chemical) decay, as well as environmental
long-term preservation and possible incorporation by microbial
cells or other living beings via horizontal gene transfer (HGT;

Levy-Booth et al., 2007; Nielsen et al., 2007; Torti et al.,
2015). Interestingly, the released DNA may also become
part of extracellular structures, such as NETs (Brinkmann
et al., 2004), RETs (Driouich et al., 2013), and biofilms
(Whitchurch et al., 2002).

The presence of exDNA in the Pseudomonas aeruginosa
biofilm was demonstrated in 2002, by Whitchurch et al. (2002),
whose experiments highlighted the structural role of DNA in the
establishment and development of the bacterial biofilm. In 2004
the presence of both chromatin and DNA (Brinkmann et al.,
2004) was confirmed also in the context of NETs. Finally, in
plant slime surrounding roots, later called RET (Driouich et al.,
2013), the presence of the histone H4 was revealed in 2007
(Wen et al., 2007b) and, 2 years later, the co-presence of DNA
macromolecules was demonstrated too. Thus, DNA resulted to
be an essential structural component of the ECM in plants
(Wen et al., 2009a).

ExDNA as a DAMP
DNA in extracellular environment has often been discussed
for its contribution to “Damage-associated molecular patterns”
(DAMPs), also known as “danger-associated molecular patterns,”
i.e., as a molecule of endogenous origin that, if present in
the inappropriate compartment, is recognized as a self-damage
and can initiate and perpetuate a non-infectious inflammatory
response (Seong and Matzinger, 2004; Roh and Sohn, 2018).
Indeed, after being released from damaged or dying cells, DAMPs
may activate the innate immune system by interacting with
pattern recognition receptors (PRRs; Roh and Sohn, 2018).

In animals, self-DNA of nuclear or mitochondrial origin
is frequently reported to act as a DAMP and to determine
various types of diseases. For instance, extracellular self-DNA
is associated to several diseases and/or to their severity, like
in cancers (Hawes et al., 2015), hypertension (McCarthy et al.,
2015), and Parkinson and Alzheimer diseases (Lowes et al.,
2020). Self-DNA is also considered to be involved in autoimmune
diseases such as in rheumatoid arthritis (Rykova et al., 2017), in
systemic lupus erythematosus (Barrat et al., 2005), and in other
autoimmune diseases (Vakrakou et al., 2018).

In plants, it is well established that non-self-DNA
(heterologous, i.e., DNA from phylogenetically unrelated
species, or, more in general, distant in sequence similarity
terms) of bacterial origin, triggers immunological responses
with the formation of reactive oxygen species (ROS) and callose
deposition (Yakushiji et al., 2009). Moreover, recent studies
clearly indicated that the self-exDNA has specific effects in
plants. In 2015, Mazzoleni et al. (2015a) reported evidence
that fragmented exDNA accumulating in litter during the
decomposition process, produces a concentration dependent,
species-specific inhibitory effect, reducing root growth and
seed germination of conspecifics. They highlighted for the first
time that the exposure to fragmented self-DNA inhibits root
growth in plants, while non-self-DNA does not trigger similar
effects (Mazzoleni et al., 2015a). The authors suggested that
the inhibitory effect could depend on the sequence similarity
of the plant DNA with the one representing the fragmented
molecules, since the toxic effect was also evident, although to
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a lower extent, when exposing plants to decomposing litters
of phylogenetically similar plants. These studies paved the way
to further investigations on possible novel roles of exDNA
in ecology, plant physiology, and in translational research.
Indeed, in 2016, Barbero and colleagues demonstrated that
the treatment with fragmented self-DNA triggers specific early
immune signaling responses in plants. Indeed, the authors
showed that fragments of self-DNA, and not of non-self-DNA,
induced intracellular calcium signaling and plasma membrane
depolarization in Phaseolus lunatus and Zea mays (Barbero
et al., 2016). Furthermore, in 2018, Duran-Flores and Heil
demonstrated that in Phaseolus vulgaris, the exposure to self-
DNA inhibits seed germination and triggers H2O2 production,
mitogen-activated protein kinase (MAPK) activation, extrafloral
nectar release (typical of the defensive response to herbivores)
in combination with a decreased susceptibility to infection by
the bacterium Pseudomonas syringae (Duran-Flores and Heil,
2018). In 2018, Vega-Muñoz et al. (2018) suggested that the
response to self- and non-self-DNA could depend on the degree
of self damage detected by the plant, confirming that, in line
with previous findings (Mazzoleni et al., 2015a,b; Barbero et al.,
2016; Duran-Flores and Heil, 2018), this could depend on the
concentration of either self-DNA or non-self-DNA and on the
phylogenetically distance of non-self-DNA. Vega-Muñoz et al.
(2018) also suggested that the exDNA methylation patterns could
explain the mechanism for self-DNA recognition in plants.

However, despite these evidences, the mechanisms behind the
differential response of plants to self- and non-self-DNA remains
still unclear, to our knowledge.

Bacteria can detect foreign DNA and thus activate specific
responses, as it will be discussed later, however, the role of exDNA
as a DAMP has never been proposed in bacteria.

The discovery of Mazzoleni et al. (2015a) was also extended
by the same authors to different organisms other than plants,
including microbes, fungi, protozoa, and insects (Mazzoleni
et al., 2015b). Noticeable, these studies demonstrated that
the toxic effect due to exposure to self-DNA (conspecific or
similar/homologous) in plants is a general phenomenon, that
appear to be a typical response in all species in all kingdoms,
paving the way to further studies that could address the role and
the molecular mechanisms involved in self-exDNA sensing.

ExDNA Sensing
The exDNA has been demonstrated to be sensed in animals by
receptors located in various cellular compartments, such as the
nucleus (Brázda et al., 2012; Wang et al., 2019), the cytoplasm
(Hornung et al., 2009; Herzner et al., 2015; Szczesny et al., 2018),
and the endosomes (Hemmi et al., 2000).

The distinction between self and non-self DNA is also
a relevant aspect to carefully consider when describing
crucial processes related to the detection of exogenous
DNA components. For example, the specific recognition of
unmethylated CpG-rich DNA in the endosomal compartment
is ascribed to the TLR9 receptor (Barton et al., 2006). CpG
methylation patterns are typically underrepresented in bacteria
genomes and this allows their fragments to be detected by the
host. Interestingly, the underrepresentation of CpG methylation

is also typical in the mitochondrial DNA (mtDNA), and its
erroneous recognition as a foreign molecule can give rise
to inflammatory and autoimmune pathological responses
in animals (Barrat et al., 2005; Zhang et al., 2010). In the
cytoplasm, the receptor cGAS is able to bind DNA in a sequence-
independent manner, and preferentially binding long dsDNA or
short dsDNA with unpaired open ends containing guanosines
(Y-form DNA), that are primarily found in viral genomes
(Herzner et al., 2015), thus favoring the recognition of non-self
DNA sequences when present.

In plants, no specific DNA receptor has been reported yet.
Nevertheless, it is suggested that the exposure to both self-
and non-self-DNA induces an immunological response (Duran-
Flores and Heil, 2015; Heil and Vega-Muñoz, 2019). It has been
suggested that the recognition of exDNA in plants could involve
a membrane-bound exDNA receptor that, upon recognition,
triggers a downstream signaling cascade, or a membrane-
bound exDNA transporter or channel, and/or a vesicle-mediated
internalization that, after the exDNA internalization, could favor
the detection via an intracellular sensor (Bhat and Ryu, 2016).
The sensing of exDNA molecules has also been ascribed to
mechanisms similar to the “well-known processes of interference,
based on sequence-specific recognition of small-sized nucleotide
molecules” (Mazzoleni et al., 2015a), that could justify the specific
inhibitory roles of extracellular self-DNA. Some plant membrane
proteins are considered good candidates as exDNA receptors
(Bhat and Ryu, 2016). During infection, plants release defense
proteins [pathogen-related (PR) proteins] in the extracellular
environment. Certain PR proteins, such as Vpr10.1 and GaPR10,
show RNase and DNase activities in vitro, and have a putative
adenosine triphosphate (ATP)-binding domain (Xu et al., 2014).
For their activities, they are considered potential candidates
intercepting exDNA and/or extracellular RNA outside the cell.
Interestingly, the treatment of Arabidopsis with dsRNA leads
to impairment in a pathogen associated molecular pattern
(PAMP)-triggered immunity response (Niehl et al., 2016). The
membrane-bound SERK1 was suggested to be the potential
dsRNA receptor in this process. Moreover, a transcriptome
analysis of plants treated with bacterial RNA revealed over
expression of ribonuclease (RNS)-1 (Lee et al., 2016). RNS1
is a member of the T(2) family of RNS proteins that are
typically expressed in response to wounding in Arabidopsis
thaliana, and this process is independent from the activation
of the jasmonic acid and abscisic acid pathways, which are
typical elicited by wound response. In addition, plant PRRs
recognize danger signals both from self-damage and/or non-self-
organisms (Medzhitov and Janeway, 2000; Seong and Matzinger,
2004). Among PRRs, surface-localized proteins, characterized
by leucine-rich repeats (LLRs) motifs, have been proposed as
putative exDNA receptors (Heil and Land, 2014). Nevertheless,
all these evidences need additional investigations to further
elucidate candidates exDNA receptors, their structure, and roles
(Gallucci and Maffei, 2017).

In bacteria, the perception and recognition of exogenous DNA
also occurs. In order to recognize foreign DNA, such as the viral
genomes, bacteria may recognize differential patterns in DNA
structure. Usually unmethylated or differently methylated DNA
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of exogenous DNA are recognized through the DNA restriction-
modification system (Wilson and Murray, 1991) and/or by
the CRISPR–Cas systems (Dupuis et al., 2013; Shah et al.,
2013; van der Oost et al., 2014). Cis elements as the Chi
sequences may be recognized by the RecBCD recombination
system, and may characterize the bacterial DNA because of
their higher frequency and their absence in phages (Vasu and
Nagaraja, 2013). In addition to the above-mentioned defense
systems, bacteria can also keep track of invasive elements by
specific transcriptional silencing of horizontally acquired genes
or prophages recombined with their own genome through the
recognition of different compositional patterns, such as the
higher A-T contents in foreign molecules, and thus silencing
them by the binding of repressor proteins (i.e., the heat-stable
nucleoid-structuring protein (Navarre et al., 2007) or through
the action of transcription termination factor (i.e., Rho protein;
Cardinale et al., 2008). Interestingly, during the transformation
process, the DNA uptake in most systems appears not to be
sequence-specific. However, in some Gram-negative bacteria,
such as Haemophilus influenzae (Sisco and Smith, 1979; Elkins
et al., 1991) and Neisseria species (Danner et al., 1980; Fitzmaurice
et al., 1984; Goodman and Scocca, 1988), the DNA uptake is
more efficient if specific sequences called DUS (DNA uptake
sequences), are present. As the genomes of these bacteria are
enriched in their respective DUS (Smith et al., 1995; Parkhill et al.,
2000; Tettelin et al., 2000), the uptake of self DNA is favored.
Nevertheless, specific DUS receptors on the bacterial surface have
not yet been identified (Chen and Dubnau, 2004).

DNA receptors have also been identified in bacteria. In
gram-positive bacteria, such as Bacillus subtilis and Streptococcus
pneumoniae, the DNA-binding protein ComEA is considered a
DNA receptor (Inamine and Dubnau, 1995; Bergé et al., 2002).
In gram-negative bacteria, such as in Neisseria gonorrhoeae,
orthologs of the protein ComEA contain the DNA-binding
domain (Chen and Gotschlich, 2001) and, presumably, may have
the same role. Recently, the protein ComH has been identified
in the gram negative bacteria Helicobacter pylori as a periplasmic
DNA-binding protein, that interacts with the periplasmic domain
of the inner membrane translocator ComEC to transfer the DNA
into the cytoplasm (Damke et al., 2019).

NETs

Extracellular traps produced by eosinophils, mast cells,
macrophages, and neutrophils are extracellular components
in animals that have been demonstrated to contain DNA in their
structure organization (Goldmann and Medina, 2012). Among
these, NETs that are produced by neutrophils, are the most
studied extracellular traps (Figure 1). Neutrophil cells, designed
as heterophils in birds, reptiles, and some mammals, are the
most abundant granulocytes (Montali, 1988), representing from
40%, up to 70%, of all white blood cells in humans. They are
also present in higher invertebrates in the form of primordial
neutrophils (Jenne et al., 2018), where they play active roles in
the process of phagocytosis, but also share the ability to form
clotting of haemolymph with platelets.

Mature neutrophils are released from bone marrow into the
bloodstream (Mayadas et al., 2014), and represent the first line
of defense against the invading microbes (de Bont et al., 2019).
Indeed, they kill microbes by releasing proteases that favor their
engulfment by macrophages, through phagocytosis, activating
the immune system (Sofoluwe et al., 2019).

Neutrophils extracellular trapsosis is the process by which
the NET formation occurs. This process was described
for the first time in 2004 by Brinkmann et al. (2004). It
consists in the expulsion of DNA, proteases, and antimicrobial
peptides into the extracellular space (Sofoluwe et al., 2019). In
particular, the induction of NETosis activates the nicotinamide
adenine dinucleotide phosphate (NADPH) oxidase complex
that produces superoxide anions. Superoxide anions are
converted into hydrogen peroxide, which is a substrate of
the myeloperoxidase (MPO) that induces the release of the
neutrophil elastase (NE) from neutrophil granules. NE and MPO
migrate to the nucleus, where they induce histone degradation
decondensing chromatin structure. Moreover, NE degrades actin
filaments inhibiting neutrophils movement (Fuchs et al., 2007;
Papayannopoulos et al., 2010; Metzler et al., 2011, 2014; Palmer
et al., 2012; de Bont et al., 2019). Therefore NETs composition
consists in proteins from primary, secondary, and tertiary
neutrophils granules, MPO, NE, DNA, and histones (H1, H2A,
H2B, H3, and H4), in addition with cathepsin G, lactoferrin,
gelatinase, as initially revealed by Brinkmann et al. (2004).

DNA in NETs can be composed either by nuclear or
mitochondrial DNA. In 2009, Yousefi et al. (2009) showed
that, in specific conditions, NETs could be formed from pure
mtDNA, and this was not accompanied by NETosis since
neutrophils remained viable. In 2014, McIlroy et al. (2014)
demonstrated that NETs could be released also after injury and
orthopedic trauma surgery.

NETs influence the humoral innate immunity by producing
part of the complement factors cascade (de Bont et al., 2019),
which consists in more than 30 proteins mostly produced by the
liver. They are activated by a sequence of proteolytic cleavages
ending with the formation of a pore on the pathogen cell
membrane that, losing its integrity, determines pathogen death
(Sarma and Ward, 2011; Janeway et al., 2017). Interestingly,
complement activation by NET formation is strongly decreased
by DNase I (de Bont et al., 2019). Furthermore, NETs can also act
as a scaffold for clot formation, highlighting novel insights on the
role of neutrophils and NETosis in coagulation-mediated diseases
(de Bont et al., 2019).

Neutrophils extracellular traps are structures including active
molecules with strong intermolecular bindings, preventing their
diffusion into neighboring tissues. In vivo, NETs are degraded
by DNases and removed by macrophages (Hakkim et al., 2010;
Farrera and Fadeel, 2013; Jiménez-Alcázar et al., 2017; de
Bont et al., 2019). These are essential steps that follow NETs
formation and are required for NETs clearance. Remarkably, in
2017, Jiménez-Alcázar et al. (2017) demonstrated that DNase
1 and DNase 3 are essential for NET clearance, and that
mice deficient in DNase 1 and DNase 3 die few days after
neutrophil activation, because of blood vessels occlusion caused
by persistent NET structures (Jiménez-Alcázar et al., 2017).
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FIGURE 1 | Schematic representation of NETs (animals), RETs (plants), and biofilms (microbial communities) structures. NETs: N, neutrophil; MPO, myeloperoxidase;
NE, neutrophil elastase; Gn, neutrophil granules; H1, H2A, HAB, H4, histones; CG, cathepsin G; L, lactoferrin; GL, gelatinase; RETs: RC, root cap cells; MU,
mucilage; SC, sloughed cells; aa, aminoacids; Biofilms: NA, nucleic acids; LP, lipids, UA, uronic acid; HA, humic acid; ExDNA, extracellular DNA; M,
monosaccharides; PS, polysaccharides; and P, proteins.

Moreover, Savchenko et al. (2014) in their studies on the role
of innate immune cells in the early response to myocardial
ischemia/reperfusion injury, demonstrated that myocardial
injury caused an increase in nucleosomes, neutrophil infiltration,
and histone H3 at the site of injury. Treatment with DNase
improved cardiac contractile function to a similar degree in
both wild type and PAD4-/- deficient mice, which do not
produce NETs. This suggested that DNA fragments contribute
to cardiomyocyte dysfunction irrespective of NETs, possibly
by acting as DAMPs (Savchenko et al., 2014; Shah et al.,
2020). Confirming its positive role against NET-mediated
pathologies, DNase 1 has been proposed as an enzyme
able to attenuate them in mice (Németh et al., 2020).
Consistent with the observation in mice, the persistence of
NETs can have serious negative consequences in humans,
leading to pathologies such as cardiovascular, lung and
eye diseases, atherosclerosis, rheumatoid arthritis, thrombosis,
diabetes, cancer, and severe COVID-19 (Demers et al., 2012;
Arazna et al., 2013; Brinkmann, 2018; Daniel et al., 2019;
Erpenbeck et al., 2019; Leppkes et al., 2020).

In 2020, Neumann et al. (2020) traced the evolutionary
presence of NET like structures, organized by the extrusion of
decondensed chromatin and additional intracellular material, in
different phyla: Chordata, Arthropoda, Mollusca, Cnidaria, and
the Plantae kingdom included. However, the functional role of
their presence is still questionable, as also commented by the
authors themselves: “can organisms from other life kingdoms
use a similar mechanism as defense strategies against their foes?”
(citation by Neumann et al., 2020).

Notwithstanding the great interest and relevant roles of NETs,
their release mechanisms are not fully understood and some
aspects of the process still remain unclear (Manda-Handzlik et al.,
2019). In addition, the structure and possible functional roles of
exDNA in NETs organization is still matter of investigation.

RETs

Plant roots provide water and nutrients to the whole plant
body. They show a peculiar organization that is also determined

Frontiers in Plant Science | www.frontiersin.org 5 December 2020 | Volume 11 | Article 589837

https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles


fpls-11-589837 December 15, 2020 Time: 12:22 # 6

Monticolo et al. DNA in NETs, RETs, Biofilms

by specific assemblages of extracellular materials, mainly
represented by root mucilages. In the external part of the
root apex, adjacent to the apical meristem, the plant root cap
represents a dynamic and multifunctional tissue. This tissue is
extremely resistant to both biotic and abiotic stimuli, in contrast
with the internal, highly proliferating, tissue that represents the
root elongation zone. The peculiar resistance of the root cap
tissue depends on the presence of root border cells at the cap
periphery. These cells, in most plant species, separate from the
cap as a metabolically active population of cells, that is released
into the rhizosphere as free cells or in clump (Brigham et al.,
1998; Gunawardena and Hawes, 2002; Wen et al., 2007b; Hawes
et al., 2016). Originally, border cells were defined as those cells
that are released into suspension by a brief immersion of the
root tip into water (Brigham et al., 1995). Proteomic and gene
expression profiling studies revealed that these cells are different
from their progenitors in the root cap, although they share
similarities across diverse plant species (Brigham et al., 1995;
Wen et al., 2007b, 2009b). Root border cells were previously
referred as “sloughed root cap cells,” since they were thought to
be a product of tissue disintegration. Subsequently, they were
termed “border cells” to emphasize that they are viable after the
detaching from the root cap and that they are a specialized tissue,
morphologically and physiologically different from the root cap
cells (Hawes et al., 2016).

It has been shown that root cap cells and border cells
are able to secrete the root mucilage, the high molecular
weight sticky matrix that surrounds the plant root cap, through
an active continuous process, that piles up materials outside
the root (Figure 1). The number of border cells and their
secretion into the rhizosphere can vary according to many
factors [water availability, soil type, physical abrasion, day
length, root age, growth rate, the amount of carbon dioxide,
of aluminum, of boron, plant pathogens, the altered expression
of genes controlling cell cycle or cell wall solubilization
at the cap periphery (Hawes et al., 2012)]. Moreover, root
mucilage formation also contributes to the whole root network
asset, starting from an initial structure surrounding the
root cap (Driouich et al., 2019), and in relationships with
growth conditions, that determine the root mucilage secretion
(Hawes et al., 2012).

The root mucilage is mostly composed by both mono and
polysaccharides (mainly galactose, glucose, arabinose, fucose,
and xylose), proteins (e.g., proteases, peroxidases, plant defense-
related proteins, such as defensins, well-known to be also relevant
components of the plant cell wall and of the apoplast) and amino
acids. Interestingly, the root mucilage was also revealed to be
formed by known intracellular markers, such as histone H4 (Wen
et al., 2007b; Weiller et al., 2017). Together with the histone H4,
the presence of DNA in the root mucilage was also reported (Wen
et al., 2009a). Other molecules could be also part of root mucilage
(Vincent et al., 2020).

Plant exDNA in RETs was initially thought to be derived
by leakage from dead cells (Levy-Booth et al., 2007). However,
currently, there is no observation demonstrating that exDNA
in RETs is released by lytic processes (Driouich et al., 2019).
Indeed, it has been recently demonstrated that newly synthesized

DNA is actively exported into the ECM by vital root cap cells,
even if the leakage of nuclear content from dead cells cannot be
excluded (Wen et al., 2009a). Once released, the exDNA forms
distinctive structures, similar to those produced by neutrophils
(Patel et al., 2010; Pilsczek et al., 2010). In addition, initial
analyses revealed that the exDNA in RETs is mainly represented
by nuclear DNA enriched in repetitive sequences (Hawes et al.,
2012) and, moreover, to date there is not yet evidence of presence
of mtDNA sequences in these structures (Driouich et al., 2019).

In 1942, Rogers and his colleagues advanced the hypothesis
that the border cells producing the root mucilage may
represent an “extra-root” digestive system (Rogers et al.,
1942), that functions as an exoenzyme system releasing
substances, like phosphatases, into the rhizosphere (Driouich
et al., 2019). This putative function could resemble the well-
known extracellular digestive activity before substrate absorption
in fungi, during organic matter decomposition processes
(Jennings, 1995; Cole, 1996). Many other roles were associated
with the root mucilage, such as: lubricant protecting the root
tips while growing into the soil (Greenland, 1979); carrier of
gravitropic signals from the root cap to the root tip (Moore et al.,
1990); protection of roots from the toxicity of ions such as copper,
cadmium, boron, lead, mercury, iron, arsenic, aluminum (Mench
et al., 1987; Hawes et al., 2016), or as carbon source for soil
microbes (Knee et al., 2001).

The root cap secretion represents a primary site in the
root that is colonized by microbial symbionts and pathogens
that are present in the rhizosphere. On one hand, it is well
known that the rhizosphere sheet surrounding the fine roots is a
complex ecosystem, representing the habitat of specific microbial
communities interacting with the plant, including bacteria
and mycorrhizal organisms in both symbiotic and mutualistic
relationships with the root (Lambers et al., 2009; McNear Jr,
2013). On the other hand, similarly to NETs in animals, diverse
plant pathogens interact with border cells, which appear to act as
a trap against microorganisms, forming aggregates and inhibiting
pathogen growth. It has been proposed that the root slime works
by “trapping” pathogens to protect the root tip meristem, whose
function is critical to root development and plant survival and
with a structure that does not show specific resistance to biotic or
abiotic stress (Whipps, 2001; Raaijmakers et al., 2009).

Interestingly, the extracellular trapping phenomenon is host-
microbe specific, with no aggregation or growth inhibition of
non-pathogenic organisms (Jaroszuk-Ściseł et al., 2009). The
chemotaxis and the binding of host–specific microbes (bacteria,
as well as nematodes, zoospores, and fungi), along the plant cell
wall and on the structures of the mucilage secreted by border cells,
are always followed by quiescence of the pathogen population
(Wen et al., 2017).

All the constituents of the RETs play an important role in the
host defense against pathogens. For example, the importance of
the involved proteins was documented by the fact that, when
the roots are treated with proteases at the time of inoculation
with spores of a pathogenic fungus, the normal resistance to root
tip infection is abolished (Wen et al., 2007b). Treatment with
proteases also results in the disintegration of the surrounding
mucilage layer with the subsequent release of bacteria within

Frontiers in Plant Science | www.frontiersin.org 6 December 2020 | Volume 11 | Article 589837

https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles


fpls-11-589837 December 15, 2020 Time: 12:22 # 7

Monticolo et al. DNA in NETs, RETs, Biofilms

the layer (Wen et al., 2007a). This evidence suggests that
proteins may play a role in the structural integrity of the matrix
(Matsuyama et al., 1999), even though they comprise only a small
fraction of the matrix composition, which is mainly composed by
carbohydrates (Bacic et al., 1986; Moody et al., 1988; Chaboud
and Rougier, 1990; Hawes et al., 2012).

Furthermore, the degradation of exDNA results in loss of
root tip resistance to infection. When DNase 1 is added at
the time of pathogen inoculation, 100% of root tips becomes
necrotic within 48–72 h (Hawes et al., 2011). Moreover, the
inactivation of extracellular DNases in the plant pathogen
Ralstonia solanacearum reduces the virulence, showing that the
infection is related to the pathogen capability of dissolving the
structural organization of the extracellular trap, thus reducing its
protection function (Tran et al., 2016; Wen et al., 2017).

Despite the reported evidence, mechanisms of RETs formation
and root mucilage depositions, as well as those promoting the
DNA release by the border cells into the extracellular space, still
need to be completely elucidated.

BIOFILMs

It is known that the microbial world can appear organized in
specific structures composed of sessile cells encased by an ECM,
which are called biofilms (Figure 1).

The first observation of microbial biofilms was made by
Antonie van Leeuwenhoek, in 1684, when he found aggregates of
different microbes colonizing his own teeth and tongue (Dobell,
1932). Later, Pasteur observed that aggregates of microbes
allowed the fermentation of wine into vinegar (Pasteur, 1864).
In the following years, researchers lost interest in biofilms until
1985 (Høiby, 2017), when it was demonstrated the increase in the
antimicrobial resistance of biofilm-enclosed bacteria compared
to the planktonic counterparts (Nickel et al., 1985). Since then,
the interest in biofilm research enormously increased, also
because the biofilm life-style was recognized to be the most
common mode of growth and survival of microbial species in
the environment, with huge implications in ecology, industry,
biotechnology, and clinics.

The biofilm formation is a reversible process in which cells
can return to planktonic life-style if perturbed by hydrodynamic
and repulsive forces, or as a consequence of nutrient depletion
(Donlan, 2002). Biofilm development is determined by both
intrinsic and environmental factors and consists of different
stages. It starts from single cells on a surface showing a
stochastic distribution (Kostakioti et al., 2013; Armbruster and
Parsek, 2018). On the surface, cells encounter attractive or
repelling forces depending on environmental conditions, such as
nutrient availability, ionic strength, pH, and temperature. These
factors affect the velocity and the direction toward or away
from the contact surface (Donlan, 2002). Once microorganisms
adhere to the surface, the attachment becomes stable, cells
start multiplication and secretion of the ECM, that is also
named extracellular polymeric substance (EPS; Flemming and
Wingender, 2010). This process leads to the formation of micro-
colonies (Costerton et al., 1999). The biofilm architecture can

favor different processes such as the exchange of nutrients, the
distribution of metabolic products, and of signaling molecules
(Jamal et al., 2018). Microbial cells communicate with each other
through auto-inducer signals during biofilm maturation, which
affect the microbial cell density (Davies et al., 1998; Costerton
et al., 1999; Federle and Bassler, 2003). During the maturation,
the EPS becomes essential for the biofilm three-dimensional
structure organization and for the survival of the micro-colonies.
In fact, interstitial channels are embedded in the EPS acting as
a circulatory system that favors the distribution of nutrients and
the removal of waste products (Jamal et al., 2018). The final stage
in the biofilm life cycle includes the production and release of
dispersal cells which switch from sessile into motile forms. They
leave the original microcolonies and can colonize new surfaces
to initiate the surface-association phase of the biofilm formation
(McDougald et al., 2012).

The EPS of a biofilm may differ depending on the species,
but it is generally composed by several molecules such as
carbohydrates, lipids, proteins, and nucleic acids, including
DNA (Zhang et al., 1998; Flemming and Wingender, 2010;
Kassinger and van Hoek, 2020) as well as by pili, flagella,
humic, and uronic acids, which are all considered essential
components of the biofilm organization (Nielsen et al., 1996).
Extracellular carbohydrates in the biofilm matrix can trap
micronutrients, enhance the attachment to the surface and
biofilm formation (Harrison et al., 2007; Kassinger and van
Hoek, 2020). Extracellular vesicles have also been found in the
biofilm matrix of different microbial species, contributing to its
lipidic and protein content (Schooling et al., 2009; Zarnowski
et al., 2018; Kassinger and van Hoek, 2020). Nevertheless, the
role of all these components in the biofilm organization is still
under investigation.

Beyond its structural and functional role during cell adhesion
and biofilm development, the extracellular DNA has never been
discussed for its role as a DAMP in bacteria, also in the context of
biofilm formation.

ROLE OF DNA IN THE NETs, RETs, AND
BIOFILMs

The presence of exDNA in NET, RET, and biofilm drives the
attention on its structure and functional roles in each of the
specific contexts (Table 1).

DNA in NETs
In NETs, the DNA has been shown to provide a major
contribution to the antimicrobial activity. Indeed, it possesses
the ability to sequester surface bound cations, disrupt membrane
integrity, and lyse bacterial cells (Halverson et al., 2015).
The DNA antimicrobial property is determined by its direct
contact with the bacterial membrane and by the phosphodiester
backbone that is required for the cation chelation (Baums and
von Köckritz-Blickwede, 2015). In fact, it has been demonstrated
that treatment of NETs with an excess of cations or phosphatase
enzyme, and exogenous or secreted microbial DNAses, protects
pathogens from the NET antibacterial action (Baums and von
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TABLE 1 | Main roles of extracellular DNA in NETs, RETs, and Biofilms and associated bibliographic references confirming (Confirmed), hypothesizing (Hypothesis) the
specific role or not available (n/a).

Extracellular structure

ExDNA role NET RET Biofilm

Structure Confirmed1,2 Confirmed3−6 Confirmed7−24

Defense Confirmed1,2,25−27 Confirmed3,28−31 Confirmed32,33

Pathogen trap Confirmed1,2,25,26 Confirmed28−31 n/a

Autotoxicity Confirmed2,27,34−43 Hypothesis44−48 Hypothesis45

Source of genetic information n/a n/a Confirmed49−51

Source of inorganic phosphate n/a Confirmed52 n/a

Numbers are associated to the corresponding bibliographic references as follows: 1Brinkmann et al. (2004), 2Yousefi et al. (2009), 3Wen et al. (2009a), 4Hawes et al.
(2012), 5Patel et al. (2010), 6Pilsczek et al. (2010), 7Kassinger and van Hoek (2020), 8Zhang et al. (1998), 9Ascher et al. (2009), 10Flemming and Wingender (2010),
11Flemming et al. (2016), 12Decho and Gutierrez (2017), 13Abada and Segev (2018), 14Mann et al. (2009), 15Whitchurch et al. (2002), 16Harmsen et al. (2010), 17Gödeke
et al. (2011), 18Nguyen and Burrows (2014), 19Das et al. (2010), 20Seviour et al. (2019), 21Gloag et al. (2013), 22Peterson et al. (2013), 23Payne and Boles (2016),
24Gallo et al. (2015), 25Halverson et al. (2015), 26Baums and von Köckritz-Blickwede (2015), 27Tsourouktsoglou et al. (2020), 28Tran et al. (2016), 29Driouich et al. (2019),
30Plancot et al. (2013), 31Hawes et al. (2011), 32Chiang et al. (2013), 33Mulcahy et al. (2008), 34Savchenko et al. (2014), 35Shah et al. (2020), 36Krysko et al. (2011),
37Demers et al. (2012), 38Brinkmann (2018), 39Daniel et al. (2019), 40Erpenbeck et al. (2019), 41Leppkes et al. (2020), 42Arazna et al. (2013), 43Wang et al. (2015),
44Mazzoleni et al. (2015a), 45Mazzoleni et al. (2015b), 46Barbero et al. (2016), 47Duran-Flores and Heil (2018), 48Vega-Muñoz et al. (2018), 49Lorenz and Wackernagel
(1994), 50Merod and Wuertz (2014), 51Orwin et al. (2018), and 52Paungfoo-Lonhienne et al. (2010).

Köckritz-Blickwede, 2015; Halverson et al., 2015). Furthermore,
Halverson et al. (2015) demonstrated that the DNA in NETs
induces the upregulation of protective surface modifications in
bacteria (Halverson et al., 2015). In fact, bacteria co-incubated
with NETs, upregulates the expression of the arn operone and of
spermidine synthesis genes (Baums and von Köckritz-Blickwede,
2015). These two factors stabilize the bacterial envelope and
mediate resistance to antimicrobial peptides (Johnson et al., 2012;
Gutu et al., 2015). In 2020, Tsourouktsoglou et al. (2020) showed
that histones and DNA work together in triggering inflammation,
when histone-induced cytotoxicity is not reached. Indeed, at
low concentrations, nucleosomes can induce cytokines, and the
inflammatory response, whereas at high concentrations they kill
the cells (Tsourouktsoglou et al., 2020). Cooperative effects due to
histones and DNA are essential for the production of cytokines
without killing cells. In fact, histones bind and activate TLR4,
whereas DNA recruits TLR4 into endosomes containing histones
(Tsourouktsoglou et al., 2020).

Of note, as mentioned above, NETs were demonstrated
to be formed from pure mtDNA which can have a potent
proinflammatory effect, acting as a DAMP, and directly
modulating an inflammatory response (Krysko et al., 2011). This
is due to the different methylation pattern of mtDNA when
compared to nuclear DNA (Patil et al., 2019), making it detectable
as a foreign molecule (bacterial or viral like), rather than a
“self ” DNA molecule (Yousefi et al., 2019), thus activating an
immune response by stimulating the PRRs STING (Lood et al.,
2016). Furthermore, in 2015, Wang et al. (2015) demonstrated
higher levels of mtDNA in NETs of systemic lupus erythematosus
patients when compared with controls, suggesting a possible role
of mtDNA in autoimmune diseases (Wang et al., 2015).

DNA in RETs
Similarly to NETs, both the histones H4 and the exDNA in RETs
are suggested to have an antimicrobial activity (Tran et al., 2016;
Driouich et al., 2019). The former, like the cationic antimicrobial

peptides, may bind and disrupt microbial cell membranes. The
DNA in RETs is discussed to have a structural role like a
scaffold allowing the adhesion of anti-microbial components,
being also considered as a trap for pathogens (preventing
their spread throughout the organism). In addition, it exerts a
direct bactericidal function (Halverson et al., 2015), putatively
with the same action discussed for NETs. Evidence suggested
that, in RETs, the DNA might be an integral component of
plant defense, playing a relevant role in the innate immunity
response to pathogen invasion. For instance, it is reported
that the DNA is released in the extracellular environment with
other molecules, such as callose, ROS, and cell wall extensins,
in response to pathogen molecules (Plancot et al., 2013).
Moreover, the production of extracellular DNases contributes to
pathogens virulence (Hawes et al., 2011). The plant pathogen
R. solanacearum produces two extracellular DNases that are able
to degrade the DNA in pea root mucilage, allowing the pathogen
to overcome the border cell trap. Conversely, R. solanacearum
mutants, lacking both nucleases, remain immobilized in the
root matrix, thus showing a reduced virulence (Steichen et al.,
2011; Tran et al., 2016). Worthy to note, although the role of
self exDNA as a DAMP has been discussed in plants (Barbero
et al., 2016; Duran-Flores and Heil, 2018; Vega-Muñoz et al.,
2018), as also here reviewed, there is no clear evidence that the
exDNA released by root cap cells in the extracellular space and
organized in RETs could act as a DAMP too, thus triggering an
immunological response in plants.

Despite the evidence listed above, the role of exDNA in RETs
remains to be further elucidated. Its release by viable border cells
suggests an active role in plant root defense against pathogens in
the rhizosphere. However, further analyses are still required to
elucidate its possible functions and associated mechanisms.

DNA in Biofilms
ExtracellularDNA is today accepted to be essential during
biofilm formation and development (Ascher et al., 2009),
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as a component of the ECM in both terrestrial and marine
biofilms (Flemming and Wingender, 2010; Flemming et al.,
2016; Decho and Gutierrez, 2017; Abada and Segev, 2018),
as well as in biofilms of clinically relevant microorganisms
such as Staphylococcus spp., Streptococcus spp., Candida
spp., P. aeruginosa (Mann et al., 2009). Interestingly, DNA
is mostly represented by randomly fragmented genomic
DNA (Steinberger and Holden, 2005; Wu and Xi, 2009;
Kassinger and van Hoek, 2020).

The exDNA is released into the surrounding matrix not only
by lysed cells (Sutherland, 2001), but also by an active release,
sometimes mediated by membrane vesicles (Kadurugamuwa
and Beveridge, 1995; Grande et al., 2015; Kassinger and van
Hoek, 2020). In particular, the mechanism of DNA release
differs among gram positive and gram negative bacteria. Gram
positive bacteria are thought to release DNA in biofilms by
autolysis or lytic processes, while the formation of vesicles and
the release by the type 4 secretion system appear to be additional
processes that are typically described in gram negative bacteria,
depicting and active release of DNA in the extracellular space
(Ibáñez de Aldecoa et al., 2017).

Multiple functions have been described for exDNA in biofilms
(Das et al., 2013; Okshevsky and Meyer, 2015; Ibáñez de Aldecoa
et al., 2017). The structural role of exDNA in biofilm formation
(Whitchurch et al., 2002; Harmsen et al., 2010; Gödeke et al.,
2011) has been demonstrated by the treatment with DNases,
that generally lead to biofilm disruption and consequent cell
dispersal (Whitchurch et al., 2002; Nguyen and Burrows, 2014).
Furthermore, it has been demonstrated that exDNA forms
complexes with the amyloid proteins secreted by different species,
generating biofilms (Barnes et al., 2012; Schwartz et al., 2016).
Apart from the structural role discussed above, other specific
functions of exDNA in biofilms have been suggested. ExDNA
may act as facilitator of the initial adhesion of cells to the surface
(Das et al., 2010), in support of EPS gelification (Seviour et al.,
2019), in the maintenance of specific cell orientations (Gloag
et al., 2013), in the control of viscoelastic relaxation of the
biofilm in mechanical stress conditions (Peterson et al., 2013)
and in the induction of the morphological changes from yeast
to hyphal growth, during Candida albicans biofilm development
(Payne and Boles, 2016).

The presence of DNA in the matrix has been also related to
biofilm antibiotic resistance (Chiang et al., 2013). For instance,
a higher antimicrobial resistance has been detected in the
presence of higher concentration of exDNA in biofilms (Mulcahy
et al., 2008). Moreover, the chelator action of negatively charged
exDNA phosphodiester backbone also plays a role against
cationic antimicrobials (Mulcahy et al., 2008). Biofilms have
also been shown to stimulate the host innate and the adaptive
immune system, and this may cause the development or the
progression of host autoimmune responses (Gallo et al., 2015).
It has been suggested that these events could be favored by
different putative causes. Indeed, the autoimmune response
could be triggered or by the release of DAMPs, due to drastic
damages of the host structures caused by the bacteria infection,
and/or by components of their biofilm structure. As an example,
bacteria biofilms may be composed by scaffolds of amyloid

proteins that are highly resistant to degradation. For example,
curli fibers are amyloids present in biofilms of enteric bacteria.
It was shown that the complex between curli fibers and
bacterial DNA in enteric biofilms has a higher inflammatory
activity when compared with the effects of curli fibers or
DNA alone (Gallo et al., 2015). It was demonstrated that curli
fibers are detected by the TLR2/TLR1 heterocomplex on the
membrane of immune cells. This triggers the internalization
of the curli/DNA complex via endosome formation, and the
activation of the receptor TLR9 by the bacterial DNA. Since
amyloids are expressed also by human cells, their presence
could trigger the production of autoantibodies, justifying the
possible occurrence of autoimmune responses (Gallo et al.,
2015). It has been suggested, however, that the autoimmunity
response triggered by the exposure to bacteria biofilm may
evolve in autoimmune disease when the individual is already
predisposed by genetic factors. Beyond these effects, however,
currently there is no further evidence, to our knowledge, that
could suggest possible additional roles of biofilm components
in causing autoimmune responses, rather than their capability
to trigger the development of autoantibodies or trigger adverse
reactions due to the detection of their DNA by host cell
intracellular receptors.

The role of exDNA as a source of genetic information in the
context of HGT within the biofilm has been addressed in several
studies (Lorenz and Wackernagel, 1994; Merod and Wuertz,
2014; Orwin et al., 2018). Homologous recombination of foreign
DNA into the host chromosome following transformation is
believed to play a major role in bacteria evolution (Flemming
et al., 2016). Biofilm offers ideal conditions for exchanges of
genetic material because of the high cell density, increased genetic
competence, and the presence of abundant exDNA.

From a clinical point of view, exDNA also turns out to
represent a possible target for antibiotic agents acting against
biofilm structural integrity, increasing the susceptibility of its
constituents (Koo et al., 2017; Rocco et al., 2017; Ye et al., 2017).

DISCUSSION

Extracellular DNA, whether released in biofilm by bacteria, in
RETs by root cap cells or in NETs by neutrophils or other
cell types, has key structural, and functional roles that we here
reviewed, as summarized in Figure 1 and Table 1. In addition,
further intriguing roles of exDNA produced by an organism or
by cells from the same species, have also been described in terms
of extracellular self-DNA inhibitory effects.

In 2015, Mazzoleni demonstrated for the first time that the
exposure to fragments of self-DNA, and not of non-self-DNA,
inhibits root growth in plants in a concentration dependent
manner (Mazzoleni et al., 2015a). Moreover, Mazzoleni and co-
workers suggested that the phenomenon is dependent on the
similarity of the “self ” DNA fragments with the genome of
the treated species, thus explaining the autotoxicity in litters of
phylogenetic related species. Indeed, they demonstrated that in a
specific plant species the treatment with different non-self-DNA
fragments produces different effects: the closer the organisms
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phylogenetic distance, the higher the inhibitory effect of non-self-
DNA on the treated plant (Mazzoleni et al., 2015a).

Following their experimental evidences, Mazzoleni and co-
workers hypothesized that the inhibitory effect of self-DNA,
because of its specificity and its occurrence also with DNA
of related species, could be the result of a mechanism
resembling the “well-known processes of interference based
on sequence-specific recognition of small-sized nucleotide
molecules” (Mazzoleni et al., 2015a).

Later, the same authors demonstrated that the inhibitory
effect of self DNA, compared to non-self DNA, is a general
phenomenon (Mazzoleni et al., 2015b) since the growth
inhibition was also demonstrated for other species of different
taxonomic groups (such as algae, bacteria, and fungi), reinforcing
the hypothesis that the mixture of random self-DNA fragments
could cause both an interference or exert inhibitory effect on the
whole genome functionality (Mazzoleni et al., 2015a).

Duran-Flores and Heil (2015), considering the same
topic, suggested two possible mechanisms: a self-specific
membrane reception followed by a downstream signaling
cascade activation or the direct uptake of fragmented DNA
into cells with subsequent interference with essential biological
processes. A further hypothesis was suggested to explain
the dosage-dependent growth-inhibition by self-DNA as
the phenotypic consequence of a costly immune response
(Duran-Flores and Heil, 2015).

Cartenì et al. (2016) proposed that the first sensing of
exogenous self-DNA could occur at the level of RET and,
following its uptake, the cell functionality could be affected
in different manners. For example, the self- DNA could
interfere with gene expression following a sequence-specific
recognition of homologous sequences recognition involving
RNA/DNA interactions or the direct interaction with the genome
structure through a mechanisms similar to the Small Fragment
Homologous Replacement (Cartenì et al., 2016). They suggested
that a mixture of random self-DNA fragments, once inside the
plant cell, recognizes and anneals with the homologous DNA
sequences in the plant genome. This could lead to the formation
of structures that activate mechanisms of DNA repair allowing
the integration of small DNA fragments into the genomic DNA
thus affecting cellular activities (Cartenì et al., 2016).

Currently, however, the mechanisms underlying the
specific recognition of either self and non-self-DNA and
subsequent responses in plants are still poorly understood
(Bhat and Ryu, 2016).

Beyond the structure and functional roles here reviewed
for NETs, RETs, and biofilms, novel intriguing aspects arise
when considering the specific inhibitory effects of extracellular
self-DNA demonstrated by Mazzoleni et al. (2015a,b) and in
subsequent efforts (Duran-Flores and Heil, 2018).

Concerning NETs, it is well known the role of the DNases
responsible for their degradation that, while avoiding NET
diffusion into neighboring tissues, favor their necessary clearance.
Indeed, not removed NETs are able to form clots causing
vascular occlusion and organ failure (Papayannopoulos et al.,
2010; Arazna et al., 2013; Jiménez-Alcázar et al., 2017). Moreover,
the evidence that in the absence of a complete NET removal,
the complex of chromatin-DNA can be a primary target for

autoantibodies leading to the development of autoimmune
diseases (Barrat et al., 2005; Wang et al., 2015; Rykova et al.,
2017; Vakrakou et al., 2018) or that DNA fragments contribute
to cardiomyocyte dysfunction irrespective of NET formation
(Savchenko et al., 2014; Shah et al., 2020), or that DNases
can attenuate NET-mediated pathologies (Németh et al., 2020),
indicates a potential negative effect of extracellular self-DNA
present in NETs.

Indeed, the persistence of self-DNA in the context of
NETs has been demonstrated to exert pro-inflammatory effects
by promoting the formation of autoantibodies against both
mitochondrial (Krysko et al., 2011; Wang et al., 2015) and nuclear
(Barrat et al., 2005; Tsourouktsoglou et al., 2020) DNA, that
can induce the activation of immune cells such as macrophage
and neutrophils.

When considering also RETs and biofilms further issues arise:
what conditions the exDNA released by root cap cells in the
mucilage or while forming biofilms produces? Can they be either
positive or negative for the host, either in roots or in microbial
organisms, respectively? Could the co-secreted ECM have also
the role of decreasing the bio-availability of extracellular self-
DNA molecules to limit its potential inhibitory role, thus favoring
the formation of RETs, or biofilms, or NETs, and forming self
“exDNA traps,” thus limiting possible self-inhibitory effects?
Although in the context of RETs and microbial biofilms a direct
negative role of the exDNA in the matrices against the producing
organisms has never been shown, the inhibitory effect of exDNA
fragments has been demonstrated to be a general biological
process in animal, plants, and bacteria (Mazzoleni et al., 2015b).

Therefore, a major issue remains to be considered on the
possible roles of the ECM components in structuring and
organizing exDNA. The trapping of exDNA in the ECM offers
protective advantages against foreigner attacks, and, in parallel,
limits its bio-availability in the environment as a free molecule,
affecting its possible effects on the releasing organisms. In this
framework the matrices could play an additional role in limiting
the extracellular self-DNA self-inhibitory effects.

Studies addressing the roles of DNA in extracellular
environments, and specifically in extracellular matrices
formation, will shed further light on additional mechanisms and
functionalities of these complex systems, ubiquitarian across
different kingdoms.
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