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The presence of cadmium in rice stems is a limiting factor that restricts its function
as biomass. In order to prevent potential risks of heavy metals in rice straws, this
study introduced a fast detection method of cadmium in rice stems based on laser
induced breakdown spectroscopy (LIBS) and chemometrics. The wavelet transform
(WT), area normalization and median absolute deviation (MAD) were used to preprocess
raw spectra to improve spectral stability. Principal component analysis (PCA) was
used for cluster analysis. The classification models were established to distinguish
cadmium stress degree of stems, of which extreme learning machine (ELM) had the
best effect, with 91.11% of calibration accuracy and 93.33% of prediction accuracy. In
addition, multivariate models were established for quantitative detection of cadmium.
It can be found that ELM model had the best prediction effects with prediction
correlation coefficient of 0.995. The results show that LIBS provides an effective
method for detection of cadmium in rice stems. The combination of LIBS technology
and chemometrics can quickly detect the presence of cadmium in rice stems, and
accurately realize qualitative and quantitative analysis of cadmium, which could be of
great significance to promote the development of new energy industry.

Keywords: rice stem, cadmium, laser induced breakdown spectroscopy, chemometrics method, biomass
resource

INTRODUCTION

Rice straw is an important secondary product of rice (Sepaskhah and Yousofi-Falakdehi, 2009;
Zaima et al., 2010). For every kilogram of grain harvested, the yield of straw will increase by 1.0–
1.5 kilograms. Straw has the advantages of abundant raw materials, low price, high combustion
calorific value (about 50% of standard coal) (Jenkins et al., 1998; Lim et al., 2012; Yin et al., 2013).
It is rich in nutrients such as mineral elements (N, P, K, Ca, Mg, and Si), plant fiber (cellulose,
hemicellulose, and lignin) and protein, which can be used as fuel, feed, fertilizer, base material and
industrial raw materials (Buzarovska et al., 2008; Abraham et al., 2016; Ostos-Garrido et al., 2019;
Logeswaran et al., 2020). The scientific use of straw can not only effectively alleviate the current
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situation of energy supply shortage, but also solve environmental
pollution problems (Matsumura et al., 2005; Hernández et al.,
2019). However, rice plants have strong absorption properties for
cadmium (Liu et al., 2019). When environment is contaminated
with heavy metals, it will harm growth of plants and accumulate
in the plants (Xue et al., 2017; Cheng et al., 2018; Han et al.,
2018). Studies have shown that in the cadmium absorption
process of rice, cadmium is more easily transferred from roots
into stem (Xie et al., 2015). Most of the cadmium absorbed by
rice roots is concentrated in the stem, which is an important
factor causing heavy metal pollution of straw biomass resources.
Previous studies have shown that the presence of cadmium
can affect the performance of straw as biomass (Narodoslawsky
and Obernberger, 1996; Kirkelund et al., 2013; Yang et al.,
2015). During the anaerobic digestion of straw, cadmium will
be released into biogas slurry, which inhibits microbial activity
and thus hinders the biogas production (Nzihou and Stanmore,
2013). During the combustion of biomass, organic matter is
decomposed, while heavy metals only be partially or fully gasified
at high temperatures, accumulated in ash residue or released
into the environment with flying dust, forming secondary
pollution (Fernandez et al., 1992; Lu et al., 2012; Delplanque
et al., 2013; Sánchez et al., 2015). The presence of heavy
metals in straw is likely to be a factor limiting the function as
biomass (Sas-Nowosielska et al., 2004; Laval-Gilly et al., 2017).
Therefore, rapid detection of cadmium in rice straw is of great
significance to promote the development of straw industry and
new energy industry.

Commonly used heavy metal detection methods include
atomic absorption spectroscopy (AAS), atomic fluorescence
spectroscopy (AFS), X-ray fluorescence spectroscopy (XRFS),
and inductively coupled plasma emission spectroscopy (ICP-
OES) (Fortes et al., 2013; Kim et al., 2013). Traditional heavy
metal methods require sampling, pretreatment and laboratory
chemical analysis, which are tedious, costly and time-consuming
(Rai and Rai, 2008; Gondal et al., 2010). Laser induced breakdown
spectroscopy (LIBS) has been widely applied in the fields of
solid, liquid and gas as a new method of material element
analysis since it was proposed in 1962 (Kim et al., 2013; van
Maarschalkerweerd and Husted, 2015). LIBS can quickly obtain
information on sample composition and elements content in
a short time. Compared with other detection technologies,
LIBS has many advantages, such as less sample required, no
complex pretreatment, multi-element joint measurement, and
fast implementation (Gondal et al., 2009). At present, some
studies have focused on the application of LIBS to detect pollution
of heavy metals. Zhao et al. (2019) studied the quantitative
analysis of Pb in soil and demonstrated that dual-pulse laser
induced breakdown spectroscopy (DP-LIBS) can be applied
as an efficient spectroscopic tool to improve the quantitative
analysis of Pb heavy metal in soil. Rehan et al. (2020) applied
LIBS to estimate the amount of toxic heavy metals (Pb, Cr,
Ni) in different brands of face foundation powders. Peng et al.
(2019a) used collinear DP-LIBS to achieve determination of
chromium content in rice leaves. However, as far as we know,
LIBS has not been used to detect heavy metals in rice straws.
Therefore, the detection of heavy metals in straw based on

LIBS technology is of great significance for the utilization of
straw as a biomass.

Based on the purpose of preventing potential risk of heavy
metals in biomass, this paper selected rice stem as the research
object, and introduced a rapid detection method of cadmium in
rice stem of LIBS technology. The specific objectives of this paper
are as follows: (1) to improve spectral stability with pretreatment
methods of wavelet transform (WT) and median absolute
deviation (MAD); (2) to visualize the distribution of stems with
different cadmium by principal component analysis (PCA); (3) to
establish classification models for fast discrimination of cadmium
stress degree in rice stems; and (4) to establish multivariate
models for quantitative detection of cadmium in rice stems.

MATERIALS AND METHODS

Materials
In the experiment, 10 pots of rice were cultivated to obtain
rice stems with different cadmium concentrations. The rice
variety selected in the experiment was Xiushui 134, which
was a single-season conventional late japonica rice widely
cultivated in Zhejiang Province, China. During rice cultivation,
the international rice nutrient solution formula was adopted,
and the pH value was set as 5.3–5.6. The rice was placed in an
artificial climate chamber. The cultivation parameters were as
follows: the duration of day mode was 14 h, the temperature
was 30◦C, the relative humidity was 85%, and the light intensity
was 225 µmol·m−2

·s−1; the duration of night mode was 10 h,
the temperature was 22◦C, and the relative humidity was 85%.
When entering the tillering stage, 10 pots of rice were divided
into five groups of two pots each. CdCl2 was used to prepare
cadmium solutions with different concentrations. Based on
references and experimental experience, Cd2+ concentrations
were, respectively, set to 0 (CK), 5, 25, 50, and 100 µM. CdCl2
solution with corresponding concentration was added to nutrient
solution (Peng et al., 2019b).

Rice plants with similar growth were selected from each group,
at 10, 20, and 30 days under heavy metal, and stems were
collected as samples. A total of 15 rice stem samples with different
cadmium concentrations were obtained, namely Day 10-CK, Day
10–5, Day 10–25, Day 10–50, Day 10–100, Day 20–CK, Day 20–5,
Day 20–25, Day 20–50, Day 20–100, Day 30-CK, Day 30–5, Day
30–25, Day 30–50, and Day 30–100. To remove impurities and
metal ions attached to the surface of sample, washed the collected
sample several times with distilled water, then immersed with
EDTA-2Na solution for about 60 min, and finally washed again
with distilled water. Drained the water, and dried the sample
in a 60◦C oven for a period of time to constant weight, which
was about 72 h. Put the dried stems into 5 ml centrifuge tube
and add five grinding beads with the diameter of 2.8 mm. Then,
put the above centrifuge tube into the grinding tool, and use
a grinder (JXFSTPRP-48, Shanghaijingxin, Shanghai, China) to
shake and grind for 2 min at a frequency of 60 Hz to obtain
uniform stem powder. 200 mg of powder was weighed from each
sample for tableting. The powder was pressed into a tablet of
10 mm× 10 mm× 1 mm by a tablet machine (YLJ-20T, Guoyan,
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Hebi, China) at a pressure of 60,000 N for 20 s. Four tablets were
prepared from stems of each cadmium concentration to collect
LIBS spectral data.

Experimental Setup
The LIBS equipment schematic diagram in the experiment
is described in Figure 1. Q-switched Nd:YAG nanosecond
pulsed solid-state laser (Vlite-200, Beamtech Optronics, Beijing,
China) was applied as laser sources to produce laser pulses
with a wavelength of 532 nm, an energy of 60 mJ, a pulse
frequency of 1 Hz, a pulse width of 8 ns. The energy meter
(StarLite, Ophir, Jerusalem, Israel) was applied to calibrate laser
energy to ensure accuracy. In the optical path system, the
laser pulses passed through half-wave plate, polaroid, mirrors
and lens successively, and converged into a light spot with
a diameter of 7 mm. To obtain better ablation, the sample
position should be located 98 mm below focusing lens, where
the focal length is 100 mm. Adopt the X–Y–Z movable sample
stage (Zolix, Beijing, China) to realize real-time movement
of samples. The laser pulses converge on the sample surface
under the action of a lens, ablating the sample to generate
plasma. Taking monochromator (SR-500i-A-R, Andor, Belfast,
United Kingdom) as a spectrometer, which enable separate
the optical signal during plasma transition process, so as
to obtain high-resolution spectral information in the short
wavelength band of 210.0107∼230.9990 nm. The wavelength of
atomic and ion spectra is in one-to-one correspondence with
specific elements, and the intensity of the spectral signal has a
quantitative relationship with the content of the corresponding
element (Rodrigues Romera et al., 2016). ICCD detector (iStar
DH334T-18F-03, Andor, Belfast, United Kingdom) converted
optical signal into electrical signal with optimized parameters
(Delay = 1 µs, Gate width = 10 µs, Gain setting = 1000).
The digital delay generator (DG645, Stanford Research Systems,
California, United States) enables realize time series control
between lasers and ICCD detectors. Digital delay generator has
a delay range of 0–2,000 ns and a resolution of 5 ps. In order
to obtain stable spectra, spectra were collected at 16 different
locations on each sample. Use X–Y–Z movable sample stage to
realize the path setting of 16 acquisition positions, in which the
path is a square matrix with a side length of 6 mm. During the
data acquisition process, each of the 16 locations was collected
for 5 times and accumulated as spectral data, where the repetition
frequency is 1 Hz, in an attempt to avoid spectral fluctuations. As
a result, the spectral data of each rice stem was the average of 80
spectra at 16 locations. It takes less than a minute to collect 80
spectral data from a sample.

Standard Method for Cadmium Content
Determination
Taking inductively coupled plasma optical emission spectrometry
(ICP-OES) as the standard method to detect the reference
content of cadmium in rice stem. The stem tablets from which
spectra have been collected were reground into powder. Weigh
100 mg samples from each tablet into the digestion tube,
add 5 mL of nitric acid and 1 mL of hydrogen peroxide,

tighten the digestion tube, and place them in a microwave
digestion apparatus (MARS 6, CEM, Matthews, United States)
for digestion. After digestion, transfer the digestive solution
to a centrifuge tube, dilute with deionized water to the scale
line, and shake it evenly. Finally, cadmium content of the
solution was measured by ICP-OES (Optima 8000, PerkinElmer,
Waltham, United States). In addition, the solution of standard
sample of citrus leaves (GBW10020, Beijing, China) and blank
sample were prepared simultaneously according to the above
conditions. In the experiment, it took about 150 min to detect
the cadmium content in a stem sample using ICP-OES. As
described in Figure 2 that under the same time conditions, as the
cadmium concentration increased, the average cadmium content
in the corresponding group also increased successively. Among
them, the cadmium content of two groups of stem samples
was very close, which were group of Day 20–5 and Day 30–
5, and group of Day 20–25 and Day 30–25, respectively. The
average cadmium content of rice stems from Day 30–100 was
702.25 mg/kg, reaching the highest accumulation of cadmium
under experimental conditions. ICP-OES detection value was
used as a reference for fast detection of heavy metal content in
quantitative analysis.

Data Processing
Rice stems are heterogeneous substance, and their spectra are
extremely complex, containing a lot of redundant information
(Lu et al., 2019). The LIBS detection of stem elements is usually
accompanied with matrix effect (Markiewicz-Keszycka et al.,
2017). To improve the analysis accuracy, it is necessary to adopt
suitable methods to deal with the spectrum. The data processing
process in this paper consists of data pretreatment, qualitative
analysis and quantitative analysis, as described in Figure 3.

Data Pretreatment
During the laser ablation process, the parameters of the
instrument and the physical characteristics of the sample
itself will cause spectral fluctuations and outliers. Pretreatment
methods were used to improve the stability of detection signal.
WT was adopted to denoise LIBS spectral data, in which db4
of Daubechies wavelet was used to decompose signals in three
layers. Area normalization was used to reduce point-to-point
fluctuations between single spectra. The MAD was used to
eliminate abnormal spectra due to the randomness of the plasma
transition (Peng et al., 2019a).

Chemometrics Method
Chemometrics is a new branch of chemistry. It applies knowledge
such as mathematics, statistics and computer to scientifically
design experiments, select the optimal measurement method,
obtain the most effective characteristic data, and extract the
information about substances to the maximum extent (Zhang
et al., 2018). Due to the influence of laser energy fluctuation,
sample non-uniformity and matrix effects, complex LIBS spectra
are generated. Considering the complexity of data, chemometrics
methods are often used in combination with LIBS spectroscopy
to improve the stability and reliability of real-time analysis
(Lang et al., 2018). In order to accurately detect cadmium in
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FIGURE 1 | Structural diagram of LIBS equipment.

FIGURE 2 | The reference content of cadmium in rice stem obtained by ICP-OES.

rice stem, the chemometrics method and LIBS technology were
combined for qualitative and quantitative analysis. In order
to determine the optimal effect of discriminant analysis and
quantitative detection, a variety of modeling methods were used
for comparison in the paper.

Principal component analysis is a data dimension reduction
method that converts all raw variables into a few unrelated
variables. Each principal component is a linear combination
of raw variables, which can reduce the complexity of the data
and find the most useful functions, with low information loss

(Zhan et al., 2015). When using PCA for qualitative analysis,
calculate the contribution rate of principal components, and the
distribution map of the principal component in the sample set
is obtained for cluster analysis (Moncayo et al., 2017). K-nearest
neighbours (KNN) is a pattern recognition algorithm (Godoi
et al., 2011). The distance between the data to be tested and
the data in the training set are sorted in increasing order. Then
the K samples closest to the sample to be tested are selected
to determine the frequency of occurrence of the category of
the K samples. The category with the highest frequency among
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FIGURE 3 | Data processing flow.

the samples is taken as the category of test data (Ghasemi-
Varnamkhasti and Forina, 2014). Support vector machine (SVM)
has advantages in solving the classification of small samples,
non-linear and high-dimensional data, and it belongs to a
supervised learning method (Fei, 2010). Due to the simplicity
of RBF function and its ability to solve complex problems,
RBF function was chosen as the kernel function of SVM model
for classification. Soft independent modeling of class analogy
(SIMCA) is a supervised pattern recognition method based on
PCA (Basri et al., 2017). It establishes a PCA model for each
sample category, and projects unknown samples according to
each principal component model for discriminant analysis (Ye
et al., 2008). SIMCA was used for classification of rice stems.
Random forest can learn the mapping relationship between
features and labels from the data, which belongs to the category
of supervised learning. It is a kind of classifier composed of
several decision trees, the output category of which depends
on the category output mode of an individual tree, and it is
a typical representative of the strong classifier composed of
several weak classifiers (Xin et al., 2012). Extreme learning
machine (ELM) is an effective learning algorithm for single-
hidden layer feedforward neural network (SLFNN) (Feng et al.,
2019). ELM can randomly initialize the input weight and biases
of SLFNN and obtain the corresponding output weight (Chen
et al., 2012). Traditional feedforward neural network takes a
long time to train and often gets into the local minimum point,
while ELM method can solve the above problems with its rapid
learning speed and good generalization performance. We used
ELM to distinguish the cadmium pollution and to detect the
cadmium content. As an improved algorithm of SVM, least
square support vector machine (LS-SVM) replaces the non-
equal constraints of SVM optimization problem with equality
constraints, transforms the solution of SVM into the solution of
linear equations, which improves the efficiency and reduces the
difficulty (Pierna et al., 2011). RBF function is used as the kernel

function of LS-SVM, and two parameters, sig2 and gam, are
involved in the model training process. Among them, sig2 is the
parameter kernel function, here is the bandwidth in the case of
RBF, and gam is the regularization parameter, which determines
the trade-off between the minimum model complexity and the
minimum training error. Partial least squares (PLS) provides a
multivariable modeling method (Maquina et al., 2019). It can
effectively deal with multicollinear problems and establish linear
regression models. The main idea of partial least square method
is to project the original variables into mutually orthogonal
dimensions through linear variables, producing latent variable
(LV) (Musingarabwi et al., 2016). In the PLS model, latent
variables (LVs) can explain most of the variables in the sample.
It is necessary to select the appropriate number of LVs to obtain
the best effect. In this paper, cross-validation method was used to
select the optimal number of LVs. In order to avoid overfitting,
the maximum number of variables was determined in one-tenth
of the total number of samples (Gowen et al., 2011; Goto et al.,
2015). Using the measured values of the sample to assign values
to the Y matrix, PLS can be used as partial least squares regression
(PLSR) for regression analysis (Peng et al., 2019b). Radial basis
function neural network (RBFNN) is a feedforward network with
a single hidden layer based on function approximation, in which
the first layer is the input layer, the second is the hidden layer,
the third is the output layer (Feng et al., 2018). RBFNN has been
widely used for its simple training structure, fast convergence
speed, strong generalization ability and arbitrary approximation.

RESULTS AND DISCUSSION

LIBS Spectral Analysis
The representative LIBS spectra of rice stems under different
cadmium stress are illustrated in Figure 4, where (A) is
the average raw spectra and (B) is the average spectra after
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FIGURE 4 | LIBS spectra of rice stem tablets with different Cd concentrations
in the range of 210.01∼231.00 nm. (A) average raw spectra; (B) average
spectra after pretreatment.

pretreatment. It can be seen from the Figure 4A that rice stems
with different cadmium concentrations had similar emission
lines, which are mainly related to organic compounds, nutrients
and cadmium. The pretreatment methods were used to remove
noise, fluctuations and outliers from the raw spectrum. In the
spectral range of 210.01∼231.00 nm, three cadmium emission
lines can be clearly observed with reference to the atomic spectra
database of National Institute of Standards and Technology
(NIST), namely ionic spectral lines Cd II 214.44 and Cd II
226.50 nm, and atomic spectral lines Cd I 228.80 nm. We also
found that emission lines Ca III 212.30, Fe II 213.77, Fe II
221.10, and Fe II 221.71 nm emerged near the emission lines
of cadmium. The spectral characteristics of Ca, Fe, and Cd
in different samples are significantly different, as described in
Figure 4B. In all samples, Day 30–100 had the highest spectral
line intensity at three characteristic lines of cadmium including
214.44, 226.50, and 228.80 nm. It was consistent with the results
in ICP-OES, which showed that the sample with the largest
accumulation of cadmium was Day 30–100. Although it can
be observed that cadmium-contaminated stem samples have

different spectral line characteristics, it is not a straightforward
process to complete accurate and rapid sample classification
based on the spectral peak position or peak intensity of the
elements. For specific elements, the characteristic spectral lines of
the detected element may be different due to the matrix effect. In
addition, the cadmium content of some samples from 15 different
stems (Day 10–5, Day 20–5, and Day 30–5, Day 20–25 and Day
30–25) is very close, which will interfere with the classification
effect. Multiple emission lines need to be analyzed in a more
efficient way to accurately classify stem samples. Therefore, it was
necessary to use chemometrics to find differences and achieve
good identification.

Cluster Analysis
We used PCA to classify different stems, and visualize the
distribution of them in the principal component (PC) scores
scatter plots. PCA analysis was performed on the four group
samples of Day 10, Day 20, and Day 30 and all samples (Day
10, Day 20, and Day 30). Figure 5 shows the PCA visualization
of rice stems at CK, 5, 25, 50, and 100 µM concentrations under
different stress days. Each point in the 3D scatter plot represented
a sample, which can visually show the clustering effect. For the
samples of Day 10, Day 20, and Day 30 and all samples, the total
variance of the first three principal components was, respectively,
99.53, 99.66, 99.89, and 99.07%.

It can be seen that the clustering effects of rice stem scatters
vary in different days. For Day 10 samples, five clusters were easily
found in the PC1-PC2-PC3 space. However, the clustering effect
of stems with different cadmium concentrations was different. As
presented in Figure 5A, for CK, 5, 25 and 100 µM stem samples,
each type tended to cluster together, which made these type
of samples easier to distinguish from other samples. However,
the 50 µM samples was close to the adjacent concentration
gradient samples (25, 100 µM), which made it difficult to get
good seperation between three concentration samples (25, 50,
and 100 µM). For Day 20 and Day 30 samples, as depicted in
Figures 5B,C, it was clearly that five clusters were found in the
spaces. Rice stems were more likely to cluster together, under
the same stress concentration. The five rice stem samples can
be well separated from each other. In Figure 5C, a sample of
25 µM tended to cluster with 5 µM samples. For all the samples
(Day 10, Day 20, and Day 30), PCA analysis was performed
on fifteen different rice stems, as shown in Figure 5D. Fifteen
clusters were obviously found in the spaces. However, the 15
types of samples tend to cluster together more than in previous
cases. This is because under the combined effect of time and
concentration, the cadmium content of two groups of stem
samples was very close, which were Day 20–5 and Day 30–5,
and Day 20–25 and Day 30–25, respectively. We can see from
Figure 5D, 5 µM of 20 day and 5 µM of 30 day were clustered
together, and 25 µM of 20 day and 25 µM of 30 day were also
clustered, although the two did not belong to the same type of
stress gradient.

In this paper, PCA was carried out on the stems of different
rice stems, and sample scatter plots were made in three-
dimensional space to visualize clustering effect of stems
contaminated with different cadmium. For the stems of Day
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FIGURE 5 | PC scores scatter plots of rice stem tablets. (A) PC1-PC2-PC3 for Day 10; (B) PC1-PC2-PC3 for Day 20; (C) PC1-PC2-PC3 for Day 30;
(D) PC1-PC2-PC3 for all samples.

10, Day 20, and Day 30, PCA analysis can achieve better
clustering effect. But for all samples (Day 10, Day 20, and
Day 30), 15 different stems cannot be distinguished well
because samples of different gradients had similar cadmium
concentrations. In addition, PCA is a clustering analysis
method, which can clearly visualize the clustering effect of
samples and cannot provide accurate discriminant results.
Therefore, supervised multivariate analysis was used to
predict contamination degree and content of cadmium in
the next section.

Rapid Discrimination of 15 Cadmium
Stress
The spectra of different rice stems after pretreatment were used
to establish classification models including KNN, SVM, SIMCA,
RF, and ELM to predict cadmium content. Before modeling,
sample division was performed. For every four samples, the
first three were used for calibration and the remaining one for
prediction. Thus, 45 tablets were selected to calibrate model and
15 tablets were used to predict sample properties, with a ratio
of 3:1. For the discriminant analysis model, accuracy was used

as a performance indicator to evaluate the model, that was, the
proportion of the number of correctly classified samples to the
total number of samples.

The discriminant models results of rice stems with 15 different
cadmium concentrations are shown in the Table 1. The ability
of different chemometrics models to discriminate the cadmium

TABLE 1 | Results for cadmium stress discrimination in rice stems.

Model Parametera Accuracy of
calibration set

Accuracy of
prediction set

KNN 3 75.56% 53.33%

SVM (1.000, 1,000) 91.11% 73.33%

SIMCA (2, 2, 2, 2, 2, 2,
2, 2, 2, 2, 2, 2,

2, 2, 2)

95.56% 73.33%

RF (151,7) 100% 73.33%

ELM 12 91.11% 93.33%

aParameters of different models: the k-value for KNN, different penalty parameters
(c) and kernel function parameters (g) for SVM, the number of principal components
(PCs) of SIMCA, number of trees in the forest and nodes per tree for RF, and the
number of hidden nodes of ELM.
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stress of stems was compared. The discrimination effect of
KNN is poor, and the accuracy of the calibration set and the
prediction set were 75.56 and 53.33%, respectively. Compared
with KNN, the discriminative effect of SVM, SIMCA and RF
has improved. The accuracy of calibration set was 91.11, 95.56,
and 100%, respectively, and the accuracy of their prediction set
was 73.33%. ELM has the best discriminating effect, with 91.11%
of calibration accuracy and 93.33% of prediction accuracy.
Comparing the ability of different models to discriminate the
cadmium concentration of rice stems, we can find that ELM had
the best effect, in which the accuracy of calibration and prediction

were both more than 90%, followed by SVM, SIMCA and RF
models, in which the calibration accuracy of models all exceeded
90% while the prediction efficiency was only 73.33%, and KNN
had the worst discrimination effect, in which the accuracy
of correction and prediction did not exceed 80%. Therefore,
compared with other methods, ELM has higher discriminant
accuracy, which is more advantageous in the discriminant
analysis of cadmium pollution degree in rice stems. It takes no
more than 5 min to classify a stem sample based on the above
method. LIBS method can quickly distinguish 15 cadmium-
contaminated stems. These results indicate that LIBS combined

TABLE 2 | Multivariate models results for cadmium concentrations in stems.

Model Parametera Accuracy of calibration set Accuracy of prediction set

Rc RMSEC (mg/kg) Rp RMSEP (mg/kg)

LS-SVM (5.492 × 103, 3.712 × 103) 0.999 9.42 0.976 46.47

PLSR 4 0.972 47.80 0.991 35.60

RBFNN 938 0.985 35.31 0.990 37.05

ELM 11 0.981 39.80 0.995 28.96

aParameters for models: the bandwidth of kernel function (sig2) and the trade-off between the minimum model complexity and the minimum training error (gam) of
LS-SVM, optimal number of latent variables (LVs) of PLSR, spread coefficient of RBFNN, the number of hidden nodes of ELM.

FIGURE 6 | Relationship between reference cadmium value and prediction cadmium value based on LIBS in rice stems under different models. (A) LS-SVM model;
(B) PLSR model; (C) RBFNN model; (D) ELM model.
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with ELM can quickly detect cadmium in stems, and accurately
distinguish the degree of cadmium pollution. The combination of
chemometrics and LIBS provides a fast method for discriminant
analysis of cadmium content in rice stems.

Quantitative Detection of Cadmium
Content
Multivariate models such as LS-SVM, PLSR, RBFNN, and
ELM were established to complete the quantitative detection of
cadmium in rice stems based on LIBS. The LIBS spectra ranged
from 210.01 to 231.00 nm and contained 1,024 variables. 45
samples were selected as the calibration set, and 15 samples
were used as the prediction set. Using correlation coefficient (R)
and root mean square error (RMSE) as indicators to evaluate
model performance. Multivariate models results of cadmium
concentration in rice stems based on PLSR, LS-SVM, RBFNN,
and ELM are shown in Table 2. Obviously, the four models all
showed good results in predicting cadmium content in rice stems.
For LS-SVM models, the optimal parameters were determined
based on grid-search procedure, with sig2 and gam of 5.492× 103

and 3.712 × 103. LS-SVM models achieved good performance,
with Rc of 0.999, RMSEC of 9.42 mg/kg, Rp of 0.976 and RMSEP
of 46.47 mg/kg. In PLSR modeling process, leave-one-out cross
validation was used to select LVs to determine the model, and LVs
was 4. Rc reached 0.972 and RMSEC was 47.80 mg/kg, Rp reached
0.991 and RMSEP was 35.60 mg/kg. The spread coefficient of
RBFNN was optimized, which ranges from 1 to 1000, with a step
size of 1. The number of hidden nodes of ELM was optimized,
ranging from 1 to 45, with a step size of 1. Compared with LS-
SVM and PLSR, RBFNN and ELM had better prediction effects,
in which Rc and Rp of the above two models both exceeded 0.98.

Figure 6 shows the relationship between reference cadmium
value and prediction cadmium value based on LIBS in rice
stems under different models. We can observe that the data
of calibration and prediction set in the four models are well
fitted. For ELM, the model had the best correlation and lowest
prediction error, where Rp is 0.995 and the RMSEP is 28.96 mg/kg
in prediction set. The quantitative determination of cadmium in
a stem sample takes no more than 5 min. The results showed
that multivariate analysis with ELM method can realize the fast
detection of cadmium in stem more effectively.

CONCLUSION

In this paper, the combination of LIBS and chemometrics
method successfully achieved the discriminant analysis and
quantitative detection of rice stems with different cadmium
concentrations. With the help of WT, area normalization and
MAD, the noise, fluctuation and outliers in the raw spectrum
were improved. PCA method was applied for cluster analysis
of 15 different cadmium stresses rice stems, and it visualized
the distribution of different samples in scores scatter plots.
The classification models including KNN, SVM, SIMCA, RF,
and ELM were established to distinguish stems with different

cadmium stress degree. Compared to other models, ELM had the
best discriminating effect, with 91.11% of calibration accuracy
and 93.33% of prediction accuracy. The results indicate that
LIBS combined with ELM can quickly detect cadmium in rice
stems, and accurately distinguish different degree of cadmium
pollution. To complete the evaluation of LIBS on the ability of
quantitative detection of cadmium in rice stems, multivariate
analysis methods such as PLSR, LS-SVM, RBFNN, and ELM
were used for modeling. The LIBS spectra ranged from 210.01
to 231.00 nm and contained 1,024 variables. It can be found that,
the ELM model had the best correlation coefficient and lowest
prediction error, with Rp of 0.995 and RMSEP of 28.96 mg/kg in
prediction set. It indicated that multivariate analysis with ELM
method can realize the fast and accurate detection of cadmium
content in stem more effectively. Compared with traditional
detection methods (more than 150 min), the combination of LIBS
technology and ELM method (less than 5 min) greatly reduces
the time required to detect heavy metals on a sample. The results
show that the combination of LIBS technology and chemometrics
provides significant advantages for fast and accurate detection
of cadmium contamination degree and cadmium content in rice
stems. The method can timely diagnose the straw containing
cadmium, prevent the risk of heavy metals in the straw,
ensure the safety of the straw as a clean energy, and improve
utilization rate of energy.
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