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Natural flowering affects fruit development and quality, and impacts the harvest of

specialty plants like pineapple. Pineapple growers use chemicals to induce flowering

so that most plants within a field produce fruit of high quality that is ready to harvest

at the same time. Since pineapple is hand-harvested, the ability to harvest all of the

fruit of a field in a single pass is critical to reduce field losses, costs, and waste, and to

maximize efficiency. Traditionally, due to high planting densities, pineapple growers have

been limited to gathering crop intelligence through manual inspection around the edges

of the field, giving them only a limited view of their crop’s status. Through the advances

in remote sensing and computer vision, we can enable the regular inspection of the field

and automated inflorescence counting enabling growers to optimize their management

practices. Our work uses a deep learning-based density estimation approach to count

the number of flowering pineapple plants in a field with a test MAE of 11.5 and MAPD

of 6.37%. Notably, the computational complexity of this method does not depend on

the number of plants present and therefore efficiently scale to easily detect over a 1.6

million flowering plants in a field. We further embed this approach in an active learning

framework for continual learning and model improvement.

Keywords: deep learning-artificial neural network (DL-ANN), active learning, pineapple, computer vision, remote

sensing-GIS, weakly supervised, counting, density estimation

1. INTRODUCTION

Specialty crops, such as pineapple (Ananas comosus L.), present unique challenges and require
sophisticated approaches to maximize productivity. Growers of large area crops such as corn or
soybean have access to GPS-based yield maps and precisely apply inputs such as fertilizer and water
considering field variability. Specialty crop growers lack access to these data as their crops tend to
be hand-harvested. Because of this, specialty growers have been at a disadvantage, having to make
decisions without this level of insight.

Growers of these high-value crops make a number of key decisions in every growing cycle. For
pineapple, data supporting these decisions are generally limited to visual ground observations. But
these observations are from the periphery where spatial and temporal variability, stage of growth,
and development cannot be determined or quantified across the entire field. Walking through the
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field is difficult as the plants grow very close together: 30,000
plants per acre (Figure 1). This lack of complete, real-time
information about field conditions can lead to poor decisions
resulting in too little or too much water, fertilization, pesticides,
and growth regulators, or poor planning and scheduling of
planting and harvest resources, including equipment and labor.

The natural flowering of pineapple affects fruit development
and quality, and impacts harvest (Py et al., 1987; Bartholomew
et al., 2002; Zhang and Kovacs, 2012; Sanewski et al., 2018).
Pineapple growers use chemicals which produce ethylene
(Ethephon) to induce flowering so that most plants within a
field produce fruit of high quality ready to harvest at about
the same time (Paull and Duarte, 2011; Bartholomew, 2013).
The ideal situation would be for a grower to harvest the entire
field in one pass when there is little variation in flowering,
significantly increasing productivity and eliminating the cost of
additional harvests.

Advances in aerial imagery collection (e.g., drones, UAVs)
and remote sensing allow the grower insight into his field
that was previously unattainable (Jung-Rothenhaeusler et al.,
2014). UAVs have been deployed in large scale pineapple
operations to reduce erosion and manage crop fertilization
programs (Jung-Rothenhaeusler et al., 2014). However, their
application to other aspects of managing pineapple production
such as counting and identifying flowering pineapple plants

FIGURE 1 | (A) A ground-level view of a pineapple field shows the large number and high density of plants (25,000–30,000 plants per acre) which makes inspecting

the interiors of the blocks difficult. (B) An oblique view of a pineapple plant at the mid-flowering stage and early fruit growth stage tucked away among the leaves.

(C) The top-down view shows the characteristic red center of a plant at an early stage of flowering called the “red-bud early cone” stage.

from such imagery remains challenging because: 1. Pineapple
inflorescence dramatically change in appearance (both size and
color) as they develop and mature (Bartholomew et al., 2002;
Zhang H. et al., 2016) 2. The global appearance of fields varies
significantly due to lighting, shadowing, and other illumination
differences. 3. A single fieldmay have 1–2million plants; methods
where computational efficiency scales with the number of entities
would be prohibitive at scale.

Our work leverages the advances of deep learning to
automatically count and localize flowering pineapple plants,
which may be in the millions for a single field (Figure 2). We
use a counting-by-density-estimation approach to produce a
density map of pineapple inflorescence across the field. This
approach determines the density distribution of fruits across
all regions of the field and identifies areas which are ready
for harvest or delayed in development. Our approach produces
results occasionally better than the human annotations.

Additionally, we embed this density-estimation framework
in an active learning paradigm. After the density-inference is
complete for a new image, we extract discrete locations of each
inflorescence using a peak finding algorithm. These points are
sent to human annotators for corrections and the model is
retrained on the new data; this enables the model performance
to improve as it sees more and more data while reducing the
burden on human annotators. While active learning has been
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FIGURE 2 | Our model identifies the density of flowering across multiple blocks of a pineapple field. The flowering density is depicted on a spectrum from low (yellow)

to high (red) and regions of no-flowering are shown as transparent (i.e., green from imagery shows through). A single, example field of 61.5 acres has over 1.6 million

plants. This field has blocks at all stages of flowering and early fruit development. On the right hand side of the field, the plants are at the early stages of flowering with

many still vegetative. The grid-like pattern observed across the image corresponds to the access roads (16 feet wide) surrounding each block with each block being

126 feet wide and of varying length; the model has accurately identified these as non-flowering areas. Several of the blocks are seen to have lower flowering density

as they were just beginning to flower and still largely vegetative as confirmed in ground-inspections by horticulturalists.

previously applied to plant counting tasks in a counting-by-
detection paradigm (Ghosal et al., 2019), our novel approach
extracts discrete peaks that can be corrected by annotators while
maintaining the computational advantages of the counting-by-
density-estimation approach.

Finally, we demonstrate the usefulness and qualitative
performance of our approach through field inspections. We see
that the algorithm performs well across all stages of flowering,
even though the appearance of the inflorescence in each stage
varies. Our algorithm successfully identifies areas of stunted
flowering occurring naturally or due to other circumstances
(e.g., irrigation, fertilization, spraying for flower induction). The
inspections also showed that there was about 1.4% plants missing
in a row and about 12% of plants had fruit that were small, on
short fruit stems or covered by leaves from adjoining plants and
hence not easily discernible from above.

2. RELATED WORK

2.1. Counting Methods
Work in the area of dense-crowd-counting has inspired much
of our current work (Loy et al., 2013; Sindagi and Patel, 2018).
Within the broader domain of (entity) counting, approaches

fall under one of three categories: counting by detection,
counting by regression, and counting by density estimation
(Sindagi and Patel, 2018).

Detection-based approaches are most applicable when the
entities are large and well-separated, occlusions are limited,
and the number of entities is small. These may take the
form of sliding-window approaches that detect all or part of
the entity in question (Li et al., 2008; Dollar et al., 2011)
and sum the detections over the entire image. With the
success of deep learning, many of these traditional approaches
have been replaced with neural network-based detection and
segmentation algorithms (Ren et al., 2015; Redmon et al., 2016;
He et al., 2017), but these new methods still seek to solve
the counting problem through the precise localization of all
desired entities in the image. Key drawbacks to these methods
are they tend to be computationally heavy, the time complexity
often scales with the number of entities present, they often
have an upper-limit of detectable entities before encountering
memory issues, and they tend to struggle as occlusion becomes
more pronounced or the entities become small. Additionally,
detection methods, like Faster R-CNN (Ren et al., 2015) and
YOLO (Redmon et al., 2016) require bounding box annotations
andMask R-CNN (He et al., 2017) further requires dense instance
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mask annotations, all of which are extremely time consuming
to acquire.

In contrast, counting by regression approaches eliminate the
need to determine locations of each entity and seek only to
determine the number of entities present (Chan and Vasconcelos,
2009; Ryan et al., 2009; Chen et al., 2012); these approaches
also have benefited tremendously from deep learning-based
architectures (Wang et al., 2015). However, these methods
when used on their own provide only the total count, without
any information as to how the entities are distributed across
the image.

Density estimation approaches have proven very
successful (Lempitsky and Zisserman, 2010; Pham et al.,
2015; Xu and Qiu, 2016) especially when combined with deep
architectures (Boominathan et al., 2016; Onoro-Rubio and
López-Sastre, 2016; Zhang Y. et al., 2016; Sam et al., 2017,
2019) when we desire localization in addition to a final count.
Many of these leverage fully convolutional neural networks
(FCNs) to predict a density (Xie et al., 2018; Ma et al., 2019)
across the image; this density can be integrated to provide
the count over a region. Furthermore, these methods tend
to outperform detection-based methods in highly occluded
scenarios. They also require only simple point-annotations
which can be acquired far more quickly than the bounding-box
or instance-mask annotations needed by detection methods.
Additionally, because the output density map is itself a
single-channel image, not a collection of bounding boxes,
the computational complexity is independent of the number
of entities present. Our approach follows these methods as
inflorescence may be occluded by other portions of the plant,
and the number of inflorescence in a given image could be
extremely large.

2.2. Active Learning
Deep learning approaches require a large amount of labeled
data to maximize their performance and therefore a significant
demand can be put on human annotators to gather such data. To
offset these demands, significant work has been done in weakly,
semi, and self-supervised learning approaches (Rosenberg et al.,
2005; Zhu, 2005; Ratner et al., 2019; Xie et al., 2020).
Most relevant to the present work are the weakly supervised
approaches that incrementally train a model on a selection of
data, correct any erroneous predictions using a human annotator
or “oracle,” and then retrain the model on the larger set of
correctly annotated data (Li et al., 2013; Zhou et al., 2016).
Active Learning is a subset of this domain which further explores
the optimal selection of data for training (Settles et al., 2008;
Settles, 2009; Huang et al., 2010). Many of these approaches rely
on finding disagreement sets between different models trained
for the same task (Dagan and Engelson, 1995; McCallum and
Nigam, 1998) while others seek to find regions of uncertainty
directly (Cohn et al., 1994) in the input space. The goal of our
work is not around proposing a new or better query strategy,
but to demonstrate how an active learning approach can improve
results and reduce annotation cost in this domain.

2.3. Applications in Agriculture
Both traditional computer vision and deep learning-based
approaches have been used for a variety of counting-based
agricultural applications. The work of Guo et al. (2018) and
Malambo et al. (2019) used detection-based techniques to detect
sorghum heads in a field. Similarly, Gené-Mola et al. (2020) used
Mask-RCNN to fully identify and segment apples on trees in an
orchard. To count palm trees from UAV imagery, Li et al. (2017)
used a CNN-based detection approach. Very recently, Osco et al.
(2020) used an approach very similar to ours to count the number
of citrus trees in a grove. Where they sought to count every tree
present, in our work we seek to count only those plants who have
begun to flower.

Particularly related to our work is Ghosal et al. (2019)
who used a RetinaNet-based approach (Lin et al., 2017) to
simultaneously regress the total count and individual bounding
boxes of sorghum heads. This network was embedded into
their “automated annotation protocol” (i.e. active learning
system; Settles, 2009). We similarly embed our network into
an active learning paradigm to enable continual learning.
However, our counting approach is based on density-estimation
approaches and does not rely on bounding box detections as in
the above work.

3. MATERIALS AND METHODS

3.1. Data
We acquired raw imagery via a DJI Matrice 210 drone equipped
with a DJI X3 three band (RGB) camera flown at a height of 200
ft above the pineapple fields (Figure 3). Individual images were
stitched together using a third party system (Pix4Dmapper) to
produce a single large-scale image for each block. During the
stitching process, orthorectification is performed using the RGB
image and a digital elevationmodel (DEM) of the field (Gao et al.,
2009; Laliberte et al., 2010).

From this full dataset we randomly sampled 866 patches
(512 × 512) across flights over 12 blocks from three fields for
annotations. Annotators marked the center of each inflorescence
with a point-label, producing 76,659 total point annotations. The
data was split such that 650 patches for training and 130 patches
for validation were sampled frommultiple blocks belonging to an
initial set of fields and 106 patches for testing were sampled from
blocks belonging to an entirely different set of fields. That is, no
field which appeared in the test set appeared in either the training
or validation sets.

For training, we performed the following augmentation steps:
the original sample (and label) was rotated by a random angle and
randomly cropped to 256 × 256. For testing and validation, the
original 512 × 512 patches were split into four non-overlapping
256× 256 images.

3.2. Density Estimation
To produce the target density map, the point labels generated
by annotation were blurred using a two-dimensional isotropic
Gaussian filter. That is, given an image I with pixels xm annotated
with points zn = {z1, . . . , zN} |zi ∈ R2 where N is the total
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FIGURE 3 | A photo of the drone preparing to begin its imagery collection flight over the pineapple fields, with the Pacific Ocean in the distance on the north side of

Oahu, Hawaii.

number of points annotated in that image, we define the ground
truth density map D to be a kernel density estimate given by:

D(xm)
def=

N
∑

n=1

N (xm; zn, σ 212×2) (1)

=
N

∑

n=1

1√
2πσ

exp

(

−‖xm − zn‖22
2σ 2

)

(2)

We explored values in [1, 2, 6, 10, 20] for σ , the standard
deviation of the Gaussian kernel, and found that σ = 6 provided
the best results both in terms of MSE as well as steps needed
for convergence.

We used the mean squared error (MSE) between the target
and predicted density maps D̂(xm) as our loss function and is
given by

MSE = 1
M

M
∑

k=1

‖D(xm)− D̂(xm)‖22. (3)

Adam Optimizer was used with a learning rate of 0.001, β1 =
0.9,β2 = 0.99, and weight decay of 1e−5. The model was trained

with a batch size of 20 on a machine equipped with an NVIDIA
Titan RTX for up to 1,000 epochs; the final model was halted
using early stopping after 30 steps. In early work, we used a
machine with a Tesla P4 with a batch size of 10. The optimal
model on this hardware was not reached until 630 epochs (which
is why the maximum allowed epochs was set to 1,000) and did
not yield as good of results as the final model trained on the
Titan RTX.

Our model used the fully-convolutional encoder-decoder
structure of U-net (Ronneberger et al., 2015), taking in the 3
(RGB) input channels and producing a single-channel output
corresponding to the inforescence density (Figure 4). Each
convolutional block consisted of 3x3 convolution followed by
batch normalization (Ioffe and Szegedy, 2015) and a ReLU
nonlinearity. Max Pooling with a 2 × 2 kernel with a stride of
2 was used in the encoder after every two convolutional blocks.
In the decoder, we used a 2 × 2 transposed convolution for
upsampling. We used same padding throughout.

The final layer consists of a 1D convolution followed by ReLU
activation: this ensures that every point in output layer is positive,
which is required by our density prediction task. Note, that the
output density is not required to be [0, 1], but only positive; if
many inflorescences are located closely together, their densities
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FIGURE 4 | Our architecture follows the encoder-decoder structure of U-net where the input is an RGB image and the output is a density map.

FIGURE 5 | The setup for our active learning system. Initially the model is trained on images which have been annotated from scratch. When new data is initially

presented to the model (1), it is passed directly in for inference. The model generates the predicted density map and the peak finding algorithm is used to extract

discrete locations of inflorescences. A human annotator or “oracle” reviews and corrects the discrete points and a target density map is created for the new sample.

Note, the “predicted” points shown here has been made artificially poor to emphasize the actions of the annotator. This map and the original image are added to the

training set (2) and the model is retrained.

could add to >1 in some places. In practice, we did not see this
occur and therefore a final sigmoid activation could be used in
place of the ReLU to enforce a range of [0, 1]. However, we found
that the final ReLU activation outperforms these alternatives.

3.2.1. Total Count
The output of the U-net is a single channel density map of
the flowering plants across the field. To get the total count of
inflorescence T̂c in a particular region, in this case the sample
window, we integrated over the density map to produce the final
count. That is, T̂c =

∫

D(xm)dx. Note that dx corresponds to
the spatial window captured by a single pixel and therefore in
practice this equations to taking the sum of the predictionmatrix.

3.3. Weak Supervision and Active Learning
3.3.1. Weakly Supervised Annotation Framework
We used a weakly supervised approach to continually feed more
(annotated) data to the model. Figure 5 shows an overview of
this approach.

As discussed previously, the model was trained on an initial
training dataset. When new (unseen) data becomes available, it is
passed directly to the model for inference; the U-net produces a
predicted density map for that image.

Commonly in an active learning paradigm, the model output
is cleaned up directly by human annotators and fed back into

the model for retraining. However, cleaning up the density map
directly is a challenging annotation task because the “location”
of the inflorescence is non-uniformly spread over a set of pixels.
Where inflorescence distributions overlap, it is unclear how the
density map should be appropriately altered; inconsistency and
ambiguity from the annotators would degrade, not enhance
model performance.

To overcome this, we developed a procedure to extract
discrete locations of points that can be submitted for re-
annotation from this final density map. We first threshold
the image so regions of low density, below γ , are removed.
Next, we use a 2D local-max finding algorithm common to
most image processing toolkits to identify peaks requiring a
minimum distance of δ between peaks. We found that γ =
0.05 and δ = 4 work well in practice although these values
can be dynamically changed in the annotation interface to
best support the annotation process. Note that because of
the filtering applied during this process, the sum over these
peaks T̂d will always be less than the overall predicted count
obtained by integrating over the predicted density map T̂c.
This is not problematic and in fact, we found anecdotally that
annotators (aka. the “oracle”) seem to be more efficient and
accurate at adding missed detections as opposed to deleting
false positives.
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Next the set of discrete point annotations, after having been
corrected by the oracle, is smoothed with the same Gaussian
filter used on the initial data to create a new target (i.e., ground-
truth) density map label. This new label along with the image
is added to the training set for retraining. The validation set is
left unchanged.

Retraining occurs whenever a “sufficient” amount of new
annotated data is acquired: sufficiency is usually determined by
operational constraints such as cost or compute time. After the
model is retrained, if it outperforms the previous model on the
validation set, it is promoted to the current version and used for
subsequent inference. This process is repeated as desired.

3.3.2. Active Learning
In the passive weakly supervised approach, new samples
are fed to the model randomly. However, we also seek to
minimize annotator burden and maximize the efficiency of the
model training process by prioritizing the most “useful” and
informative samples for annotation and retraining. Therefore
in the Active Learning approach, we prioritize samples in the
following manner:

1. The total count T̂c for a given (new) sample is computed by
integrating over the predicted density map.

2. The peak-finding algorithm is applied to identify discrete
locations of flowers. The number of discrete points is T̂d.

3. The absolute difference CountDiff = (T̂c − T̂d) is computed.
4. Samples are ranked according to CountDiff and the samples

with the greatest differences are prioritized for annotation
and retraining.

3.3.3. Impact of Data Quantity and Learning Strategy
In practice, new data will be passed to the model during passive
and active learning. However, to quantify the impact of more
data on the model performance which the active learning system
affords, we conducted an experiment in which we incrementally
trained the original model on growing amounts of the original
training set.

In the following experiments, the validation and test sets were
identical to before. Only the subset of training data which the
model was shown at each step was varied. For clarity, we denote
the set of training data which was not currently being used at that
step of training “the training (data) pool.”

The model was initially trained on a 50 samples of training
data and validated against the full validation set. Inference was
run on the test set and the performance was recorded. Additional
samples were selected from the training pool and added to the
initial 50 samples according to the following procedure:

1. Inference was run on the test set to record performance for
that amount of training data.

2. Inference was run against the training data pool.
3. CountDiff was computed for all samples in the training

data pool.
4. Those samples with the largest value were added to the

training set for the next round of training.
5. The model was retrained.

6. These steps were repeated until all data from the training data
pool had been added to the training set.

We added data and retrained at levels of [50, 100, 250, 500, 650]
samples. Results are shown in section 4.2.

3.4. Ground Inspections
To provide ground-level verification of the model’s output
and to demonstrate how this application could potentially be
incorporated into one’s management practices, we inferenced and
conducted ground inspections of a block.

After model training, validation, and testing was complete, we
ran inference on a completely unseen block; this block belonged
to the same field and was under the same management as those
areas used for training-validation-testing, but was not previously
shown to the model. In particular, pineapples in the field were
induced to flower when the plants were large enough by spraying
with a chemical (Ethephon) that breaks down to release ethylene;
ethylene is the natural inducer of flowering in Bromeliads of
which pineapple is a member. A density map for the entire block
was constructed to enable clear visualization of the distribution
of inflorescences across the block and easy identification of
any areas which may be exhibiting stunted development or
early inflorescence.

Three horticulturalists familiar with pineapple flowering
evaluated inflorescence in that block. Inflorescence number and
their visibility were counted in a 50 feet bed that has two rows
of pineapple plants; this evaluation was repeated four times.
Qualitative evaluationwas carried out by walking around the field
block’s perimeter and estimating the stage of flowering as red bud,
early or late cone and early mid, late flowering and dry petal stage
or early fruit development of each block in a field. Red Bud is the
first noticeable stage of inflorescence development, with the cone
stage being the later stage of inflorescence development before
flowers begin to open from the base of the inflorescence cone.

4. RESULTS

4.1. Density Estimation
4.1.1. Model Performance
Results from our approach are shown in Figure 6. The per-
pixel MSE validation loss was 0.0033 and the test loss was
0.0038. Qualitatively we see the predicted density maps closely
resemble the target maps. In certain cases, particularly when the
inflorescences are redder in appearance (corresponding to earlier
stages of flowering), the outputs of the model occasionally appear
more correct than the initial human annotations.

4.1.2. Total Count
Integration of the predicted density maps over the entire
image provides us with a prediction of the total number of
inflorescence. For each original image we compared the actual
number of flowers to the number predicted by the model as
seen in Figure 7. Because the U-net is a fully convolutional
network, it is amenable to figures of variable sizes so long as
the pooling operations result in integer dimensions. So for this
analysis, we inferenced the original 512 × 512 images without
any augmentation (i.e., rotation or cropping) in the training,
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FIGURE 6 | (Left) Input RGB image. (Middle) Target density maps generated from the human point annotations and smoothed with a Gaussian kernel with σ = 6.

(Right) Predicted density map. Particularly when the inflorescence are less well defined, the model can be seen to outperform the human annotations (bottom row).

validation, and test sets. We see that in all three splits, the data
falls close to the x=y line with a mean absolute error (MAE) of
11.5 and mean absolute percent deviation (MAPD) of 6.37% on
the test set.

4.1.3. Computational Efficiency
The computational efficiency of this approach offers key
advantages. Inference speed is 0.04 sec/sample on a single P4
GPU and under 0.0039 sec/sample on a single Titan RTX.
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FIGURE 7 | The actual vs. predicted number of inflorescence shown for each sample in the training, validation, and test sets. The black line corresponds to x=y.

FIGURE 8 | Increasing the amount of (labeled) training data in a smart fashion

decreases test loss as well as the MAE on the test set. The validation loss

slightly increases as more data is added, suggesting less over-fitting is

occurring as more data is added.

Especially with appropriate compilation steps which would
even further increase efficiency, this speed would enable the
model to be run in real-time, potentially allowing for on-the-fly
decision making.

4.2. Impact of Data Quantity on
Performance
Figure 8 shows the impact of enlarging the dataset via our active
learning approach. Recall that the validation set was in the same
domain as the training set (i.e., different samples from the same
fields) while the test set was out-of-domain (i.e., samples from a
completely unseen field). We see that as more data was added,
the test loss (red stars) decreased, as we hoped. Additionally,
the MAE on the test set (generally) improved. The validation
loss slightly increased, but not significantly. This may suggest
that as the quantity of data is increased, the model is less
likely to (over)fit to the in-domain samples of the training and

validation sets, while the generalizability (as seen in the test
performance) improves.

4.3. Qualitative Analysis and Ground
Inspections
Using the final supervised model, we ran inference on a new field
(independent of the train, validation, or test set) to generate its
density map. Horticulturists then inspected the field, particularly
focusing on areas which the model deemed to be low-density.

Figure 9 shows the inspected blocks, predicted density map,
and several ground-level images taken during inspection. The
density map (Figure 9A) draws your attention to key areas
on the field. Interesting features of the plot such as irrigation
and drainage lines become readily apparent due to the absence
of inflorescence. Other areas of low density are also visible.
Figure 9B exhibited average inflorescence as predicted by the
model and confirmed by the horticulturalists. In Figure 9C, failed
forcing was evident in two beds in the middle of the block. We
saw that while most rows had successfully flowered at almost
98% fruiting, a single bed down almost half the length of the
middle of the block showed poor forcing at only 62%. This lack of
flowering was possibly due to either a blocked sprayer nozzle or
incomplete overlap between the sprayer arms. Automatically and
immediately identifying issues caused by equipment provides
tremendous value to the grower so the issue does not become
present in other regions of the field.

Location (Figure 9D) was predicted to have a below-average
flowering rate, however, inspection showed that the rate was
comparable to surrounding areas. Plants in this area were shorter
than average, resulting in the early fruit being more easily
obscured. Very evident from the model’s output was the area
indicated at Figure 9E, which appeared to be completely lacking
inflorescence. Field inspection confirms this was indeed true: a
sizable portion of this block had remained vegetative and failed
to flower in this triangular area. A complete absence of flowering
in a pattern like this at the end of this block as likely due to the
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FIGURE 9 | (A) Inference was run on a previously unseen block and the density map is overlaid on the imagery (transparent: none, low: yellow, red: high). Variation

across the block is clearly visible. In some cases, these come from known field-issues such as drainage or irrigation lines. Others, however, require inspection from

horticulturist to determine the source. (B) This region of the field has mostly normal flowering. (C) Failed forcing is seen in the middle bed of this block and extends

nearly half the length in the block where the amount of flowering (62% flowering) in that bed of two rows is lower than the surrounding beds (98% flowering). (D) The

model predicted slightly lower-than-average density in this region, however, inspection showed the ground-truth density was normal. Plants in this area appear to be

shorter than average; this can cause the young fruit to be more easily obscured from the imagery. (E) A vegetative region of the field is clearly visible from the density

map. (F,G) Mosaicking issues resulting in fuzzy imagery resulted in the model predicting lower-than-average density in these areas when ground-truth inspection

revealed otherwise. Best viewed electronically.

spray rig running out of chemical as it approached the end of
its run.

Horticulturists inspected the areas (Figures 9F,G) which
the model predicted as low density. Ground inspection
indicated that this region is in fact flowered more than the
model predicted. Examination of the original imagery shows
that this region of the image was blurry, likely due to
an issue during mosaicking, resulting in an artificially low
prediction from the model. This will be explored further
in section 5.

5. DISCUSSION

5.1. Impact on Specialty Crops
Modifying management practices with data on field conditions
goes beyond reducing costs for the farmers. By identifying
flowering plants at their earliest stages across entire fields,
the application of chemicals can be precisely applied and
limited in extent. By monitoring the progression of plant
development across the field, harvest times can be optimized
so that fruit are picked at their peak development, limiting
waste and maximizing return. On-going work is considering
the potential to predict marketable fruit and percentage of
unharvested fruit because of small size; this possibility is
supported by the variation in flowering densities predicted by
our algorithm.

5.2. Active Learning and Uncertainty
Sampling
In the present work we have embedded our model in an
active learning framework to continually collect new annotations
and repeatedly retrain the model for continual learning
and improvement. While the capacity of neural networks is
immense (Brown et al., 2020), training on an ever-growing
amount of data can be computationally cumbersome and
expensive. Therefore, it can be advantageous to (re)train the
model only on the subset of data which is “challenging,” that is,
near the decision-boundary. This is the motivation behind our
selection criteria for sample prioritization.

The focus of this work was not to determine the most
optimal data selection process, but to identify an approach
that could be used to reduce annotator burden and improve
model performance. Here we have exploited a subtlety of the
framework by noticing that “more difficult” examples tend to
produce less well defined peaks that are more likely to be
dropped during the peak finding step. Use of techniques such
as uncertainty or adversarial sampling can be employed to
identify data that should be inspected for annotation and fed
back to the model for retraining (Žliobaitė et al., 2013; Mayer
and Timofte, 2020). Even though we are far from having too
much annotated data for the current model, the incorporation
of hard example mining techniques like those mentioned
above are still useful for prioritizing which samples the
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annotators correct first; exploring these techniques is the focus
on ongoing work.

5.3. Orthorectification and Mosaicking
All of the models in this work were trained on data from large,
orthorectified, mosaicked images. Orthorectification is a central
part of remote sensing analysis, particularly when involving
agriculture, because it controls for the effects of image perspective
and relief; agronomic indices based on ground reflectance values
rely on these corrections. As such, traditional CV algorithms
are largely dependent on the mosaicking and orthorectification
process. However, deep learning approaches, like those used here,
rely on learned, non-linear features involving shape/structure,
and color. This enables them to be more robust to variations
such as lighting/reflectance shifts and able to generalize to
broader domains as opposed to relying on upstream algorithms
to identify and/or control for these variations. Since mosaicking
requires the program to identify key points for alignment,
a very uniform field with high density planting, present
challenges and may lead to blurriness in some assembled areas
of a mosaic.

It is likely that the current model, trained on mosaicked-
orthorectified images, would initially perform slightly less well
on unseen, non-orthorectified imagery because that data is
slightly out-of-domain. However, it is reasonable to believe that
with minimal fine-tuning and retraining on such imagery, the
model would perform equivalently well in the new domain;
as humans, the task of identifying flowers from either sources
is equivalent in difficulty and both tasks would be considered
a “Type 1” process (Kahneman, 2011). Enabling inference
directly on the raw imagery would cut out a time-consuming

step of the processing pipeline and enable a wide range
of live and on-device applications. As future work, we will
examine the impact of working directly on raw images both
from RGB and specific spectral bands and explore transfer-
learning approaches to adapt the model to this new, but
similar, domain.

Additionally, we saw in section 4.3 that the model performed
less well on regions of the field which were fuzzy, potentially
due to mosaicking issues. This is not surprising as degraded
image quality would be expected to result in poorer performance.
Nevertheless, as the inflorescence in this region are still
discernible by humans from the fuzzy imagery, we believe
that with additional annotation and training on degraded
imagery, the model will be able to learn how to handle
such sources of noise and generalize to a greater range of
image quality.

5.4. Extension to Multiple Scales and Other
Domains
All of the data here was flown at 200’, producing images
with similar statistical structure (i.e., all of the plants and
inflorescence are roughly the same size). To make this algorithm
broadly useful across many environments, we would like it to
perform well across a variety of (reasonable) flight heights and
resultant resolutions. Additionally, we would like to determine
the minimum required resolution (i.e., maximum height flown)
which delivers quality results; flying at a higher elevation would
allow the data to be collected more rapidly.

Handling multiple scales is another place where deep learning
shines over traditional computer vision algorithms. Flying at a
given height allows the model to learn that inflorescence are

FIGURE 10 | An image of the field taken with RGB (Left) and Red-Edge (Right). The inflorescence are readily apparent in the single-channel red-edge image,

suggesting this would be a useful addition in future analysis. This block highlights the potential of our system as the leftmost portion of this block in both images is still

vegetative with no flowering.
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all roughly the same size; flying at multiple elevations would
require themodel to learn amore expansive filter-bank to identify
inflorescence of widely varying sizes. Although, we anticipate
this transfer task to be more challenging than the one from
orthorectified to non-orthorectified, we are confident that the
model could generalize to handle multiple scales because of the
successes of deep learning approaches in the broader crowd
counting space. Should the current model struggle to handle
multiple scales, there are a number of scale and context-aware
modifications we could make in the current framework which
would address these challenges (Hossain et al., 2019; Liu et al.,
2019). Multi-scale detection in this domain is the focus of
future work.

Similarly, this analysis was conducted on blocks from a
single field under the same management conditions. Deep
learning approaches again provide us with the ability to more
easily adapt to unseen domains such as different fields under
different management. Because these approaches do not rely on
handcrafted rules and features but instead learn the relevant
features directly from the data, knowing these management
practices or appearance differences a prior is not necessary. Given
the success of other deep learning models to generalize with
increasing data, we believe the current model will generalize over
a wide range of appearances, seasons, and management practices,
particularly as we continue to supply it with new data efficiently
obtained under the active learning paradigm.

5.5. Real-Time Edge Deployment and
Alerting
A key advantage of this approach is speed of inference and
lightness of the model architecture; not only is the model fast,
but its performance is constant and does not degrade as the
number of detected entities increases. Because a single image can
be processed in <0.01 s on a GPU, this opens the possibility
for real-time deployment. While the current model is trained
and inferenced on a GPU, it has not yet been compiled for
target hardware through an optimized runtime like TensorRT1,
further increasing the inference speed. This would enable edge
deployment: one could envision running the model live while
a drone is collecting the imagery and providing alerts when
encountering low-density flowering areas.

The alerting component that this model enables, either real-
time on the edge or after batch-processing, also has key value to
growers.While the aerial imagery itself provides the growers with
novel information not accessible frommanual ground inspection
(see Figure 10, left), most growers are not interested in or
compelled by the raw imagery alone. Instead, most prefer to have
an intelligence layer that sits on top of the imagery and alerts
them to regions under their management requiring attention.
Once the density map is determined by this current application,
it can be handed off to a second application which identifies
regions of the field which are anomalous or problematic and
automatically alerts the growers accordingly; this is the focus of
ongoing work.

1https://developer.nvidia.com/tensorrt

5.6. Beyond RGB
Although not discussed in detail here, determining the right
camera and flight height/resolution was an important step in
the data acquisition process. The present analysis focuses only
on RGB data as we were able to obtain very good results from
the three-channel images. However, other channels may further
improve model performance, stability, and generalization.
Figure 10 shows a region of the field [corresponding to the
area in Figure 9E] taken in RGB (left) and with a Red-Edge
(right). The inflorescence visually “pop” in the red-edge image
and are easily identifiable. Therefore, incorporating collecting
additional red-edge imagery and training the model on a
four-channel input could be very beneficial. Future work will
explore incorporating additional channels like the red-edge
seen here.

6. CONCLUSION

We have developed a density-estimation deep learning model
based on a U-net backbone that accurately detects flowering
pineapple plants in a field. Because of the architectural decisions
made, the model is fast, lightweight, and its computational
efficiency is independent of the number of inflorescence detected,
allowing us to rapidly detected over 1.6 million flowering plants
in a field. Our model highlights areas on the field which are
vegetative or demonstrate failed forcing; growers can be alerted
to these areas which would otherwise go undetected. Finally, the
model will continue to improve as more corrected annotations
are fed back into the model for retraining through our active
learning system.
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