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During the reproduction of animals and lower plants, one sperm cell usually
outcompetes the rivals to fertilize a single egg cell. But in flowering plants, two sperm
cells fertilize the two adjacent dimorphic female gametes, the egg and central cell,
respectively, to initiate the embryo and endosperm within a seed. The endosperm
nourishes the embryo development and is also the major source of nutrition in cereals for
humankind. Central cell as one of the key innovations of flowering plants is the biggest
cell in the multicellular haploid female gametophyte (embryo sac). The embryo sac
differentiates from the meiotic products through successive events of nuclear divisions,
cellularization, and cell specification. Nowadays, accumulating lines of evidence are
raveling multiple roles of the central cell rather than only the endosperm precursor. In this
review, we summarize the current understanding on its cell fate specification, intercellular
communication, and evolution. We also highlight some key unsolved questions for the
further studies in this field.

Keywords: central cell, double fertilization, flowering plants, gymnosperm, cell specification, cell-cell
communication

INTRODUCTION

Unlike that in animals where the haploid spores generated by meiosis directly differentiate
into functional gametes, in plants the haploid spores undergo additional mitosis to produce
multicellular gametophytes. In lower plants, like the Bryophyte, gametophytes are dominant of
their life cycles and unusually free-living, whereas in seed plants (gymnosperms and angiosperms),
the gametophytes are structurally reduced and develop within the sporophytic sexual organs.
In flowering plants (angiosperms), the female gametophytes are developmentally reduced to a
miniature structure with only a few cells embedded within layers of sporophytic ovular tissues.
In contrast to the gametophyte-dominant species and sporophyte-dominant gymnosperms, the
emergence of an additional female gamete, the central cell, is a critical innovation of sexual
reproduction and a hallmark of angiosperms. Fertilization of both the egg and the central
cell, known as double fertilization, produces the embryo and endosperm, respectively, within
the seed coat. Besides acting as the endosperm precursor, the central cell also undertakes
important roles during embryo sac development and function. This review outlines recent
advances in our understanding of the central cell with focuses on cell specification, cell-to-cell
communication, and evolution.
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TYPES OF EMBRYO SAC

In flowering plants like Arabidopsis, a single megaspore mother
cell (MMC) was initiated at the tip of each nucellus (Yadegari
and Drews, 2004; Shi and Yang, 2011; Yang et al., 2010;
Lora et al., 2019). Through meiosis, the MMC produces four
haploid megaspores, of which only one becomes the functional
megaspore, the other three are degenerated (Figure 1A). The
functional megaspore undergoes three rounds of nuclear mitosis
to form a syncytial female gametophyte with eight nuclei.
Subsequently, the syncytial female gametophyte undergoes
simultaneous cytokinesis to form a typical eight-nucleated,
seven-celled embryo sac (Figure 1B; Christensen et al., 1997; Shi
and Yang, 2011; Yang et al., 2010). Finally, cell fate specification
and maturation take place to generate the four cell types
within the functional female gametophyte: two synergid cells
and an egg cell at the micropyle end, a diploid central cell
and three antipodal cells at the chalazal end that connects
tightly with the maternal tissues (Figure 1B). This developmental
pattern is known as monosporic Polygonum-type that exists
in most angiosperms. In the model plant Arabidopsis, the
three antipodal cells are short-lived, while in monocot, they
proliferate and participate in the endosperm development. As
an exception, the basal angiosperm Amborella trichopoda, a
single extant species, forms a unique Amborella-type embryo
sac that contains three synergid cells due to an extra cell
division of one of the micropylar cells (Figure 1B; Friedman,
2006; Friedman and Ryerson, 2009). Another group of basal
flowering plants, Nymphaeales (including Hydatellaceae) and
Austrobaileyales, exhibits the Nuphar/Schisandra-type embryo
sac that is four-celled with a haploid central cell and without
antipodals (Figure 1B; Baroux et al., 2002; Friedman, 2008;
Povilus et al., 2015; Zini et al., 2016). Other types of embryo
sacs also exist in a number of angiosperm taxa in nature, such
as the bisporic and tetrasporic types (Friedman et al., 2008;
Schmid et al., 2015). All the different patterns appear to be
modular with the micropylar egg-apparatus module and the
chalazal module across species (Friedman and Williams, 2004).
It is unknown whether the variation of female gametophyte
structure among plant taxa has any adaptive significance. It
has been suggested that developmental lability at the earliest
stage of angiosperm evolution may lead to this variation
(Friedman, 2006). Given the diverse structure, the molecular
determination of the central cell may vary from taxa to
taxa. This makes the generalization of the regulation of
embryo sac development and its evolutionary origin difficult.
Nevertheless, ubiquity of the four-cell types indicates that a
few conserved factors might be enough to orchestrate the
structural organization and cell fate determination. So far, our
understanding on molecular regulation of female gametophyte
development is mostly from the model plant Arabidopsis and a
few crop species.

During the female gametophyte development, positional cues,
hormones, and coordinated cell-to-cell communication have
been proposed to orchestrate the establishment of embryo
sac polarity and development (Kägi and Groß-Hardt, 2007;
Pagnussat et al., 2007, 2009; Moll et al., 2008; Sundaresan and

Alandete-Saez, 2010; Kirioukhova et al., 2011; Lituiev et al.,
2013; Martin et al., 2013; Kong et al., 2015; Panoli et al., 2015;
Tekleyohans et al., 2017). A plethora of genetic factors have
been identified to be involved in the development of embryo
sac and its cellular differentiation (Yang et al., 2010; Chevalier
et al., 2011; Erbasol Serbes et al., 2019). In the following
paragraphs, specific genetic regulations of the central cell are
summarized (Table 1).

CENTRAL CELL DEVELOPMENT AND
SPECIFICATION

In contrast to other gametophytic cells, the central cell
is characterized by its central position and large volume,
including a large central vacuole at the chalazal end, two
polar nuclei, cytoplasm and organelles that are inherited
from the developing syncytial gametophyte. The polar nuclei
fuse before fertilization in Arabidopsis, but after fertilization
in cereals (Mol et al., 1994). Hence, the central cell is
homodiploid (2n) in most angiosperms and polyploidy in
some other species due to fusion of more than two nuclei,
but remains haploid in some basal angiosperms such as
Nymphaeales and Austrobaileyales (Figure 1B). The variation
of the ploidy of the central cell can impact the paternal-to-
maternal genome ratio that contributes to the seed size. Although
central cell is the hallmark of angiosperms and prerequisite
for double fertilization, molecular mechanisms controlling its
development and specification are poorly understood (Berger,
2003; Yang et al., 2010).

Formation of Central Cell
Functional dissection of several genetic factors has shed light
on the molecular mechanism of central cell formation. After
cellularization, the two polar nuclei fuse to give rise to a large
central cell nucleus, and defect of nuclei fusion would affect
the function and specification of central cell. Mitochondria
play an active role in polar nuclei fusion. GAMETOPHYTIC
FACTOR2 (GFA2) encodes a mitochondrial chaperone that
is required for the outer membrane fusion of polar nuclei
(Christensen et al., 2002). Loss of function of GAMETE CELL
DEFECTED1 (GCD1), a conserved mitochondrial protein,
causes unfused polar nuclei, and the egg cell is also smaller
compared to the wild-type, indicating that GCD1 is required
for the development of both female gametes (Wu et al.,
2012). Mutant in mitochondrial cysteinyl t-RNA synthetase
SYCO ARATH (SYCO) and ATP/ADP translocator 2 (AAC2)
results in unfused polar nuclei and persistent antipodal
cells (Kägi et al., 2010). In addition, endoplasmic reticulum
(ER) chaperones are also involved in this process. Loss of
function of Arabidopsis ER chaperone genes BiP1 and BiP2
also causes unfused polar nuclei (Maruyama et al., 2010).
BiP proteins can interact with ER-resident J-domain protein
to mediate polar nuclei membrane fusion (Maruyama et al.,
2014). The J-domain proteins ERdj3A and P58IPK mediate
outer nuclear membrane fusion, while ERdj3B and P58IPK
regulate inner nuclear membrane fusion. RNA metabolism
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FIGURE 1 | The female gametophyte patterns and intercellular signaling between central cell and other cells. (A) Schematic diagram of the megasporogensis.
(B) Schematic diagram of three female gametophyte types mentioned in the text. The Polygonum type is exhibited by most (>70%) flowering plants, including
Brassicaceae, Gramineae, Malvaceae, Leguminoseae, and Solanaceae (Yadegari and Drews, 2004). The Amborella and Nuphar/Schisandra types are the primitive
ones. Other types can be referred to reviews by Yadegari and Drews (2004), Schmid et al. (2015), and Gonzalez et al. (2019). White shapes within the cells represent
vacuoles. (C) Schematic diagram of the female gametophyte within an Arabidopsis ovule and embryo and endosperm after fertilization. Arrows, the intercellular and
cell-autonomous signaling.

and processing are also involved in central cell development.
A homolog of yeast RNA helicase MAA3 (MAGATAMA3)
is required for polar nuclei fusion and pollen tube attraction
(Shimizu et al., 2008). Arabidopsis genes LACHESIS (LIS),
CLOTHO (CLO/GFA1), and ATROPOS (ATO) encode
core spliceosomal components and are initially expressed
throughout the female gametophyte. Defect of these genes
causes the switch of the synergids and central cells to the
fate of egg cells (Groß-Hardt et al., 2007; Moll et al., 2008).
In lis and clo mutant, polar nuclei also fail to fuse (Groß-
Hardt et al., 2007; Völz et al., 2012). Furthermore, Soluble
N-Ethylmaleimide-Sensitive Fusion Protein Attachment Protein

Receptors (SNARE) gene SEC22 is also involved in polar
nuclei fusion (El-Kasmi et al., 2011). ROS accumulation is
correlated with the activation of central cell reporter genes,
thus ROS may also be involved in central cell development
(Martin et al., 2013). Moreover, wyrd (wyr) mutant of the
putative plant ortholog of the Inner Centromere Protein
(INCENP), produces additional egg cells at the expense
of the accessory synergid cells and is defective in central
cell differentiation (Kirioukhova et al., 2011). These studies
highlighted the roles of mitochondria, ER, membrane
dynamics, and RNA processing in the maturation of the
central cell (Table 1).
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TABLE 1 | Summary of genes involved in central cell function and specification.

Gene name Gene description Function in FG/Phenotype Molecular machinery/Cellular process

AGL80 MADS box protein Central cell switch to accessory cells Transcription regulation

AGL61 MADS box protein Central cell switch to accessory cells, central cell degeneration

TPL Transcription co-repressor Central cell specification

CCG TFIIB family Central cell-mediated pollen tube attraction/Failed pollen tube attraction

CBP1 Components of transcription complex

GFA2 Homolog of yeast Mdj1p, chaperone Failed synergid cell death and polar nuclei fusion Mitochondria function

AAC2 ATP/ADP translocator Unfused polar nuclei, persistent antipodal cells and reduced egg cell size

SYCO/FIONA Cysteinyl t-RNA synthetase Life span of the antipodal cells, failed polar nuclei fusion

GCD1 A conserved mitochondrial protein Unfused polar nuclei, smaller egg cell

CLO Spliceosomal components Unfused polar nuclei, switch of the synergids and central cells to the fate of egg cells RNA processing

LIS

ATO

MAA3 RNA helicase Unfused polar nuclei, pollen tube attraction

Bip1/2 ER chaperones Unfused polar nuclei ER homeostasis

ERdj3A/B

P58IPK

SEC22 SNARE protein Unfused polar nuclei Membrane dynamics

WYR Ortholog of the Inner Centromere Protein (INCENP) Central cell differentiation, additional egg cells Chromosome regulation

DME DNA glycosylase Required for maternal expression of imprinted genes in the central cell

FIS2, MEA, FIE PRC2 complex Inhibit cell autonomous endosperm development

CKI1 Histidine kinase Cell fate of central cell and antipodal cells failed polar nuclei fusion Cytokinin signaling pathway
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CKI1 Signaling Pathway
Genetic studies demonstrated that cytokinin signaling pathway is
required for female gametophyte development and specification
of central cell fate (Pischke et al., 2002; Hejátko et al., 2003;
Deng et al., 2010; Cheng et al., 2013; Yuan et al., 2016).
Disruption of the two-component sensor histidine kinase CKI1,
an activator of the cytokinin signaling pathway, causes abortion
of the central vacuole and degradation of the female gametophyte
after completion of three mitotic divisions (Pischke et al.,
2002; Hejátko et al., 2003; Deng et al., 2010). Later using
cell-specific fluorescent markers, it was found that the egg
marker is misexpressed in all nuclei while the central cell
marker is either shut down or misexpressed in antipodal nuclei,
and with synergid marker expressed in the central cell in
the syncytial cki1 mutant embryo sac (Yuan et al., 2016).
These indicate that the central cell was switched to the egg
cell fate in cki mutant. Consistently, ectopic overexpression
of CKI1 can switch on the central cell-specific markers in
the micropylar gametophytic cells (Yuan et al., 2016). These
data suggest that CKI1 is required for the specification of the
central cell and antipodal cells and also restriction of the egg
cell fate in the central cell. Interestingly, CKI1 protein is ER-
localized and initially spread all over at two-nucleate stage
and later restricted to the chalazal portion of the syncytial
embryo sac at eight-nucleate stage, and concentrated around
the central cell nucleus in mature embryo sac (Yuan et al.,
2016). This coincides with the enriched cytokinin signaling in
the chalazal due to local cytokinin biosynthesis and receptor
expression (Cheng et al., 2013). Nevertheless, it remains
unknown whether cytokinin itself plays a direct role or not, since
CKI1 can activate downstream cytokinin signaling independent
of cytokinin and lacks cytokinin-binding ability (Kakimoto, 1996;
Yamada et al., 2001). Additionally, the central cell expression of
IPT8 for cytokinin biosynthesis can partially rescue cki1 female
gametophyte lethal phenotype, suggesting that the activation of
cytokinin receptor signaling can to some extent complement
the loss of CKI1 (Deng et al., 2010). Of note, the cki1 mutant
also shows failed polar nuclei fusion (Yuan et al., 2016;
Zhang et al., 2020).

The dynamic localization of CKI1 protein also implies a role of
polar nuclei movement for central cell specification. How CKI1
specifies central cell fate and the role of cytokinin remain to be
investigated (Weijers, 2016). There is evidence that CKI1 acts
upstream of histidine phosphotransfer proteins (AHPs), which
are required for female gametophyte development as well (Deng
et al., 2010; Cheng et al., 2013). AHPs are also involved in central
cell and antipodal cell fate determination (Liu et al., 2017). And
mutation of MYB116, a proposed target of CKI1 signaling, also
affects female gametophyte development (Rabiger and Drews,
2013). Together, these data strongly suggest that CKI1-mediated
signaling pathway plays a critical role in central cell specification.

Transcriptional Control of Central Cell
Fate
Previous studies have identified pairs of MADS-box transcription
factors of the AGL family that are specifically expressed in the

central cell (Bemer et al., 2010). These transcription factors
often act as hetero- or homodimer to bind CArG box of target
genes. Both AGL80 and AGL61/DIA are expressed specifically
in the central cell and can form a heterodimer. Loss of either
AGL80 or AGL61/DIA function impairs central cell maturation
and renders central cell non-functional (Portereiko et al.,
2006; Bemer et al., 2008; Steffen et al., 2008). Recently, it
was reported that the central cell of agl80 mutant ectopically
expresses synergid- and antipodal-specific marker genes (Zhang
et al., 2020). This indicates that AGL80-AGL61/DIA complex
is required for specification of central cell fate. Except for
the type I MADS-box DNA binding domain, AGL80, but
AGL61/DIA, contains a transcription repression domain, the
EAR motif that is essential for AGL80 function and required
for its interaction with the co-repressor TOPLESS (TPL)
proteins (Zhang et al., 2020), suggesting that AGL80 acts as a
transcription repressor in the central cell. Recent data, indeed,
showed that AGL80 represses transcription of the synergids-
specific MYB98 genes, the major determinant factor of the
synergid cell fate, in the central cell by directly binding to
the CArG boxes present in the upstream promoter region
of MYB98 gene (Zhang et al., 2020). Consistently, ectopic
expression of AGL80 in synergids can repress the expression
of MYB98, and switches on the transcriptional expression
of central cell-specific gene DD22 in the synergid (Zhang
et al., 2020). In addition, AGL80 can form a homodimer
in Arabidopsis protoplasts. Nevertheless, it’s also possible
that ectopic expression of AGL80 in the synergids can also
switch on the expression of AGL61. This implies that AGL80
orchestrate gene transcription, and the EAR motif-mediated
transcriptional repression plays a critical role in restricting
central cell fate. It remains to be determined whether other
AGLs in the central cell are also required for central cell
function and the roles of the AGL80 orthologs in cereals.
AGL80 is required for the expression of DEMETER (DME),
a DNA glycosylase that is required for DNA demethylation
in the central cell, as well as the determination of central
cell and endosperm development (Portereiko et al., 2006;
Park et al., 2016). These findings suggest that AGL80 plays
a critical role to orchestrate the epigenetic pathway in
the central cell.

Epigenetic Control of Central Cell
DME-mediated demethylation is required to activate the
transcription of the Polycomb Repressive Complex 2 (PRC2)
components in the central cell (Köhler et al., 2012). Disruption
of the PRC2 complex causes simultaneous nuclei division of the
central cell before fertilization and seed abortion (Köhler et al.,
2012; Raissig et al., 2013; Schmidt et al., 2013). These suggest
active involvement of epigenetic regulation in the maintenance
of the central cell.

At epigenetic regulation level, the central cell is drastically
distinct from the egg cell. The EAR motif-containing repressors
suppress target gene expression through chromatin modification
of regulatory regions by histone deacetylation, often via forming
complex with co-repressor TPL and histone deacetylases.
In central cell of Arabidopsis and rice, locus-specific and

Frontiers in Plant Science | www.frontiersin.org 5 October 2020 | Volume 11 | Article 590307

https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles


fpls-11-590307 October 15, 2020 Time: 17:10 # 6

Li and Yang Central Cell in Flowering Plants

active DNA demethylation contribute to the maternal
chromosome hypomethylation in the endosperm (Park
et al., 2016). The repressive mark H3K9me2 was found to
distinctly distribute in the egg cell, central cell and their
fertilization products, suggesting epigenetic dimorphism
between the two female gametes (Pillot et al., 2010). The
euchromatin distributed protein LHP1/TFL2 is associated
with silenced loci enriched in H3K27me3 and shows lower
expression in the central cell than the egg cell (Pillot et al.,
2010). It’s interesting that this dimorphism is established
after embryo sac cellularization (Pillot et al., 2010). The
epigenetic dimorphism is also suggested by the expression
of different histone isoforms in the two female gametes
(Ingouff et al., 2010). Furthermore, central cell undergoes
demethylation at small nucleosome-depleted transposable
elements (Ibarra et al., 2012). In addition, central cell is
evidenced to be transcriptionally more active than the
egg cell as shown by the immunostaining of active RNA
polymerase II (Garcia-Aguilar et al., 2010). These studies
suggest more active chromatin state in the central cell
than the egg cell which is apparently correlated with the
transcriptional activity. This epigenetic dimorphism has been
proposed to be biologically significant but still waits further
evidence (Baroux et al., 2011). Detailed discussion on the
epigenetic regulations in the female gametophyte, including
the difference between the central cell and other sister cells
can be referred to other reviews (Armenta-Medina et al.,
2011; Köhler et al., 2012; Kawashima and Berger, 2014;
Ashapkin et al., 2019).

RNA Processing in Central Cell
Specification
Except for transcriptional regulation, RNA processing pathway
also participates in central cell specification as discussed
above. In lis, clo, and ato mutants, the central cell and
egg cell identities are misspecified (Groß-Hardt et al., 2007;
Moll et al., 2008; Völz et al., 2012). In clo/+ mutant, the
mutant antipodal cells adopts central cell fate as exhibited
by changed position, membrane disintegration, nuclei fusion,
and transcriptional activation of central cell marker genes
(Moll et al., 2008).

In summary, these studies suggest multiple-layered and
complex regulation of central cell fate and full understanding of
the underlying mechanism is still a long way to go.

CELL-CELL COMMUNICATION
BETWEEN CENTRAL CELL AND ITS
NEIGHBORS

Cell-cell communication is ubiquitous in plant development and
stress response. In the embryo sac, the intercellular signaling
has been suggested to be critical for its development and
function. The central cell directly contacts with all the sister
cells in the embryo sac, which supports its extensive intercellular
interaction (Figure 1C).

Central Cell Control on the Egg
The ubiquitously expressed mitochondria-localized protein
GCD1 is required for the mutual signaling between the egg and
central cell (Wu et al., 2012). Expression of GCD1 in either the
egg cell or the central cell can rescue the embryo sac defect.
It is reasonable to speculate that this cell-cell communication
is important for the developmental coordination of the two
dimorphic female gametes. The GCD1 is a conserved protein,
but its molecular function in the central cell is currently unclear
(Wu et al., 2012).

Central Cell Control on Synergid
Laser ablation experiment on the central cell suggests non-
cell autonomous regulation of the central cell in the full
differentiation of the synergid (Susaki et al., 2015). This
regulation was also evidenced by the genetic regulation of the
central cell-expressed CCG and CBP1 on the transcription of
the synergid-expressed MYB98 gene and pollen tube attractants
(Chen et al., 2007; Li et al., 2015; Meng et al., 2019). CCG
is an early transcribed gene in the central cell (Zhang et al.,
2020). The expression of CCG in the central cell is not affected
in agl80 mutant embryo sac that fails to specify the central
cell fate (Zhang et al., 2020). Recently, MYB98 was shown to
be expressed before cellularization, which raises the possibility
that the cell-cell communication might be traced back to the
nucleus-nucleus communication in the coenocyte (Susaki et al.,
2020). It’s still unclear whether CCG transcription is also initiated
before cellularization. The central cell determinant factor AGL80-
GFP fusion protein was initially detected right before the
polar nuclei fusion and MYB98 expression in the synergids is
not affected in agl80 mutant (Portereiko et al., 2006; Zhang
et al., 2020). These findings imply that the central cell-synergid
intercellular communication likely initiates early during the
differentiation of these cells.

Central Cell Control on Antipodal Cells
The central cell-expressed mitochondria-localized cysteinyl
t-RNA synthetase FIONA/SYCO regulates the life span of the
antipodals in a non-cell autonomous manner (Kägi et al., 2010).
Interestingly, targeted disruption of the electron transport chain
in the central cell mitochondria revealed that the lifespan of
antipodal cells is coupled to the metabolic activity of the central
cell (Kägi et al., 2010). This suggests that the metabolic state
of the central cell is correlated with the differentiation of the
surrounding cells.

Molecular Mechanism of Intercellular
Signaling
The intense cell-to-cell communication between the four
cell types could be quite necessary and intriguing as one
considers the embryo sac is just a reduced “parasitic” miniature
derived from individual plants in the long history. The
underlining molecular mechanism of these intercellular signaling
is unknown and several lines of evidence provide some
clues. Several mechanisms, such as signaling through the
extracellular matrix molecules and symplastic trafficking, are
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evidenced or proposed to be involved during female gametophyte
maturation and function.

Symplastic connection is the cellular channel of intercellular
transport of transcription factors, small RNAs or other small
molecules and has been suggested to function in intercellular
transport of small molecules within the embryo sac (Han
et al., 2000; Li et al., 2015, 2018; Erdmann et al., 2017). Using
fluorescent dyes, it was clearly shown that symplastic connection
exists within the embryo sac. In Torenia fournieri embryo
sacs, molecules less than 10 kDa can diffuse freely between
gametophytic cells, while molecules larger than 10 kDa cannot
(Han et al., 2000). More recent data showed that molecules up to
20 kDa, including 24-nucleotide small RNAs, can move between
the central cells and egg cells in Arabidopsis, while this movement
capacity is lost after fertilization (Erdmann et al., 2017). The
small RNAs produced in the endosperm and even central cell
are speculated to move to the egg and embryo to direct DNA
methylation (Ibarra et al., 2012). These observations strongly
suggest that material exchange and cell-cell communication
exist within the embryo sac, but compelling genetic evidence
and the underlining cellular support, such as the presence of
plasmodesmata, for this movement still need further exploration.

Apoplastic peptides are widely employed in intercellular
signaling in plants. Transcriptome profiling revealed that diverse
secreted peptides are highly enriched in the embryo sac. In
Arabidopsis, ccg mutant ovules lose the ability to attract pollen
tube (Chen et al., 2007). It has been shown that in ccg ovules,
more than a hundred of secreted peptide-encoding genes are
down-regulated (Li et al., 2015). These peptides are highly
expressed in the central cells and secreted to the apoplast
and even to the intercellular space of the integuments (Li
et al., 2015). It is possible that some protein factors required
for the later endosperm development have been activated in
advance in the central cell before fertilization. Three central
cells-expressed cysteine-rich peptides, ESF1s, were identified to
be required for the development of embryo suspensor (Costa
et al., 2014). These ESF1s are also down-regulated in ccg ovules
(Li et al., 2015). It is still a mystery whether the numerous
secreted peptides down-regulated in ccg have roles in cell-cell
communication between the central cell and its neighbors or
intercellular signaling between the fertilization products. This
type of regulation has been reported, for example, in maize
the egg cell-expressed secreted peptide ZmEAL1 regulates the
cell fate of the antipodal cells (Krohn et al., 2012). In addition,
one clue for the role of exosome signaling is the detection of
expression of tetraspanin family members in the embryo sac
(Boavida et al., 2013), since tetraspanins in plant were shown
to be required for exosome formation that is required for the
release of anti-pathogen small RNAs (Cai et al., 2018). However,
the function of these tetraspanins in embryo sac is still unknown
as the mutants exhibit no phenotype.

Distinction Between Central Cell and
Egg Cell in Fusion With Sperms
Double fertilization entails fusion of sperm cells with the two
dimorphic female gametes, the egg and the central cell. The

potentiality of sperm cells for fertilization is activated by the EGG
CELL1s (EC1s) that are expressed specifically in the egg cell, but
not in the central cell (Márton et al., 2005). It is not known
whether the central cell employs its own way to activate the sperm
or takes advantage of the egg-secreted EC1. The putative receptor
for gamete adhesion, GEX2, contains an extracellular domain
and is required for the sperm fusion with both female gametes
(Mori et al., 2014). This implies the presence of similar or the
same ligand on the surface of egg and central cell. Live imaging
studies showed a lagged sperm fusion with the central cell than
the egg cell, indicating that differences between the two fusion
events may exist (Denninger et al., 2014; Hamamura et al., 2014).
Study with the polyspermic tetraspore (tes) mutant has suggested
that polyspermy block exists in egg, but not in central cell (Scott
et al., 2008). Other reports suggest that the egg cell can also fuse
with two sperms to form triploid embryo with the central cell
fuses with one sperm cell (Grossniklaus, 2017; Mao et al., 2020).
Another distinction between the central cell and the egg cell is
that plasma membrane fusion with sperm can trigger central cell
mitotic division, suggesting signaling link between plasmogamy
and activation of the nuclear division (Aw et al., 2010).

EVOLUTION OF CENTRAL CELL

The evolutionary origin of the double fertilization that is
characterized by the emergence of the central cell is still
mysterious, since the double fertilization phenomenon was
discovered in the late 1890s. Based on the diversity of embryo
sac, different hypothesis were raised to explain the evolution of
different ploidy of endosperms and the adaption significance, i.e.,
the origin of structural novelty and its relative fitness (Friedman
et al., 2008). The developmental evolution of the embryo sac
is tightly related to the endosperm genetics and the variation
of endosperms will gives rise to phenotype variations that are
subject to natural selection. Among the extant flowering plants,
seven types of endosperms exist. But our understanding on its
evolutionary trajectory, adaption and even molecular modulation
is still very limited.

Genetic evidence in model plant Arabidopsis has now
provided new clues on the central cell evolution. AGL80 loss-
of-function mutant was recently found to be featured by the
failed fusion with sperm cell and switch of marker genes to
the accessory cells. The study of AGL80 suggests a conserved
mechanism of central cell determination in Brassicaceae by
the EAR-motif mediated gene repression mechanism (Zhang
et al., 2020). This indicates multiple divergence of central cell
specification during evolution and more primitive mechanisms
are to be found. It would be interesting to investigate whether
AGL80 homologs in other species are also involved in central
cell specification or function even if EAR motif is not present.
Although the EAR motif is only conserved in Brassicaceae,
whether other transcription repression mechanism executed by
AGL80 homologs or other transcription factors in monocot and
other taxa are still to be unveiled. From this study, it appears that
the determination of central cell fate is not conserved as expected,
instead it has originated more than one time. The evolutionary
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conservation of AGL80 in the central cell in the Brassicaceae
family may reflect fast evolution of the central cell that is wired
for postzygotic reproductive isolation. The incompatibility of two
species in the hybrid endosperm constitutes one of the major
postzygotic isolation.

In gymnosperms (the non-flowering seed plants), like Cycads,
Gnetales, and Gingko, the surrounding gametohpytic cells take
the role of endosperm function to nourish the embryo. The
female gametophyte undergoes numerous rounds of mitosis to
produce a coenocytic cell with approximately thousands of free
nuclei (Figure 2; Soma, 1997). At maturation, the egg-containing
archegonia are structurally alike that of the moss (Figure 2),
and the pollen grain contains two sperm cells at maturity and
only one sperm cell would transmit the genome to the progeny.
It was suggested that the gametophytic cells surrounding the
archegonia function analogously to the nourishing endosperm
in angiosperms. These multicellular gametophytes store reserves
before fertilization to support the embryogenesis after the egg cell
fertilization. With the emergence of the central cell, the embryo-
nourishing role shifts from the gametophyte to the fertilized
central cell, the endosperm. It confers the flowering plants
several benefits and at the same time the fertilization process
become more complex. The fertilization-dependent nutrients
allocation to the endosperm saves energy as embryogenesis is
not always a hundred percent successful. On the other hand,
endosperm, containing the genome of both parents, takes a
major part in the post-zygotic hybrid barrier (Lafon-Placette
et al., 2017), to help maintain the identity of species by
reducing gene flow.

The evolution of the endosperm in flowering plants has
been discussed for years (Berger, 2003; Friedman et al.,
2008). One scenario of the origin of the endosperm is a
sexualized gametophytic cell and fertilization triggers the mitotic
progression of the nourishing tissue. This scenario is supported
by the similar pattern between the endosperm development of
angiosperms and the female gametophyte of gymnosperms. In
addition, the fertilization-dependent endosperm development
gives rise to the possibility of parental regulation. Another
scenario of endosperm origination is that an altruistic embryo
finally takes the role of embryo nourishing. At the present time,
however, there is still no evidence to show the evolutionary
origin of the central cell, as no transitional or primordial
female gametophyte structure has been found. Even in the most
ancient flowering plant, Amborella, the four-cell-typed female
gametophyte has already formed. Two recent studies suggested
that the signaling component of cytokine, CKI1 in Arabidopsis
regulate the central cell fate, and the orthologous CKI1 gene
in Ginkgo, is expressed in archegonia and the precursor and
surrounding tissues (Yuan et al., 2016, 2018). This study implies
that at least some factors involved in female gametophyte
development have been employed in the gymnosperm.

Although no fertilization-based endosperm was generated
in gymnosperms, some comparison has been made between
gymnosperms Gnetales and angiosperms (Friedman, 1998). In
Gnetales, the binucleate sperm is carried by the pollen and
released into the binucleate egg cell. It was reported that in
Gnetales, the egg cell contains two nuclei, the centrally placed

one as the egg nucleus, another one is the ventral canal
nucleus (Figure 2). In Welwitschia, only the egg nucleus is
fertilized since the second sperm nuclei does not enter the
egg cell and degenerates (Friedman, 2015). In Gnetum and
Ephedra, the two sister nuclei of the egg cell fused with the
two sister sperm nuclei, respectively (Friedman, 1990). However,
the coenocytic female gametophyte matures upon the pollen
tube penetration and the simultaneous fertilization of the two
haploid female nuclei determines the following fate of the
fertilization products. But this lack of egg differentiation is
unique in Gnetales and Welwitschia (Friedman, 1998). After
fertilization, the conenocytic tissue undergoes cellularization and
both fertilization products initiate embryogenesis and only one
matures with the nourishment of the surrounding gametophytic
tissues. Despite the developmental similarities of the mitotic
sister sperm nuclei within the same pollen and sister female
gametophytic nuclei, no definitive homology of the double
fertilization events between Gnetales and flowering plants has
been drawn. Another remaining mystery is the single fruitful
fertilization at the expanse of waste of the other sperm. The
emergence of two sperms likely have driven and provided the
prerequisites for the origination of the second fertilization-
competent cell and double fertilization. In the absence of fossil
record of species with central cell ancestor, the elucidation of the
evolutionary ontogeny of this specialized cell is difficult. Genetic
dissection and molecular evolution study of key genes especially
that with conserved roles in central cell specification would be
helpful, which benefit from the release of more and more whole
genome sequences of different plant taxa. High through-put
transcriptome sequencing of small amount of samples would also
promote the unraveling of the genetic hierarchy and evolution
of female gametophyte, although the functional study would
be challenging due to the difficulty in genetic transformation
of these species.

PERSPECTIVE

Nowadays, we have a more comprehensive understanding of
the cell specification and intercellular signaling of central cell
in molecular and evolutionary aspects. The active involvement
of central cell in diverse aspect of fertilization points to an
emerging importance of this non-heritable female gamete.
Experimental evidence is still limited for the full understanding
of this mysterious cell. Although with the studies in the
past two decades, the identification of the key components
and their functional connectivity remains the major hurdle
in understanding of central cell function and evolution. The
central cell is enriched in secreted peptides, but most of them
have yet to be functionally characterized as the conventional
T-DNA and gene knock-down approaches are powerless in
these highly redundant and sequence-diverged gene families.
In addition, the relaxation of the gene silencing machinery
activates the transposable elements and a large number of genes
that would make the reverse genetic study laborious. With the
dawn of innovative strategies in experimental techniques, such
as single-cell transcriptome and epitranscriptome, gene editing
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FIGURE 2 | The development of Ginkgo archegonium. This is a schematic diagram of the major stages of female gametophyte development of Ginkgo and the
mature female gametophyte of Cycads and Gnetales. The schematic diagram was drawn according to Dhote, Gupta and Bijoy G (www.biologydiscussion.com) and
Wang et al. (2014). The female gametogenesis of different gymnosperms is quite similar. The development of Ginkgo female gametophyte is described as a
representative. In brief, it develops from the large functional megaspore, the remaining spore after meiosis. The nucleus of the megaspore divides mitotically to
generate thousands of free nuclei within a cell with a large central vacuole. Thereafter, the cellularization takes place in a centripetal fashion and finally the vacuole is
obliterated. The cellularized gametophyte is usually called endosperm, because it undertakes the role of embryo-nourishing like the fertilization-generated
endosperm in flowering plants. Then the archegonium formation initiates. Two to four cells differentiate into the archegonial initials, which then divide periclinally to
form an outer small primary neck initial and a large central cell. The primary neck initials divide vertically twice resulting in four neck cells. The central cell divide
asymmetrically to generate the upper ventral canal cells which disappears quickly and a large egg cell. With the expansion of the egg cell, the neck cells are pushed
outside and finally degenerate to form the opening for the sperm entry. In Cycads and Gnetales, the ventral canal nucleus and the egg nucleus are within the same
cell without cell wall separation. In Gnetales, a file of neck cells are formed thus generating a longer canal for sperm entry.
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technology and increase of sequenced species, we can expect a
more comprehensive understanding on central cell specification,
fertilization, and coordination with the surrounding cells, as
well as how the central cell helps to shape the flowering plants’
overwhelming predominance on earth.
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