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Powdery mildew (PM), caused by Podosphaera xanthii (Px), is one of the most
devastating fungal diseases of melon worldwide. The use of resistant cultivars is
considered to be the best and most effective approach to control this disease. In this
study, an F2 segregating population derived from a cross between a resistant (wm-6)
and a susceptible cultivar (12D-1) of melon was used to map major powdery mildew
resistance genes using bulked segregant analysis (BSA), in combination with next-
generation sequencing (NGS). A novel quantitative trait locus (QTL) named qCmPMR-12
for resistance to PM on chromosome 12 was identified, which ranged from 22.0 Mb
to 22.9 Mb. RNA-Seq analysis indicated that the MELO3C002434 gene encoding an
ankyrin repeat-containing protein was considered to be the most likely candidate gene
that was associated with resistance to PM. Moreover, 15 polymorphic SNPs around
the target area were successfully converted to Kompetitive Allele-Specific PCR (KASP)
markers (P < 0.0001). The novel QTL and candidate gene identified from this study
provide insights into the genetic mechanism of PM resistance in melon, and the tightly
linked KASP markers developed in this research can be used for marker-assisted
selection (MAS) to improve powdery mildew resistance in melon breeding programs.

Keywords: bulked segregant analysis, KASP markers, melon, powdery mildew, resistance gene

INTRODUCTION

Melon (Cucumis melo L.), which belongs to the Cucurbitaceae family, is an important horticultural
and economic crop worldwide (Garcia-Mas et al., 2012). In view of its unique biological
characteristics, such as a sweet fruit, unique aroma and rich nutritional value, melon is highly
favored by consumers. Powdery mildew (PM) is a fungal disease that occurs commonly on leaves,
petioles, and stems of most cucurbit crops in both field and greenhouse conditions (Perez-Garcia
et al., 2009). This disease can result in a decrease in weight-based productivity and a reduction in
fruit quality (Candido et al., 2014), thereby causing severe economic losses in many areas of the
world (Romero et al., 2008).
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Melon PM is often caused by Podosphaera xanthii (Px) and
Golovinomyces cichoracearum (Gc) (Křístková et al., 2009; Li
et al., 2017). These two fungi can be distinguished by observation
of the pathogens’ cleistothecia, conidia germination, microscopic
morphology, and host identification (Liang et al., 2010; Liu et al.,
2010). Both pathogens exist either as an asexual stage (conidia)
or sexual stage (Cleistothecia); the morphological characteristics
of the asexual stage are similar for the two pathogens, and the
morphological distinction between them is based on whether
fibrous bodies occur on the spore (Px spores possess fibrous
bodies, whereas these are absent from those of Gc) (Wang et al.,
2013). In China, Px is generally considered to be the main
causal agent of PM in melon (Cheng et al., 2011; Zhang et al.,
2013). Recent reports have shown that melon PM is caused
by Px in Shanghai (Gu et al., 2010; Li et al., 2015). The five
phases of the Px life cycle are separately germinating conidia,
the formation of a primary germ tube, hyphae, conidiophores,
and colonization (Wang et al., 2013). After a spore lands on
the leaf cuticle, the interaction is initiated by the formation
of a primary germ tube and is followed by the formation and
maturation of an appressiorial germ tube; the next step involves
haustorium formation within an attacked epidermal cell and
fungal development proceeds via the formation of secondary
hyphae and haustoria and terminates with sporulation (Wolter
et al., 1993). Px can coexist with the diseased plants in the soil
as hyphae, conidia and cleistothecia, or it can overwinter as
hyphae on greenhouse plants, and when the temperature rises
the subsequent year, the conidia are distributed by air or water
to infect the plants (Zhang et al., 2007).

Currently, the main method applied to control powdery
mildew is chemical prevention by the application of chemical
fungicides, which is often time-consuming and labor-intensive
(Chen, 2014). Furthermore, chemical control not only leads to
the appearance of resistance and to mutations in PM, which
therefore means that this treatment becomes ineffective, but
it also increases the input costs and has a negative impact
on the environment (McGrath, 2001; Hollomon et al., 2002).
Therefore, breeding for disease resistance is a safe alternative
or a complement to the chemical control of this disease
(Perchepied et al., 2005). Marker-assisted selection (MAS) is a
powerful genomic tool that assists phenotypic selection for the
development of disease-resistant cultivars and can help breeders
incorporate and pyramid resistance genes into breeding material,
thereby reducing disease severity (Ribaut et al., 2002; Chen, 2013;
Zhu et al., 2019). At present, MAS has been extensively applied to
search for the molecular markers that are linked to a specific trait
during the development of disease-resistant cultivars (Teixeira
et al., 2008). To date, a variety of molecular markers have been
developed, such as RFLPs, RAPDs, SSRs, InDels and SNPs, to
detect allelic variation within different samples at the DNA level
(Wang et al., 2015).

Bulked segregant analysis (BSA) is an important technique
used to map quantitative trait loci (QTLs) and identify DNA
markers. Compared with the traditional QTL mapping method,
which is time-consuming and involves screening polymorphic
markers and genotyping, BSA provides a convenient and rapid
method with which to identify resistance genes by generating

two DNA bulks with a contrasting target trait (Michelmore et al.,
1991; Abe et al., 2012; Nie et al., 2015). Recently, due to the
release of sequenced genomes and the significant reduction in
the costs of next-generation sequencing (NGS), whole-genome
resequencing has been coupled with BSA to map the genes of
interest that are associated with a given phenotype. The combined
application of BSA with NGS (BSA-Seq) has accelerated the
identification of tightly linked markers for gene identification
and QTL mapping (Zou et al., 2016). To date, BSA-Seq has been
successfully used in mapping the traits of early flowering, flesh
thickness and downy mildew resistance in cucumber (Lu et al.,
2014; Xu et al., 2015; Win et al., 2017), cold tolerance and blast
resistance in rice (Yang et al., 2013; Zheng et al., 2016), cotyledon
color, and a high-sucrose and low-oil seed phenotype in soybean
(Dobbels et al., 2017; Song et al., 2017).

At present, the availability of sequence information has
facilitated the identification and development of single nucleotide
polymorphism (SNP) markers, which have largely replaced
simple sequence repeats (SSRs) as markers in crop species
(Semagn et al., 2014). Because of the low assay cost, high
genomic abundance, ease of documentation, locus specificity, co-
dominant inheritance, the potential for high-throughput analysis,
and relatively low genotyping error rates, the use of SNPs has
emerged as a powerful approach for many genetic applications
in areas such as germplasm characterization, quality control
(QC) analysis, linkage mapping, linkage-based and linkage
disequilibrium-based QTL mapping, allele mining, marker-
assisted backcrossing (MABC), genomic selection (GS), and
MAS (Rafalski, 2002; Schlotterer, 2004; Semagn et al., 2014).
Kompetitive Allele-Specific PCR (KASP) is a high-throughput
SNP genotyping platform. Due to its low cost and genotyping
error rates, and its high reliability and reproducibility, KASP
has evolved to become a global benchmark technology and
has been widely used for genetic mapping and trait-specific
marker development (He et al., 2014; Ertiro et al., 2015;
Rasheed et al., 2016; Tan et al., 2017).

To date, several genes and QTLs that confer resistance to
powdery mildew have been identified in melon, such as the
genes of Pm-w from WMR 29 (Pitrat, 1991), Pm-x from PI
414723 and Pm-y from VA 435 (Périn et al., 2002), and Pm-
1 from the AF125Pm−1 Cantalupensis Charentais-type breeding
line (Teixeira et al., 2008), and the QTLs of PmV.1 and PmXII.1
from PI 124112 (Perchepied et al., 2005), Pm-R from TGR-
1551 (Yustelisbona et al., 2011) and BPm12.1 from MR-1 (Li
et al., 2017). In previous studies, many of these genes and QTLs
have been found on chromosomes 2, 4, 5, and 12 (Pitrat, 1991;
Périn et al., 2002; Fukino et al., 2008; Zhang et al., 2013; Li
et al., 2017). Differing views exist concerning the genetic basis
of PM resistance in melon. Some studies have indicated that
PM resistance in melon is controlled by a single dominant gene
(Epinat et al., 1992; Zhang et al., 2008; Wang et al., 2016; Li et al.,
2017), whereas other research has reported that it is controlled by
a recessive gene (McCreight and Coffey, 2011), by two dominant
genes (Clements, 2014), or by one dominant and one recessive
gene (Sun et al., 2010; Yuste-Lisbona et al., 2010). Moreover, it
is also reported that resistance to PM in melon is controlled by
different sets of QTL (Perchepied et al., 2005).
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The melon cultivars wm-6 and 12D-1 are both high-
generation inbred lines developed by our group and our previous
study has shown that the melon cultivar wm-6 is highly resistant
to PM, whereas 12D-1 is highly susceptible (Data not shown). In
this study, we obtained an F2 population from a cross between
wm-6 (female) and 12D-1 (male). A major QTL that confers PM
resistance on chromosome 12 was identified by BSA-Seq analysis,
and a most likely candidate gene was predicted from RNA-Seq
data in wm-6 melon. In addition, 15 suitable KASP markers
were developed by the KASP SNP genotyping method. This will
facilitate the cloning and functional validation of the candidate
resistance gene and the linked markers will further provide a
useful tool for MAS in melon breeding programs.

MATERIALS AND METHODS

Plant Materials, Growth Conditions and
Inoculation With Powdery Mildew
Fungus
Two inbred lines, wm-6 (P1, resistant to PM) and 12D-1 (P2,
susceptible to PM), were used as parental lines to generate F1 and
F2 populations for the QTL mapping of PM resistance in melon
(Cucumis melo L.). The P1, P2, F1 and F2 individuals were all
placed in a culture room at a temperature of 25/20◦C (day/night)
with a photoperiod of 14 h light and relative humidity of 50–75%.
All the seeds used in this study were provided by the Shanghai
Academy of Agricultural Sciences.

The PM fungus (P. xanthii) used in this study was isolated
from leaves of diseased Cucurbitaceae plants according to the
method of Nie et al. (2015). The plants were grown on the
experimental farm of the Shanghai Academy of Agricultural
Sciences, and the PM fungus was maintained by infection
of susceptible melon cultivar plants. When the three true
seedling leaves of melon plants were fully expanded, the
fungus was collected and suspended in sterile distilled water
containing 0.01% Tween 20 and was then used to inoculate
plants at a concentration of 1 × 106 as previously described
(Zhang et al., 2011).

Disease Evaluation for Resistance to
Powdery Mildew
Phenotyping for powdery mildew resistance of melon was
performed according to Zhang et al. (2013) with some
modifications at 12-d post-inoculation (dpi), and each infected
leaf was analyzed individually. Briefly, the disease grade of
powdery mildew was categorized on a scale of 0–5 as follows:
Class 0, no infection; Class 1, infection of less than 30%
of the leaf; Class 3, infection of less than 70% of the leaf;
Class 5, infection of approximately the entire leaf and coverage
with heavy sporulation. The disease severity index (DSI) was
calculated from the disease-rating scale using the following
formula: DSI = 100 × 6[(disease grade × number of plants
in that grade)/(Total number of plants × maximum disease
grade)]. For the inheritance study, lines with a DSI ≤ 20
were considered resistant and lines with a DSI > 20 were

considered susceptible. For the F2 population, the same protocol
was followed to identify resistant and susceptible plants. The
phenotype of the two parental lines was analyzed at least three
independent experiments with >15 seedlings examined in each
experiment. The DSI of the two parental lines and the F1 hybrid
plants was separately measured three times for 20 seedlings in
each measurement. The DSI of F2 generation was calculated
based on the phenotype of 193 F2 plants. On the basis of the DSI
scores, plants with a DSI of 0–1 were categorized as resistant, and
those with a DSI of 3–5, as susceptible.

RNA Extraction, Library Construction
and Sequencing
For RNA-Seq analysis, the two parental lines wm-6 and 12D-
1 were separately treated with water (mock) or PM fungus.
After 3 days, the leaves of wm-6 and 12D-1 plants (named
wm-6K, wm-6P, 12D-1K, 12D-1P, respectively) were harvested,
immediately frozen in liquid nitrogen and stored at −80◦C
before RNA extraction.

Total RNA was extracted using the Trizol reagent kit
(Invitrogen, Carlsbad, CA, United States) according to the
manufacturer’s protocol. RNA quality was assessed on an
Agilent 2100 Bioanalyzer (Agilent Technologies, Palo Alto,
CA, United States) and analyzed using RNase-free agarose
gel electrophoresis. Following total RNA extraction, eukaryotic
mRNA was enriched by Oligo(dT) beads, whereas prokaryotic
mRNA was enriched by removing rRNA with the Ribo-ZeroTM
Magnetic Kit (Epicentre, Madison, WI, United States). The
enriched mRNA was fragmented into short fragments using
fragmentation buffer and reverse transcribed into cDNA with
random primers. Second-strand cDNA was synthesized by
DNA polymerase I, RNase H, dNTPs and buffer. The cDNA
fragments were purified with a QiaQuick PCR extraction kit
(Qiagen, Venlo, The Netherlands), and following end repair
and the addition of poly(A), was ligated to Illumina sequencing
adapters. The ligation products were selected according to size
by agarose gel electrophoresis, amplified by PCR, and sequenced
using Illumina HiSeq2500 by the Gene Denovo Biotechnology
Company (Guangzhou, China).

Genomic DNA Extraction, Library
Construction for Bulked Segregant
Analysis and Whole-Genome
Resequencing
Young leaves from the two parental lines, and from the F1 and
the F2 populations were collected, and total genomic DNA was
extracted using the CTAB method (Doyle, 1991). For bulked
segregant analysis, four DNA pools were constructed, consisting
of two parent bulks and two F2 segregating bulks. The parent
bulks were separately constructed from the female parent (wm-
6) and male parent (12D-1), and the two F2 segregating bulks
were separately constructed by mixing an equal amount of
DNA extracted from 25 extremely resistant (R-bulk) and 25
susceptible (S-bulk) F2 plants. After the four sequencing libraries
were prepared according to the standard protocol of Illumina,
they were sequenced on an Illumina HisSeq platform (Illumina,
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San Diego, CA, United States). Short reads obtained from the
four bulks were aligned against the melon reference genome
sequence to obtain the consensus sequence using BWA software.
SNP calling was performed with GATK tools. The heterozygous
alleles in both parents were filtered out during the process. The
raw sequence reads are deposited in the NCBI Sequence Read
Archive (SRA; Accession number: PRJNA655764).

Genetic Mapping
In this study, four methods (SNP-ratio, ED4, G value and LOD)
were used to map QTLs that underlay resistance to PM. The SNP-
ratio (resistant alleles/sensitive alleles) of the R-bulk and S-bulk
were calculated as described by Soyk et al. (2017) and the SNP-
ratio of the R-bulk was then divided by the SNP-ratio of the
S-bulk and plotted across the genomic regions that showed ratio
peaks, which indicate the possible existence of the QTLs. The
read depth for each allele at segregating allelic SNPs in 500-kb
sliding windows was summed using a 100-kb step increment.
The Euclidean distance of each SNP (ED-SNP) was calculated as
described by Hill et al. (2013) and the ED was the sum of 100 ED-
SNP values within a window of 100 consecutive SNPs. The ED4

was calculated by raising ED to the fourth power. The G value
averaged across neighboring SNPs was calculated according to
Magwene et al. (2011). The LOD (logarithm of the odds) score
was calculated as described by Zhang et al. (2019).

Development and Analysis of KASP
Markers
The polymorphic SNPs identified around the target regions that
associated with powdery mildew resistance were converted into
KASP markers using PolyMarker software1. For each SNP, two
allele-specific forward primers and one common reverse primer
based on the flanking sequences around the variant position
(SNP) were designed using Primer 3 software. The polymorphic
SNP primers were converted to KASP markers to test their ability

1http://polymarker.tgac.ac.uk

to differentiate the polymorphism by genotyping the two parents,
and the KASP markers were then verified with the entire F2
population. Each KASP reaction was carried out using a 3-µL
reaction mixture consisting of 1.48 µL KASP 2 × reaction mix,
50 ng DNA template, 0.17 µM Hex forward primer, 0.17 µM
FAM forward primer and 0.42 µM universal reverse primer. The
cycling conditions were as follows: 94◦C for 15 min followed
by 10 touchdown cycles at 95◦C for 20 s and 65◦C for 60 s
(dropping 0.8◦C per cycle); after the final annealing temperature
of 56◦C was reached, 26 cycles were performed at 94◦C for 20 s
and at 57◦C for 60 s. Thermocycling and fluorescence readings
were performed on a Hydrocycler and PHERAstar of LGC
SNPline platform. Genotyping data were viewed as a cluster plot
by SNPviewer software supported from LGC Genomics2. The
significance of the correlation coefficients between phenotype
and genotype was determined with t-tests. Linkage groups were
constructed using JoinMap 4.1.

RESULTS

Evaluation of Resistance to Powdery
Mildew in wm-6 × 12D-1
The artificial inoculation results showed that the parental line
wm-6 was highly resistant to P. xanthii (DSI = 8.0), whereas the
other parental line 12D-1 (DSI = 94.0) was susceptible to the
fungus (Figure 1, Table 1 and Supplementary Table 1). The DSI
of the F1 plants was 68.0, which meant that the F1 generation was
susceptible to PM fungus (Table 1 and Supplementary Table 1).
The evaluation of infection by PM indicated that 58 F2 plants
showed PM resistance and 135 showed PM susceptibility, with
a 1:3 segregation between resistant and susceptible individuals
(χ2 = 2.63, P = 0.11) (Table 1). This indicated that resistance to
P. xanthii in wm-6 was conferred by a single recessive gene.

2http://www.lgcgenomics.com

FIGURE 1 | Phenotype of resistant parent wm-6 and susceptible parent 12D-1, 12 days after inoculation with P. xanthii. (A) The phenotype of the resistant parent
wm-6, 12 days after inoculation with P. xanthii. (B) The phenotype of the resistant parent 12D-1, 12 days after inoculation with P. xanthii. The experiments were
repeated at least three times independently, with similar results.
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TABLE 1 | Disease evaluation of powdery mildew in wm-6, 12D-1, F1 and F2

plants at 12 days post inoculation with P. xanthii.

Cross Generation Inoculation
time

Disease rating1 Total DSI

0 1 3 5

wm-6 P1 2019 12 8 0 0 20 8

12D-1 P2 2019 0 0 3 17 20 94

wm-6 × 12D-1 F1 2019 0 5 6 9 20 68

wm-6 × 12D-1 F2 2019 26 32 38 97 193 65.39

The disease severity index of the two parental lines and the F1 hybrid plants
were separately measured with 20 seedlings. The measurements were repeated
three times independently with similar results, and the data of one representative
experiment are shown.
1The DSI of leaves was rated on a 0–5 scale to determine the response
of melon genotypes to powdery mildew, where 0 = immune, no symptom;
1 = highly resistant, infection of less than 30% of the leaf with low sporulation;
3 = moderately susceptible, infection of less than 70% of the leaf with moderate to
high sporulation, and 5 = highly susceptible, infection of approximately the entire
leaf with heavy sporulation.

Sequencing Data Analysis of Four DNA
Bulks
BSA-Seq analysis was performed with the DNAs of four libraries
(wm-6, 12D-1, R-bulk and S-bulk) using the Illumina HiSeq
2500 platform. In total, 60,401,327 and 57,755,318 clean reads for
wm-6 and 12D-1, respectively, and 92,327,580 and 101,809,441
short reads for the R-bulk and S-bulk libraries, respectively, were
generated. The GC content ranged from 36.76% to 37.1% and the
Q20 and Q30 of each pool were over 98% and 93%, respectively.
Over 95% of the reads were mapped to the melon reference
genome, and the coverage rates were 95.78% in wm-6, 95.85%
in 12D-1, 97.02% in R-bulk, and 97.05% in S-bulk, approximately
resulting in a 23 × coverage depth for parental bulks and at least
35 × coverage for two F2 progeny bulks (Table 2). These results
indicated that the quantity and quality of the data were sufficient
for further analysis.

QTL Mapping of PM Resistance
After alignment to the reference genome of melon, 2,624,079
SNPs were identified between the parental lines wm-6 and 12D-1,
and the distribution of these SNPs on each chromosome is listed
in Supplementary Table 2. The resistance-related candidate

regions were identified by analyzing the resistant pool and the
susceptible pool. Using four statistic methods, a 0.9-Mb region
spanning 22.0–22.9 Mb on chromosome 12 was defined as the
target region associated with PM resistance (Figures 2A–D), and
the significant QTL was designated qCmPMR-12. Within the
candidate region, a total of 4,033 SNPs showed polymorphisms,
115 of which were located within the 3′ UTR, 78 in the 5′
UTR, 547 in the downstream region, 397 in the exonic region,
2,243 in the intergenic region, 1,005 in the intronic region, and
735 in the upstream region (Table 3). In addition, the target
region included 182 non-synonymous SNV, 3 stopgain, 1 stoploss
and 211 synonymous SNV polymorphisms (Table 4). Moreover,
the candidate region contained 476 small InDels, 29 of which
were located within the 3′ UTR, 23 in the 5′ UTR, 199 in the
downstream region, 28 in the exonic region, 892 in the intergenic
region, 387 in the intronic region, and 298 in the upstream
region (Table 3). The InDels included 9 frameshift deletions,
6 frameshift insertions, 8 non-frameshift deletions and 5 non-
frameshift insertions (Table 4).

According to the melon gene annotation database3, the
target region contains approximately 126 annotated genes,
and the specific information for these genes is listed in
Supplementary Table 3.

RNA-Seq and Candidate Gene Analysis
To elucidate the changes in gene expression of resistant and
susceptible melon lines after inoculation with P. xanthii, we
performed an RNA-Seq analysis at 3 dpi. The dataset submitted
to NCBI include the raw reads of the assembled transcriptome
sequences from control and pathogen-treated melon plants. All
transcriptome raw reads have been deposited in NCBI SRA4

under the accession number PRJNA670091.
Analysis of the RNA-Seq results for the 126 annotated genes

obtained by BSA-Seq indicated that the transcript levels of the
two genes MELO3C002434 and MELO3C002477 (| log2FC| > 1)
were clearly up-regulated in the parental lines after inoculation
with P. xanthii5. The two genes respectively encode an ankyrin
repeat-containing (ANK) protein and a homeobox-leucine zipper

3https://www.melonomics.net/
4http://www.ncbi.nlm.nih.gov/sra
5https://submit.ncbi.nlm.nih.gov/subs/sra/SUB8336313/

TABLE 2 | Summary of sequencing data and the data aligned to the melon reference genome for the parental lines and the resistant and susceptible pools by BSA-Seq.

Sample
name1

Clean
reads2

Clean
reads (%)

GC content
(%)

Q20
(%)3

Q30
(%)4

Mapped reads (%)5 Coverage
(%)6

Sequencing
depth (×)

wm-6 60401327 95.86 36.80 98.02 93.17 95.80 95.78 23.34

12D-1 57755318 95.86 36.76 98.06 93.29 97.86 95.85 22.81

R-bulk 92327580 96.3 37.02 98.21 93.71 96.55 97.02 35.54

S-bulk 101809441 95.98 37.1 98.10 93.37 95.95 97.05 38.31

1wm-6, powdery mildew-resistant parent; 12D-1, powdery mildew-susceptible parent; R-bulk, powdery mildew resistance bulk; S-bulk, powdery mildew susceptible bulk.
2Number of reads after trimming and adapter removal.
3The percentage of base recognition accuracy above 99%.
4The percentage of base recognition accuracy above 99.9%.
5Alignment to the melon genome assembly V4.0 (www.melonomics.net/).
6Coverage (≥1 read).
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FIGURE 2 | BSA-Seq results. Analysis of the QTL location by (A) the SNP-Ratio method; (B) the ED4 method; (C) the LOD method; (D) the G-value method.

protein (Supplementary Table 3). Further analysis showed that
only the expression level of MELO3C002434 was significantly
higher in the resistant line wm-6 than in the susceptible line 12D-
1 following PM infection. Notably, BSA-Seq showed that this
gene contained 10 SNPs and 1 InDel (Table 5). Previous studies
have shown that ANK proteins play important roles in regulating
immune responses against various pathogens (Cao et al., 1997;
Ryals et al., 1997; Yan et al., 2002; Li et al., 2013). Therefore, we
speculated that MELO3C002434 may confer PM resistance, or at
least be a PM resistance-related gene in melon.

TABLE 3 | The chromosomal locations and numbers of SNPs and InDels in the
target QTL region associated with powdery mildew resistance between the melon
parental lines wm-6 and 12D-1.

Chromosomal 3′ 5′ Down- Exonic Intergenic Intronic Upstream

location UTR UTR stream region region region

SNP number 115 78 547 397 2243 1005 735

InDel number 29 23 199 28 892 387 298

KASP Marker Development and Physical
Map Construction
KASP assays were designed for SNPs across the 20.0–23.9 Mb
region on chromosome 12 and were tested on the F2 population
to determine which markers showed the highest association with
PM resistance. In this region, thirty-seven chromosome-specific

TABLE 4 | The types and numbers of SNPs and InDels in the target QTL region
associated with powdery mildew resistance between the melon parental lines
wm-6 and 12D-1.

SNP type SNP
number

InDel type InDel
number

non-synonymous SNV1 182 frameshift deletion 9

stopgain 3 frameshift insertion 6

stoploss 1 non-frameshift deletion 8

synonymous SNV1 211 non-frameshift insertion 5

1Single nucleotide variants.
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TABLE 5 | Analysis of SNPs and InDels present within the MELO3C002434 gene
in two parental melon lines.

Type Position Reference Allele wm-6 12D-1

SNP 22665882 C T 1/1 0/0

SNP 22666490 A G 1/1 0/0

SNP 22666491 G A 1/1 0/0

SNP 22666786 A G 0/0 1/1

SNP 22666869 G A 0/0 1/1

SNP 22667081 C G 0/0 1/1

SNP 22667159 T C 0/0 1/1

SNP 22668006 A C 0/0 1/1

SNP 22668100 T C 0/0 1/1

SNP 22668300 T C 0/0 1/1

InDel 22666219 C CATT 1/1 0/0

0/0 means that the genotype of the inbred was the same as the reference, and 1/1
means that the genotype of the inbred was the same as the allele.

SNPs selected for conversion to KASP markers were used to
screen the parents and bulks to confirm their polymorphisms,
and 15 out of 37 markers successfully distinguished the parents
and bulks (Figure 3), indicating that these KASP markers were
suitable for use in MAS to improve the level of powdery mildew
resistance in melon breeding. Specific information and the
sequences of the polymorphic KASP markers are separately listed
in Supplementary Tables 4, 5. The close-up view of QTL and
KASP markers linked to the target regions is shown in Figure 4.

Using the 15 KASP markers, the genetic physical map and
linkage map were constructed by JoinMap 4.1 (Figures 5A,B).
As shown in the linkage map, the peak of the QTL was located

in a 0.6-cM interval spanned by KASP markers KA002213 and
KA002215 (Figure 5B).

DISCUSSION

The melon cultivar wm-6 is a high-generation inbred line
developed by our group, which is highly resistant to powdery
mildew (Figure 1A, Table 1 and Supplementary Table 1). In
this study, a genomic region ranging from 22.0 Mb to 22.9 Mb
on chromosome 12 was identified using BSA-Seq technology.
Similarly, Li et al. (2017) detected a major QTL for PM resistance
on chromosome 12 and suggested that resistance to P. xanthii in
MR-1 was controlled by a single dominant gene. However, in this
study, the segregation ratio of the F2 population indicated that
the PM resistance in wm-6 was controlled by a single recessive
gene, implying a different genetic basis of the PM resistance
mechanisms between the melon cultivars wm-6 and MR-1. Other
studies have also demonstrated that the genetic basis of resistance
to PM differs depending on the tested melon material (Epinat
et al., 1992; Zhang et al., 2008; Sun et al., 2010; Yuste-Lisbona
et al., 2010; McCreight and Coffey, 2011; Wang et al., 2016).

To identify the PM resistance gene in wm-6, RNA-Seq
analysis was performed with the melon lines wm-6 and 12D-1 in
parallel. Combination of the results from BSA-Seq and RNA-Seq
suggested that the At3g12360-like gene MELO3C002434, which
encodes an ANK protein was the most likely candidate gene to
confer PM resistance, because only this gene was significantly
more highly expressed in the resistant line wm-6 than that in
the susceptible line 12D-1 following infection with P. xanthii

FIGURE 3 | Results of genotyping using the Kompetitive Allele Specific PCR (KASP) assay. Scatter plots for selected KASP assays showing clustering of varieties on
the X- (FAM) and Y- (HEX) axes. The green and blue dots represent the homozygous F2 lines and the red dot represents heterozygous F2 lines from the mapping
population of the wm-6 × 12D-1 cross. The gray dots represent the NTC (non-template control).
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FIGURE 4 | Quantitative trait locus (QTL) analysis of resistance to powdery mildew and the distribution of KASP markers linked to the target region. The gray areas
represent the QTL region. The positions of KASP markers are shown by vertical lines.

FIGURE 5 | The location of qCmPMR-12 on melon chromosome 12. (A) The physical map around the region of qCmPMR-12; marker names are indicated to the
left of the map. (B) The genetic linkage map of melon chromosome 12; map distances are shown on the right. The QTL region was identified by QTL mapping using
phenotypic analysis and marker data from F2 populations.
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(see text footnote 5). Previous studies revealed that ANK proteins
have critical functions in various biological processes of plant
growth and development as well as in response to biotic and
abiotic stresses (Albert et al., 1999; Yan et al., 2002; Ha et al., 2004;
Hemsley et al., 2005; Garcion et al., 2006; Sakamoto et al., 2008;
Shen et al., 2010; Li et al., 2013). It has been reported that the ANK
protein NPR1 is important both in the SA-dependent immune
response and in SA-independent resistance responses induced by
the root-associated bacteria (Cao et al., 1997; Ryals et al., 1997);
AKR2 functions in the oxidative metabolism of disease resistance
and stress response in Arabidopsis (Yan et al., 2002); a plasma
membrane-localized ANK protein, ACD6, is involved in SA-
dependent signaling in defense responses and programmed cell
death (Lu et al., 2003, 2005), and ectopic expression of the ANK
protein OsBIANK1 of rice confers enhanced disease resistance
to Botrytis cinerea and Pseudomonas syringae in Arabidopsis (Li
et al., 2013). Interestingly, the gene MELO3C002434 contained
10 SNPs and 1 InDel (Table 5) and 5 out of 15 KASP markers
that developed in this study were located within this gene
(Supplementary Table 5). All of these results further implied
that MELO3C002434 is the most likely candidate gene associated
with PM resistance in melon wm-6. In addition, the report of Li
et al. (2017) suggested MELO3C002434 to be one of the genes
related to PM resistance in spite of the different genetic basis
of the PM resistance mechanism in melon wm-6 and MR-1.
Therefore, further genetic studies and more detailed analyses are
required to confirm the role and molecular mechanism of action
of MELO3C002434 in the PM defense response.

In this study, 37 SNPs surrounding the candidate region were
used to design KASP markers using the PolyMarker website
and 15 of these were polymorphic among the bulk and parent
populations. To the best of our knowledge, this is the first report
that KASP markers have been developed and used in MAS
to improve PM resistance in melon breeding, although several
markers linked to resistance genes have been reported previously
in melon (Ning et al., 2014; Han et al., 2015).

CONCLUSION

In this study, a major QTL that is associated with PM resistance
was identified in a 0.9-Mb interval on chromosome 12 of
melon using BSA-Seq technology. Additional RNA-Seq data
suggested that an ankyrin repeat-containing gene within this
region,MELO3C002434, was implicated to be the most important
candidate gene. In addition, 15 suitable KASP markers that were
tightly linked to the resistance phenotype were developed for the

MAS of melon. These data can be used to improve PM resistance
in breeding programs and to facilitate understanding of the
molecular mechanisms that underlying PM resistance in melon.
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