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INTRODUCTION

Feeding the world population increasing from current 7.7 to 9.7 billion by 2050 is a big challenge
(United Nations, 2019). This is further serious in developing countries where degradation of
soil health, increasing fertilizers cost and reducing cultivable lands are the major constraints
(St Clair and Lynch, 2010). Presently, 119.41 million tons of nitrogen (N) fertilizers are
applied worldwide in crops to achieve desirable yield (FAO, 2018). Plant N uptake, transport,
utilization/assimilation and remobilization are controlled by a complex network of genes involved
in these biological processes. Significant research advancements have been made in nitrogen
use efficiency (NUE) in plants like Arabidopsis, rice, maize and wheat (Li et al., 2017), and
physiological and molecular mechanisms underlying N pathways have been elucidated in plants
(Kant et al., 2011). Although, many studies have been undertaken in different N regimes and
candidate genes have been identified for increasing NUE but success in achieving N-use efficient
genotypes is limited due to its complex genetics and genotype by environment interaction (Baligar
et al., 2001). Interestingly, a considerable number of transgenic plants with increased NUE have
been developed in cereals (Li et al., 2020). Notably, progress in CRISPR/Cas9 [clustered regularly
interspaced short palindromic repeat (CRISPR)/CRISPR-associated nuclease 9] genome editing
combined with base-editing technology provides a great opportunity for enhancing NUE in plants
(Khatodia et al., 2016; Li et al., 2018).

Potato (Solanum tuberosum L.) is the fourth most important food crop of the world after rice,
wheat and maize. Potato is an N fertilizer intensive crop that requires 180–240 kg N/ha fertilizers
to produce high tuber yield (35–45 t/ha); of total applied N, plants acquire only 40–50% and
remaining N is lost in environment (Trehan and Singh, 2013). Owing to the adverse impacts
and high production cost caused by excess N fertilizers application, improving NUE of plant is
an environmental-friendly approach to achieve sustainable crop yield (Fageria et al., 2008). This
opinion article highlights prospects for improving NUE in potato based on the lessons learnt from
the transgenics to the CRISPR/Cas9 genome editing research in plants.

APPLICATIONS OF TRANSGENICS AND CRISPR-CAS
TECHNOLOGIES FOR IMPROVING NUE IN PLANTS

Transgenic technology has been applied in plants to create genetically modified organism (GMO)
by overexpression or knockout/silencing of genes. Genes have been transferred within or across
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the species to introduce new or enhance/alter endogenous gene
expression (Good et al., 2007). Whereas, gene silencing (RNAi)
process inhibits gene expression or translation by disrupting
targeted mRNA (Liang et al., 2014). N metabolism pathways
genes such as nitrate or ammonium transporters, assimilation
genes and transcription factors (TFs) have been manipulated
for improving NUE in cereals (Li et al., 2020). Generally,
overexpression of genes driven by the constitutive (Ubiquitin
and CaMV35S) or tissue-specific (e.g.,OsNAR2.1) promoters has
been deployed to develop N-use efficient transgenic plants (Chen
J. et al., 2016). Hu et al. (2015) have demonstrated overexpression
of OsNRT1.1B allele of indica rice into japonica to increase NUE.
RNAi technology has been deployed to knockdown the NAC-like
TF OsNAP to improve NUE in rice (Liang et al., 2014).

The recently discovered CRISPR/Cas9 system has
revolutionized the plant research. CRISPR/Cas9 (type-
II, originates from Streptococcus pyogenes) is an adaptive
immunity found in bacteria or archaea to combat with invading
nucleic acids (Khatodia et al., 2016). The unprecedented
advances in CRISPR/Cas9 facilitate an easy, versatile and
robust technology to accelerate genomics-assisted crop
improvement. CRISPR/Cas9 has been successfully deployed
to edit N transporter gene to enhance NUE by introgression of
NRT1.1B-indica allele into japonica rice (Li et al., 2018). Until
now, CRISPR/Cas9 has been mostly applied to mutate negative
regulators, instead of overexpression of positive regulators. The
gene BT2, a member of the Bric-a-Brac/Tramtrack/Broad gene
family, suppresses nitrate uptake and NUE; and overexpression
of BT2 decreased NUE in rice under low nitrate by decreasing
expression of NRT2.1 and NRT2.4 genes (Araus et al., 2016).
Further, symbiotic N fixation (SNF)-associated genes have also
been inactivated by CRISPR/Cas9 in Lotus japonicus (Wang et al.,
2016), and thus progress in genome editing would accelerate
SNF research in legumes and non-legumes. Recently, cytosine-
and adenine- base editors (CBEs/ABEs) called base-editing,
based on CRISPR/Cas9, have emerged as a newer technology
for precise modification of nucleotides [C to T (or G to A),
and A to G (or T to C)] for gain or loss of gene functions in
eukaryotes (Li et al., 2018; Mishra et al., 2020). The base-editing
has been demonstrated in rice for nitrate transporter gene
OsNRT1.1B to improve NUE (Lu and Zhu, 2017; Zong et al.,
2018). Collectively, the successful examples of a few N-use
efficient plants (transgenics and genome-edited) are summarized
in Supplementary Table 1.

RECENT RESULTS IN CROPS NUE
MODIFICATION

Increasing N Uptake and Transport
Efficiency
A number of N transporter genes such as low-affinity nitrate
transporter NRT1.1b (Fan et al., 2015; Hu et al., 2015), high-
affinity nitrate transporters NRT2.1 (Chen J. et al., 2016; Chen
et al., 2017), NAR2.1 and NRT2.3a (Chen et al., 2020), NRT2.3
(Fu et al., 2015), and NRT2.3b (Fan et al., 2016), peptide
transporter PTR9 (Fang et al., 2013), ammonium transporter

AMT1;1 (Ranathunge et al., 2014), and quantitative trait loci
qNGR9, synonymous with gene DEP1 (Sun et al., 2014) have
shown to enhance NUE in rice. Similarly, TFs such as MADS25
(Yu et al., 2015) and NAC2-5A (He et al., 2015) have also
been found effective in developing N use efficient rice and
wheat, respectively. The roles of microRNA miR166 targeting
Dof TF RDD1 have also been confirmed to promote ammonium
uptake and transport in rice (Iwamoto and Tagiri, 2016).
Recently, functions of several genes have been elucidated in
plants for high NUE such as nitrate transporterOsNPF4.5 (Wang
et al., 2020), NAC42-activated nitrate transporter (Tang et al.,
2019) and nitrate reductase gene OsNR2 (Gao et al., 2019).
Collectively, genetic engineering in N transporters have been
proven successful to increase plant growth, root architecture, N
uptake and transport and total N content, and thus improved
NUE of plants (Supplementary Table 1).

Increasing Plant N Utilization and
Remobilization Efficiency
Several genes have been engineered to enhance N utilization
efficiency in plants. For example NIN-LIKE PROTEIN 7 (NLP7)
(Yu et al., 2016), asparagine synthetase ASN1 (Lam et al.,
2003), autophagy-related gene ATG7-1 (Wada et al., 2015) and
glutamine synthetase GS1;2 (Brauer et al., 2011) have improved
NUE in Arabidopsis/rice. The functions of TFs such as bZIP
AtTGA4 (Zhong et al., 2015), HY5 (Chen X. B. et al., 2016),
NAC-like NAP (Liang et al., 2014), Dof1 ZmDof1 (Yanagisawa
et al., 2004; Kurai et al., 2011), NAC1-type NAC-S (Zhao et al.,
2015) and Nuclear Factor Y NFYA-B1 (Qu et al., 2015) have
been demonstrated in development of N-use efficient plants
of Arabidopsis/rice/wheat. Importantly, barley AlaAT (alanine
aminotransferase) has most successful in increasing NUE in
rice (Shrawat et al., 2008), canola (Good et al., 2007) and
sugarcane (Snyman et al., 2015). The miR166 targeting Dof TF
RDD1 enhances transport of nutrients including ammonium and
sucrose, N uptake and content, and grain yield under low N in
rice (Iwamoto and Tagiri, 2016) (Supplementary Table 1).

RESULTS AND TARGETS FOR IMPROVING
NUE IN POTATO

In potato, several studies have reported on application of soil
and agronomic practices for N management (review by Trehan
and Singh, 2013), but very limited on genomics uses to enhance
NUE. Hence, knowledge about genes and regulatory elements
such as TFs and microRNAs (miRNAs) are important to improve
NUE. Moreover, the underlying molecular and physiological
mechanisms and genetic factors remain elusive in potato
for root system architecture, carbon-nitrogen economy and
Nmetabolism (uptake, transport, utilization and remobilization).
Recently, we have reviewed application of integrated genomics,
physiology and breeding approaches for improving NUE (Tiwari
et al., 2018) and traits phenotyping under aeroponic in potato
(Tiwari et al., 2020d). Further, recent studies provide information
about the genes and miRNAs associated with N stress in potato
(Tiwari et al., 2020a,b,c; Zhang et al., 2020). Potato is highly
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amenable to tissue culture and therefore transgenics protocols
are well established. Also, CRISPR/Cas9 tool has been applied in
potato such as creation of homozygous mutants, knockdown of
steroidal glycoalkaloids, caroteinoid biosynthesis and phosphate
transport (review by Nadakuduti et al., 2018; Dangol et al., 2019).

We summarize here potential candidate genes for improving
NUE in potato based on the recent research (Tiwari et al.,
2020a,b,c; Zhang et al., 2020). Our studies indicate that
in potato roots, high-affinity nitrate transporters are the
key candidate genes for manipulation in N uptake and
transport. Moreover, genes like ferric chelate reductase, protein
phosphatase 2 C, glutaredoxin, GDSL esterase/lipase, cytochrome
P450 hydroxylase and TFs also appear important in roots.
In stolons, nitrate transporter, urea active transporter and
sodium/proline symporter facilitate N transport. We have also
elucidated miRNAs (up-regulated: miR156/157 and miR482, and
down-regulated: miR397 and miR398) in roots under N stress.
Further, glutaredoxin gene family has been found the most
prominent candidate gene under N stress in shoots. Another
study shows effect of overexpression of glutaredoxin gene
OsGRX6 on signaling and N status in rice (El-Kereamy et al.,

2015). We have identified tartrate-resistant acid phosphatase,
glycerophosphodiester phosphodiesterase and TFs (Myb and
WRKY), and miRNAs (up-regulated: miR156 and miR319, and
down-regulated: miR398 and miR5303) in shoots under N stress.
Indeed, stolon formation is a critical stage of tuber formation
in potato. Hence, carbohydrate metabolism genes like glucose-
6-phosphate/phosphate translocator 2 and glucose-1-phosphate
adenylyltransferase, and amino acid synthesis genes such
as 2-oxoglutaratedependent dioxygenase, malate synthase and
branched-chainamino-acid aminotransferase play crucial roles
in potato tuberization. Likewise, inhibitors (cysteine protease
and metallocarboxypeptidase), storage protein (patatin), TFs
(heat stress, BTB/POZ and LOB domains, F-box), dehydration-
responsive protein RD22 and hydroxyproline-rich glycoprotein
are essentially involved in potato tuberization. Recently, Zhang
et al. (2020) have observed key roles of nitrate transporters
(StNRT2. 4, StNRT2. 5, and StNRT2. 7), glutamate dehydrogenase,
glutamine synthetase and carbonic anhydrase in N metabolism
in potato. Thus, like other plants, gene manipulation of
N transporters in roots and assimilatory genes of carbohydrate
and amino acids metabolism in shoots/stolons, and TFs (Myb

FIGURE 1 | An outline of selected differentially expressed genes identified in potato under N stress based on transcriptome (RNA-seq and small RNA) sequencing of

plant grown in aeroponic culture (Tiwari et al., 2020a,b,c). It summarizes the potential candidate genes, transcription factors and microRNAs in different potato tissues

(root, shoot/leaf, and stolon) for improving nitrogen use efficiency in potato by gene manipulation via transgenics and/or CRISPR/Cas9 genome editing coupled with

based-editing technologies.
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and WRKY) could be manipulated by constitutive or tissue-
specific promoters. Further, gene knockdown could be applied
via RNAi (miR156, miR397, miR398, miR319, and miR482) or
others targeting N pathways genes for improving NUE in potato
(Figure 1). Moreover, CRISPR/Cas9 has been deployed in potato
for multiple genes like Acetolactate synthase 1 (Butler et al.,
2015) and granule-bound starch synthase (GBSS) (Andersson
et al., 2017). Overall, candidate genes, TFs and miRNAs could be
attempted for genetic manipulation to increase NUE in potato via
transgenic or CRISPR/Cas9 or base-editing technologies.

Potato is a tetraploid and therefore application of
CRISPR/Cas9 is more challenging. Albeit, all four alleles of
StGBSS gene in potato have been knocked out and genome-
edited mutants have been regenerated (Andersson et al., 2017).
Moreover, various transformation methods like Agrobacterium,
geminivirus replicon, protoplasts and polyethylene glycol have
been suggested for Cas9 application in potato (Butler et al., 2015;
Nadakuduti et al., 2018), of which protoplasts is an excellent one
(Andersson et al., 2017). Further, suitable sgRNA promoters like
Arabidopsis (AtUp) and potato (StU6p), and plant promoters
like CAMV35S have been suggested for potato (Belhaj et al.,
2013). Nevertheless, selection of target gene, design of guide
RNA, efficient CRISPR/Cas9, plant transformation and off-target
mutants are the major issues of genome editing in potato.

CONCLUSIONS

Plant N metabolism involves a network of genes associated
in N uptake, transport, utilization, remobilization and
storage processes. NUE is a complex multigenic trait and
therefore its improvement becomes difficult particularly in
tetraploid potato. However, a substantial success has been
achieved through transgenic and little via CRISPR/Cas in
plants. CRISPR/Cas9 has been mostly applied to negative
regulators of genes, and therefore in future it is expected
to discover such additional genes. Here, we have suggested
a few candidate genes based on our research findings for

improving NUE in potato applying transgenics or CRISPR/Cas9
technologies. Further, strengthening the knowledge on genes,
TFs, and microRNAs and elucidating underlying molecular
and physiological mechanisms of N pathways are vital for
NUE research. Collectively, CRISPR/Cas9 coupled with base-
editing strategies represents an invaluable system for precise
genome editing. Nonetheless, robust Cas9 array system with
multiplexing of targets, transformation and regeneration,
phenotypes and people awareness would be challenges in
genome editing research.
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