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Gene mutations linked to lignin biosynthesis are responsible for the brown midrib
(bm) phenotypes. The bm mutants have a brown-reddish midrib associated with
changes in lignin content and composition. Maize bm1 is caused by a mutation of the
cinnamyl alcohol dehydrogenase gene ZmCAD2. Here, we generated two new bm1
mutant alleles (bm1-E1 and bm1-E2) through EMS mutagenesis, which contained a
single nucleotide mutation (Zmcad2-1 and Zmcad2-2). The corresponding proteins,
ZmCAD2-1 and ZmCAD2-2 were modified with Cys103Ser and Gly185Asp, which
resulted in no enzymatic activity in vitro. Sequence alignment showed that CAD proteins
have high similarity across plants and that Cys103 and Gly185 are conserved in higher
plants. The lack of enzymatic activity when Cys103 was replaced for other amino acids
indicates that Cys103 is required for its enzyme activity. Enzymatic activity of proteins
encoded by CAD genes in bm1-E plants is 23–98% lower than in the wild type, which
leads to lower lignin content and different lignin composition. The bm1-E mutants
have higher saccharification efficiency in maize and could therefore provide new and
promising breeding resources in the future.

Keywords: cinnamyl alcohol dehydrogenase, EMS mutagenesis, biofuels, C4 grass, forage

INTRODUCTION

Lignin is a phenolic polymer that provides mechanical support to plant organs and protects
the plant from pathogen attacks, thus playing a vital role in plant growth and development
(Bhuiyan et al., 2009; Barros et al., 2015; Gallego-Giraldo et al., 2020). Lignin is produced from
the polymerization of monolignols, which are synthesized through the phenylpropanoid pathway.
Lignin polymer consists of three predominant types: p-hydroxyphenyl (H), guaiacyl (G) and
syringyl (S) subunits (Vanholme et al., 2010). The presence of lignin in the plant cell wall reduces
(CWRs) the efficiency of ethanol production from lignocellulosic biomass and the digestibility of
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forage for animal consumption (Chen and Dixon, 2007). Thus,
modifying lignin content in plants can be an effective approach
for forage improvement (Jung and Ni, 1998).

Lignin content and its composition are particularly important
in plants. Studying the monolignol metabolic pathways is key
to develop successful genetic breeding programs (Dixon and
Barros, 2019). Brown midrib (bm) mutants are a good model
to study such metabolic pathways. They have a reddish midrib
phenotype and variation in lignin content. This phenotype was
initially described about 90 years ago and was discovered in
C4 grasses (i.e., maize, sorghum, and pearl millet) (Jorgenson,
1931; Sattler et al., 2010). Six bm mutants (bm1-6) have been
isolated in maize. Mutation loci have been analyzed in bm1-5
(Vignols et al., 1995; Halpin et al., 1998; Tang et al., 2014; Li
et al., 2015; Xiong et al., 2019). Genes responsible for bm1 and
bm3 encode for cinnamyl alcohol dehydrogenase (CAD) and
caffeic acid O-methyltransferase (COMT), respectively (Vignols
et al., 1995; Halpin et al., 1998). Mutated genes in both bm2
and bm4 are involved in one-carbon metabolism, and encode for
functional methylenetetrahydrofolate reductase (MTHFR) and
folypolyglutamate synthase (FPGS) respectively (Tang et al., 2014;
Li et al., 2015). The recently cloned gene in bm5 encodes for 4-
coumarate: coenzyme A ligase (4CL) (Xiong et al., 2019). Besides
changes in lignin content and composition, bm mutants show
improved forage efficiency (Vignols et al., 1995; Godin et al.,
2016), which makes them promising breeding resources.

CAD catalyzes the NADPH-dependent reduction of
hydroxycinnamyl aldehydes to their alcohol derivatives which
are then incorporated into lignin (Goffner et al., 1992; Vanholme
et al., 2010). The bm1 maize mutant was caused by a transposon
insertion in the first intron of CAD2 (GRMZM5G844562) gene
(Chen et al., 2012). Decreased CAD activity in bm1 reduces its
Klason lignin content and G and S monomers yield (Halpin et al.,
1998). The bmr6 phenotype is the result of a mutation in the CAD
gene in sorghum, same as in maize bm1 (Saballos et al., 2009;
Sattler et al., 2009). The bmr6 mutant also exhibits altered lignin
content and composition with higher saccharification efficiency
(Sattler et al., 2009). CAD catalyzes the final and essential step in
the monolignol biosynthesis and genetic modification in the CAD
gene leads to changes in lignin content and composition (Yan
et al., 2019). CAD deficiency decreases overall lignin content,
alters lignin structure and increases enzymatic recovery of sugars
in rice, tomato, Brachypodium, and switchgrass (Saathoff et al.,
2011; d’Yvoire et al., 2013; Li et al., 2019; Martin et al., 2019).

In this study, two new maize bm1 mutant alleles were
obtained through ethyl methanesulfonate (EMS) mutagenesis. To
study the impacts of the mutation on ZmCAD2 function, the
expression level of ZmCAD2 was determined in bm1-E mutants
and Z58. Quantitative RT-PCR (qRT-PCR) was used to determine
whether the missense mutations have impact on ZmCAD2 gene
expression. Unlike previous reported maize bm1 mutants, the
new bm1 alleles resulted from a single base mutation and
the missense mutation caused the encoded proteins lost activity.
The study indicated the conserved amino acids Cys103 and
Gly185 were important sites for CAD2 activity and it provided
new alleles impacting lignin biosynthesis in maize, as well as cell
wall digestibility efficiency and plant breeding.

MATERIALS AND METHODS

Plant Material
Maize plants were grown in the greenhouse at 26◦C, 16 h of
light and 8 h of darkness. Maize bm1 stock (bm1-PI228174) was
derived from the Maize Genetics COOP Stock Center. The bm1-E
mutants (bm1-E1 and bm1-E2) were obtained from an EMS
mutagenic population which was generated from the inbred line
Z581. Phenotypic identification was confirmed through hybrid
complementation tests with bm1 plants. Z58 plants with no
reddish midrib phenotype were used as the wild type control.

Gene Cloning and Expression Analysis
Genomic DNA was extracted from leaf tissue using the
2 × CTAB protocol (Porebski et al., 1997). To determine
the mutations responsible for the bm1 phenotype, the
ZmCAD2 gene was cloned and sequenced using the primers
listed in Supplementary Table S1. The ZmCAD2 genes
were amplified from the mutants, sequenced and aligned
against the Z58 genome.

Total RNA was extracted from the midrib of 60 days-old
plant using Trizol according to the manufacturer’s instructions
(Invitrogen, United States). The extracted RNA was treated with
DNaseI. The expression level of the CAD gene in the midrib
was analyzed using quantitative reverse transcription polymerase
chain reaction (qRT-PCR) assay (Tang et al., 2014).

Expression and Purification of
Recombinant Proteins
The CAD coding region was amplified from Z58 and bm1-E
plants and then sub-cloned into pET32a vector. The recombinant
vectors were transferred into BL21 Escherichia coli cells. Cells
were cultured at 37◦C in Luria-Bertani medium. Isopropyl β-D-
thiogalactopyranoside (IPTG) was added to a final concentration
of 0.3 mM at mid-log phase (A600 = 0.4∼0.6). Cells were
continued to be incubated at 18◦C for 16 h and harvested by
centrifugation at 5,000 × g for 5 min. Soluble proteins were
extracted by sonication and the recombinant proteins were
purified with Ni affinity column (GE Healthcare) for further
enzyme activity (Youn et al., 2006).

Enzyme Activity and Protein Structure
Analyses
Enzymatic activity was determined as described by Scully et al.
(2016). Midribs of the second to fifth leaves from the top were
collected from 60-day old bm1-E mutants and Z58 wild type
plants. Powdered fresh midribs (∼0.5 g) were extracted for 3 h
at 4◦C in protein extraction buffer (Liu et al., 2012). The samples
were centrifuged at 13,000× g for 20 min at 4◦C, and the extracts
were desalted on PD-10 columns (Pharmacia) and used for CAD
enzyme activity assay. The assay was performed using 200 ng of
purified recombinant CAD proteins or 100 µg of total protein
for midrib extracts with different substrates. The reaction was

1http://www.elabcaas.cn/memd/
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carried out at 30◦C for 30 min in 300 µL of 100 mM Tris-
HCl (pH 7.5), 0.4 mM NADP, 1 mM DTT, 5% ethylene glycol,
and 0.14 mM substrates (p-coumaraldehyde, coniferaldehyde,
and sinapaldehyde).

The three-dimensional structure of CAD in bm1-E mutants
was predicted using the SWISS-MODEL2. SWISS-MODEL
generated models by homology using amino acid sequences to
infer the stoichiometry and the overall structure of the assembly
(Bertoni et al., 2017).

Chemical Analysis
Maize midribs were collected from the fourth-to-fifth leaves
of 60-day-old plants. CWRs were prepared and used for
further chemical analysis as described previously (Chen and
Dixon, 2007). Lignin content was quantified using the acetyl
bromide method. The thioacidolysis method was used to measure
the lignin composition (Lapierre et al., 1986; Hatfield et al.,
1999). For enzymatic hydrolysis analysis, CWR was digested
by direct exposure to a cellulase and cellobiase mixture for
72 h (as untreated samples). Enzymatic saccharification of
samples was performed following the analytical procedure
of the National Renewable Energy Laboratory (LAP-009).
Saccharification efficiency was calculated as the ratio of sugars
released by enzymatic hydrolysis versus sugar content in the
CWR. Sugar release was analyzed using the phenol-sulfuric acid
assay method (Dubois et al., 1956). Cellulose and hemicellulose
were extracted as described in Yu et al. (2014). Monomeric sugars
were determined by HPLC (Agilent 1200 Series LC system with
1200 Series refractive index detector) equipped with an Aminex
HPX-87P column (Agilent Technologies).

Statistical Analysis
Three biological replicates were used for all collected data and
the mean values were used for statistical analyses. Data from
each trait were subjected to Student’s t-test. One or two asterisks
indicate significance corresponding to P < 0.05 or 0.01. Standard
errors were provided in all tables and figures as appropriate.

RESULTS

Identification of New bm1 Alleles
Two putative bm mutants were isolated from the EMS-mutagenic
population. Stained midrib cross sections with phloroglucinol-
HCl showed a darker brown in these two new bm mutants
than in Z58. This indicates higher accumulation of aldehyde
derivatives in their lignified tissues and the incorporation of
cinnamyl aldehydes, the substrates for CAD (Figures 1A–C).
Indeed, the allelism tests with the previously described maize
bm1 mutant (Gene stock ID: bm1-PI267186) confirmed that two
new EMS-mutagenized bm mutants were bm1 alleles (bm1-E)
(Figures 1D–I).

In bm1-E mutants, two transition missense mutations (T357A
and G554A) were identified in the ZmCAD2 coding region

2https://swissmodel.expasy.org/

FIGURE 1 | Morphological characterization of the bm1-E mutants.
Midribcross sections stained with acid phloroglucinolof the fourth leaf
collected from 60-days old wild-type Z58 (A), bm1-E1 (B), and bm1-E2 (C).
Adaxial view of themidrib of 45-days old wild-type Z58 (D), bm1-E1 (E),
bm1-E2 (F), bm1 (G), hybrid bm1 × bm1-E1 (H), and hybrid bm1 × bm1-E2
(I). Cross sections and adaxial view of the midribs from three independent
materials of each plants were used for histochemical assay and phenotypic
measurements.

(Figure 2). In bm1-E1 plants, Cys103 was converted into Ser,
while Gly185 was converted into Asp in bm1-E2 plants (Figure 2).

Impacts of the Mutation on ZmCAD2
Function
To study the impacts of the mutation on ZmCAD2 function,
the expression level of ZmCAD2 were determined in bm1-E
mutants and Z58. No significant differences were detected in the
expression levels of ZmCAD2 between the wild type and two
bm1-E mutants (Figure 3A). Although the missense mutation
did not affect the expression of the ZmCAD2 gene in bm1-E
plants, its impact in the enzymatic activity remains uncertain.
The recombinant corresponding mutation proteins of Zmcad2
of bm1-E (ZmCAD2-1 and ZmCAD2-2) were expressed in vitro.
The point mutations Cys103Ser and Gly185Asp both resulted
in no CAD activity compared with the wild type (Table 1 and
Supplementary Figure S1).

In vivo assays showed that CAD enzymatic activity
significantly decreased in the midrib of two bm1-E mutants
(Figure 3B). In the p-coumaraldehyde substrate, CAD activity in
bm1-E1 and bm1-E2 was 51.1 and 71.1% lower than in the wild
type. In coniferaldehyde, it was only 20.0 and 25.4% compared
to the wild type (Figure 3B). In sinapalaldehyde, the enzymatic
activity of bm1-E1 and bm1-E2 was reduced to 3.3 and 1.6% of
the wild type (Figure 3B).
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FIGURE 2 | Amino acid sequence alignment of predicted cinnamyl alcohol dehydrogenase proteins. The mutant amino acid was highlighted in red color. The protein
sequences of ZmCAD2 was aligned with ZmCAD2-1, ZmCAD2-2, and AtCAD4 proteins using ClustalW. AtCAD4: Arabidopsis thaliana P48523.1; ZmCAD2: Zea
maize GRMZM5G844562. N indicates the mutant amino acids; the line indicates the nucleotide biding domain.
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FIGURE 3 | Effects of ZmCAD2 mutation in gene expression and CAD enzymatic activity in midribs of the fourth leaf collected from 60-days old plants. (A) Gene
expression levels of ZmCAD2. (B) CAD enzymatic activity in different substrates: p-coumaraldehyde, coniferaldehyde, and sinapaldehyde. Values shown are
means ± SD from three technical replicates and three biological replicates. Two asterisks indicate significance corresponding to P < 0.01 (Student’s t-test).

Impacts of ZmCAD2 Point Mutations on
Predicted Protein Structure
CAD belongs to the medium chain dehydrogenase/reductase
(MDR) superfamily. It is composed of two distinct domains:
the nucleotide-binding domain and the catalytic domain
(Figure 2) (Jornvall and Hoog, 1995). Here, a mutation
in Cys103Ser observed in ZmCAD2-1 protein led to no
CAD activity (Table 1 and Supplementary Figure S1). The

predicted protein structure showed that Cys103Ser would
not change the three-dimensional structure of ZmCAD2
(Supplementary Figure S2). When Cys103 was replaced
with any other amino acid (His, Asp, Lys, Gly, and Met),
there was no enzymatic activity using p-coumaraldehyde,
coniferaldehyde, and sinapalaldehyde as substrates (Table 1 and
Supplementary Figure S2). Therefore, our results suggest that
Cys103 is essential for CAD catalytic activity.
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TABLE 1 | Enzymatic activity of ZmCAD2 and its mutated versions in different
substrates in vitro.

Name Amino acids Substrates

p-Coumaraldehyde Coniferaldehyde Sinapaldehyde

Z58 Cys103Gly185
√ √ √

bm1-E1 Ser103Gly185 ND ND ND

bm1-E2 Cys103Asp185 ND ND ND

M1 His103Gly185 ND ND ND

M2 Lys103Gly185 ND ND ND

M3 Gly103Gly185 ND ND ND

M4 Asp103Gly185 ND ND ND

M5 Met103Gly185 ND ND ND

M: mutation;
ND: no enzymatic activity detected.

The nucleotide-binding domain of ZmCAD2 is located in
the 163–301 region (Figure 2). The Gly185Asp mutation in
ZmCAD2-2 protein did not change ZmCAD2 three-dimensional
protein structure except for the amino acid substitution
(Supplementary Figure S2). Gly and Asp were different in
structure, as Asp contained a side-chain. A replacement of
Gly185 for Asp resulted in the lack of CAD enzymatic activity
for ZmCAD2-2. This is consistent with former observations in
sorghum (Scully et al., 2016). In bmr6-23 and bmr6-1103, Gly184
was mutated into Asp, and no CAD enzyme activity was detected
(Scully et al., 2016).

Impact of bm1-E Mutant on Lignin
Content and Composition
Reduction of CAD activity in plants would affect the biosynthesis
of lignin. Herein, the lignin content and its composition
were analyzed in Z58 and bm1-E plants. Lignin content in
bm1-E mutants decreased by 5.11 and 4.38% compared to Z58
(Figure 4A). Furthermore, levels of H, G, and S lignin were also
lower than in the wild types (reduced to 43.3, 21.7, and 40.9%,
respectively) (Figure 4B).

bm1-E Biomass Has Increased Glucose
Yields Following Enzymatic
Saccharification
To determine the impact of bm1-E mutant on fermentable sugars,
the cellulose and hemicellulose contents were measured with
CWRs. The cellulose content in bm1-E mutants was 6.02% higher
(346.9 mg/g CWR) than in the wild type Z58 (327.2 mg/g CWR)
(Table 2). The hemicellulose content was also changed in bm1-E
plants. Xylose and arabinose contents were lower in bm1-E, while
glucose, galactose, rhamnose, and galacturonic acid levels were
higher (Table 2). The xylose content accounts for 73.4% of the
total hemicellulose in the wild type Z58, and in bm1-Emutant was
reduced from 256.7 to 200.8 mg/g CWR (i.e., a relative decrease
of 21.8%) (Table 2). The total cell wall polysaccharide was not
significantly changed in bm1-E plants (Figure 5A). Additionally,
bm1-E mutants showed an enzymatic saccharification efficiency
of 67.1% at 72 h against 42.5% in Z58 plants (Figure 5B).

DISCUSSION

The ZmCAD2 gene was first identified and mapped in maize
bm1 mutants in Halpin et al. (1998). Mutations in this
gene dramatically reduce its transcription rate and enzymatic
activity, which results in reduced lignin content and changes
in lignin composition (Halpin et al., 1998). In this study,
two new maize bm mutants (bm1-E1 and bm1-E2) were
obtained through EMS mutagenesis and were certified to
be bm1 alleles. The expression level of ZmCAD2 did not
significantly changed in bm1-E in comparison to the wild
type Z58 (Figure 3A). Both ZmCAD2-1 and ZmCAD2-2
showed no enzymatic activity in vitro (Table 1). The missense
mutations in bm1-E reduced CAD activity by 75–98% in
the midribs of bm1-E plants, especially in coniferaldehyde
and sinapaldehyde (Figure 3B). CAD catalyzes the final step
in the monolignol biosynthesis. A mutation in the CAD
gene leads to the accumulation of hydroxycinnamyl aldehyde
derivatives in maize and Medicago truncatula (Halpin et al.,
1998; Zhao et al., 2013). The accumulation of cinnamyl
aldehydes in the midrib was confirmed with phloroglucinol-
HCl staining (Halpin et al., 1998). The bm1-E mutants
exhibited a decrease in lignin content and altered lignin
composition due to changes in the phenylpropanoid metabolic
pathways (Figure 4).

Total lignin content in bm1-E was 4.7% lower, while it was
significantly reduced by 20% in former identified maize bm1
(Halpin et al., 1998). There are two possible explanations for
this: one is that different methods were adopted to extract and
analyze the lignin content. The other reason is that maize stalk
was examined instead of the midrib. Although the lignin content
did not vary, lignin composition was significantly reduced for H,
G, and S lignin in bm1-E plants.

Conserved CAD proteins are important for its enzymatic
activity. They have two main domains: the nucleotide-binding
domain and the catalytic domain (Figure 2). Cys103 and
Gly185 are generally conserved in CAD proteins (Youn
et al., 2006; Scully et al., 2016). Cys103 is in the catalytic
domain in ZmCAD2, which is an important function in
the MDR family (Youn et al., 2006). ZmCAD2-1 protein
displayed no enzymatic activity, and no activity was detected
when Cys103 was replaced for other amino acids (Table 1).
When Gly185 was changed for Asp, ZmCAD2 also lost its
enzymatic activity (Table 1). Previous study has suggested that
a point mutation Gly185Asp in OsCAD2 protein sequence
of rice gh2 results in complete loss of the CAD and SAD
activities which leads to impaired lignin biosynthesis and a
reddish-brown pigmentation in the hull and internode in rice
(Zhang et al., 2006). The same point mutation Gly185Asp was
observed in the ZmCAD2 of bm1-E2, implying that Gly185 is
crucial for CAD structure and function. Interestingly, another
point mutation Gly184Asp in CAD sequence of sorghum
Bmr6-23 and -1103 mutants can lead to nearly undetectable
bmr6 protein in vitro (Scully et al., 2016). It was formerly
suggested that changing Gly for Asp without a side-chain
would impact hydrophilicity, and that Gly185 occurred in
close to residues predicted for dimerization, which would
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FIGURE 4 | Effect of bm1-E mutation on lignin content (A) and lignin composition (B). Midribs of the second to fifth leaves from the top were collected from 60-days
old bm1-E mutant and Z58 wild type maize. Values are means ± SE from three biological replicates. Two asterisks indicate significance corresponding to P < 0.01
(Student’s t-test).

TABLE 2 | Cellulose content and monosaccharide composition (mg/g CWR) of non-cellulosic cell wall carbohydrates in Z58 and bm1-E plants.

Plant Cellulose Xylose Arabinose Glucose Mannose Galactose Rhamnose Galacturonic acid

Z58 327.2 ± 6.42 256.7 ± 22.65 28.8 ± 1.68 44.3 ± 2.46 5.5 ± 2.20 5.1 ± 0.29 1.8 ± 0.09 7.4 ± 0.26

bm1-E 346.9 ± 5.88** 200.8 ± 12.92** 23.1 ± 2.39** 56.8 ± 2.03** 4.7 ± 1.08 6.5 ± 0.72** 2.4 ± 0.47** 8.2 ± 2.11**

Midrib samples were collected from 60-days old Z58 and bm1-E1 plants.
Values are means ± SE from three biological replicates.
One or two asterisks indicate significance corresponding to P < 0.05 or 0.01 (Student’s t-test).

FIGURE 5 | Effect of bm1-E mutation on total sugar content (A) and enzymatic hydrolysis efficiency (B). Stalk samples were collected from 90-days old bm1-E
mutants and Z58 wild type plants. Values are means ± SE from three biological replicates. Two asterisks indicate significance corresponding to P < 0.01 (Student’s
t-test).

interfere the enzyme forming a homodimer (Scully et al.,
2016). In contrast, the changing Gly185 for Asp in OsCAD2
only affects CAD activity rather than gh2 protein expression
in vitro (Zhang et al., 2006). Thus, the conserved amino
acids in CAD may play different roles in its enzymatic
structure and function.

The Cys103 and Asp185 mutations resulted in loss of
its enzyme activities (Table 1). In spite of no enzymatic
activity in the mutant ZmCAD2 proteins, other CAD proteins
compensated the cinnamyl alcohol dehydrogenase activity. Still,
CAD enzyme activities were dramatically reduced in vivo,
especially in coniferaldehyde and sinapaldehyde (Figure 3). CAD
enzymatic activity in bm1-E was 75.6–80% lower than the wild
type in coniferaldehyde, and 96.7–98.4% in sinapalaldehyde
(Figure 3B). The OsCAD2 protein sequences in gh2 (Zhefu802

as the background), undergoing a same point mutation with
ZmCAD2 in bm1-E2, lost its function (Zhang et al., 2006).
And gh2 plant obviously exhibited reddish-brown in the
internode (Zhang et al., 2006). The CAD activities for total
gh2 plant proteins in all tested tissues (except for midrib)
were dramatically reduced using coniferaldehyde as substrate,
while its activity was not detectable using gh2 proteins
from panicle, hull, sheath, internode, and root tissues using
sinapylaldehyde as substrate (Zhang et al., 2006). It was
speculated that CAD isoenzymes unevenly exist in maize
different tissues and less CAD homologs using sinapylaldehyde
as substrate exists in maize midrib. Still, the enzyme activity
reduction seems not be consistent the reduced S lignin content.
The main reason for this is that the thioacidolysis method
(Figure 3B) mainly proceeds by the cleavage of β-O-4 aryl ether
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lignin structures which account for about 50% of all lignin
linkages in maize.

Lignin abundance and structure are correlated to
saccharification efficiency in plants, which could improve the
saccharification efficiency of cell wall polysaccharides (Sattler
et al., 2010). Indeed, cell wall saccharification efficiency of
polysaccharides was higher in bm1-E plants. Three main reasons
could explain it: (i) The lignin content is reduced in bm1-E
(Figure 4A). Lignin is a major obstacle to cell wall degradation,
and its content is negatively correlated with biomass enzymatic
saccharification efficiency (Tarasov et al., 2018). (ii) S/G ratio
was increased in bm1-E mutant compared with Z58 wild type
(Figure 4B). Recent articles have indicated that the S/G ratio may
play dual roles in biomass enzymatic hydrolysis for sugar yields
(Studer et al., 2011; Yoo et al., 2017; Alam et al., 2019). (iii) The
arabinose and xylose level of hemicellulose was significantly
reduced in bm1-E mutant (Table 2). It has been proposed that
the major arabinose should be associated with lignin for cell
wall network construction, which somehow explains the reduced
arabinose level in both mutants should somewhat disassociate
with lignin inter-linkage, resulting in raised biomass porosity
for high enzymatic hydrolysis (Wang et al., 2016). ZmCAD2
is the major gene responsible for lignin biosynthesis in maize.
CAD2 mutants have a brown midrib phenotype, and variable
lignin accumulation. The missense mutation in the ZmCAD2 in
bm1-E showed no enzyme activity in vitro, and CAD enzymatic
activity was severely affected in vivo (Figure 3B and Table 1).
However, catalysis of the hydroxycinnamyl aldehydes to their
corresponding alcohols derivatives was still observed (Figure 4).
It is possible that other CAD genes were responsible for this
catalytic activity. CAD genes belong to the MDR family and
has many homologous in plants (Youn et al., 2006). There
are nine CAD-like putative genes in Arabidopsis, of which
AtCAD4 and AtCAD5 show the highest catalytic activity and
are mainly responsible for lignin formation in vivo (Sibout et al.,
2005; Youn et al., 2006). Twelve CAD-like genes have been
previously identified in rice and OsCAD2 was the major CAD
gene responsible for lignin biosynthesis in rice (Zhang et al., 2006;
Hirano et al., 2012). Interestingly, AtCAD4, AtCAD5, OsCAD2,
Bmr6, and ZmCAD2 were clustered in a clade together (Hirano
et al., 2012). This indicates that CAD gene function is conserved
across different plant groups, and that ZmCAD2 is the main gene
responsible for CAD catalytic ability in maize.

Like other bm mutants in maize, the saccharification efficiency
was improved in bm1-E mutants (Chen and Dixon, 2007).
The new bm1 mutations presented here would provide more

resources for research study, lignocellulosic biomass utilization,
and plant breeding.
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