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Propagule dispersal is a crucial life history stage, which affects population recruitment
and regeneration as well as community structure and functions. The windborne process
of samara dispersal is affected not only by samara traits and other plant traits, but
also by environmental factors. Therefore, studying samara traits related to its dispersal
and intraspecific variation in relation to other plant traits and environmental factors
could help to understand population distribution and dynamics. Hopea hainanensis,
a Dipterocarpaceae tree species dominant in lowland rainforests in Hainan (China) but
endangered due to anthropogenic disturbances, is dispersed mainly by wind because
of its sepal-winged samara. Here, we measured dispersal-related intraspecific samara
traits of H. hainanensis, and analyzed their variation and correlation in relation to plant
height, DBH (diameter at breast height), and elevation plant location. Great variations in
the samara traits existed, and the variations were larger within than among individuals,
which indicated a “bet-hedging” strategy of this species. Plant height, DBH, and
elevation explained slight variation in the samara traits. Samara dispersal potential is
mainly affected by the samara mass and morphological traits. Samara settling velocity
was significantly positively correlated with fruit mass, seed mass, length and width,
as well as samara wing loading, and negatively correlated with wing mass ratio,
wing area, and wing aspect ratio. Substantial proportions of intraspecific variation in
samara dispersal are explained by the samara mass and morphological traits. Natural
regeneration with human-aided dispersal is necessary for recovering the H. hainanensis
population. This finding contributes to the generalization of trait-based plant ecology,
modeling of seed dispersal in tropical forests, and conservation and recovery of rare
and endangered species such as H. hainanensis.

Keywords: conservation, functional traits, intraspecific variations, samara traits, wind dispersal

INTRODUCTION

Plant functional traits are morphological, physiological, and phenological characteristics by which
plants interact with their environment during evolutionary processes. Such traits link ecological
processes on multiple scales, from individual, population, community, and ecosystem to landscape
(McIntyre et al., 1999; Díaz et al., 2004; Suding et al., 2008; Pérez-Harguindeguy et al., 2013). Trait-
based approaches in plant ecology have provoked significant progress in population demography
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(Struckman et al., 2019), species distribution models (Benito
Garzón et al., 2019), community assembly (Ackerly and Cornwell,
2007), ecosystem function (Cornwell et al., 2008), global
vegetation models (van Bodegom et al., 2014), prediction of
ecosystem responses to global changes (Diamond et al., 2012),
and evaluation of ecosystem services (Díaz et al., 2007, 2011),
which has been a new paradigm in ecology (Wright et al., 2004;
van Bodegom et al., 2014; Díaz et al., 2016; He et al., 2019, 2020).

Rare and endangered plant species usually have populations
composed of few individuals restricted to local communities
and ecosystems. Based on the mass ratio hypothesis (Grime,
1998), community and ecosystem processes and functions are
mainly determined by dominant (or sub-dominant, or both)
species, instead of endangered species and their traits (Díaz et al.,
2007; Lohbeck et al., 2015). While, rare species are also playing
important roles in ecosystem functioning, especially for those
species with unique traits and their intraspecific variations (Lyons
and Schwartz, 2001; Mouillot et al., 2013; Jain et al., 2014),
and their propagule dispersal is critical for the maintenance of
biodiversity. Identifying and measuring functional traits related
to responses to environmental changes and ecosystem function
of endangered species could contribute to understanding
the mechanism of being endangered or threatened and its
implications for conservation practice (Chown, 2012; Cochrane
et al., 2015; Turner et al., 2017; Álvarez-Yépiz et al., 2019),
especially under the uncertainty of climate changes in the future
(Di Musciano et al., 2020).

Propagule (e.g., seed) dispersal is one of the most important
stages in plant life history (Harper, 1977; Bonte and Dahirel,
2017). As sessile organisms, plants increase population size
and distribution and cope with environmental stochasticity and
uncertainty through propagule dispersal (Cochrane et al., 2015;
Beckman et al., 2020). Seed dispersal traits (and their variations),
such as seed size, mass, and dispersal mode affect dispersal
distance and potential, seedling emergence and survival, plant
colonization and growth (Janzen, 1970; Saatkamp et al., 2019;
Schupp et al., 2019; Snell et al., 2019; Beckman et al., 2020).
These dispersal traits impact population dynamics, interspecific
interactions, population regeneration, community assembly and
succession, and ecosystem service delivery (Grubb, 1977; Ribeiro
et al., 2016; Saatkamp et al., 2019). Many studies have focused
on soft traits (i.e., easily measured traits) related to seed dispersal
at the interspecific level (e.g., Tamme et al., 2014; Thomson
et al., 2018); however, some studies found that intraspecific
variation (including within species and within-individual) of seed
dispersal traits may be considerable (Wyse et al., 2019), but this
has not been explored (Snell et al., 2019; Wyse et al., 2019;
Chen and Giladi, 2020).

Samara (i.e., winged seed) is present in 25 orders, 45 families,
and 140 genera of angiosperms (der Weduwen and Ruxton,
2019). It contributes to long-distance dispersal of seeds by
wind (Augspurger and Franson, 1987; Greene and Johnson,
1990; Nathan et al., 2002). Dipterocarpaceae has 16 genera and
approximately 500 species widely distributed in Asian tropical
forests. Seeds from this family usually are bract-winged samaras
possessing aerodynamic behavior of helicopters characterized
by relatively stable flight, explicit dispersal direction, and

long dispersal distance (Augspurger, 1986). Dispersion-related
traits of Dipterocarpaceae samaras display substantial inter and
intraspecies variations (Sipe and Linnerooth, 1995); however,
such traits and their potential have not been fully described (der
Weduwen and Ruxton, 2019).

Due to evolutionary adaptation, seed trait tradeoffs (Saatkamp
et al., 2019), such as seed size vs. seed production and
dispersal ability vs. colonization ability (Moles and Westoby,
2006), are common among and within species. Exploring the
tradeoff among different seed traits (especially for intraspecies)
is vital to elucidate the potential evolution ability of endangered
species and their population dispersal (Huang et al., 2016;
Saatkamp et al., 2019).

Hopea hainanensis Merr. et Chun, is a Dipterocarpaceae
species distributed in the northern tropic (Hainan in China and
Nghe An in Vietnam). Its samaras (seeds) dispersed mainly by
wind due to its sepal-winged samaras. It was once a dominant
species in lowland tropical rainforests; nevertheless, it is currently
listed as an endangered species in IUCN (Ly et al., 2018) and
first-class state protection wild plants in China, mainly due to
anthropogenic disturbances, such as commercial logging and
shifting cultivation (Guo and Zang, 2013; Lu et al., 2020).
Current ecological and conservation biology for H. hainanensis
mainly focus on seed germination (Wen et al., 2002), habitat
characteristics, seedling banks (Pei et al., 2015; Lu et al., 2020),
and population structure (Fu et al., 2019; Zhang et al., 2019).
Although little information has been found so far about the
functional traits of Dipterocarpaceae species producing winged
seeds, especially for samara traits related to its population
regeneration and maintenance, the information would help
to predict their population dynamics and development trends
and to understand their adaptive strategies. In this study,
we sampled and measured samaras of H. hainanensis from
natural populations in a tropical mountain cloud forest, located
in Bawangling Nature Reserve, Hainan Island, South China,
to answer the following scientific questions: (1) What are
intraspecific variations of samara traits? (2) Are such traits related
to intrinsic or extrinsic factors? (3) Is there any tradeoff among
samara traits in H. hainanensis? and (4) Which samara traits
affect samara settling velocity in H. hainanensis?

MATERIALS AND METHODS

The Species
Hopea hainanensis is an evergreen tree, ca. 25 m in height,
naturally distributed in valley and windless lower foothills
at 300–900 m a.s.l. in lowland rainforests. A samara of
H. hainanensis is composed of an ovoid main body (seed covered
by pericarp hereinafter referred to as seed) and two sepal-
wings oppositely attached to the seed (Tan et al., 2018). The
thousand-kernel weight of H. hainanensis without any wings or
appendages is ca. 300 g (Institute of Guangdong Forestry Science,
1964). The seeds of H. hainanensis are typically recalcitrant
with higher moisture content, short life span, and intolerance
to dehydration and storage (Wen et al., 2002). Additionally,
population regeneration of H. hainanensis might be affected
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by negative density dependence, e.g., seedlings aggregately
distributed 0–5 m from the mother trees (Lu et al., 2020), which
suffered over 65% herbivory (Pei et al., 2015). In the previous
example, there was a substantial barrier hindering seedling
growth to saplings of H. hainanensis (Lu et al., 2020).

Bawangling Nature Reserve, Hainan Island, South China
(108◦58′–109◦53′ E, 18◦53–19◦20′ N) is the main distribution
region of H. hainanensis in China. The climate is tropical
monsoon, with mean annual temperature and precipitation of
24.2◦C and 1677.1 mm, respectively. Zonal vegetation is lowland
rainforests, mountain rainforests, and mountain evergreen and
dwarf forests (Long et al., 2015).

Field Sampling
We sampled ripe samaras from 17 mature, healthy, and high
seed-setting rate H. hainanensis trees from natural populations
in Bawangling Nature Reserve. A total of 3,207 samaras were
collected, including 876 samaras (51.5 ± 3.9 samaras per trees in
average) with intact wings randomly collected from each tree. For
the 17 trees, we also measured DBH (diameter at breast height,
i.e., 1.5 m above the ground; 23–64 cm), height (13–33 m), and
elevation of locality (270–840 m. a.s.l.). All fresh samples were
carefully numbered and transported to the laboratory as soon as
possible for further measurements.

Measurement
Intact samaras were weighed to determine fruit mass (Fmass, g),
then each intact samara was used to determine samara settling
velocity (SSV, m s−1, Andersen, 1992) in still air, shortly after field
sampling. Each samara was released from the top of a 21.2 m-
high building in still air, and the falling time was recorded by
two independent persons. Each samara was measured 3 times; the
measurement was averaged for the falling time of each samara.
To keep the samara intact, a soft sponge cushion was laid on
the ground. SSV was calculated by the releasing height divided
by the falling time (Andersen, 1992), i.e., lower settling velocity
means longer time of dispersal (indicating longer distance
of dispersal). This measurement assumes that samara attains
terminal velocity instantaneously (Andersen, 1992), but it is not
precisely equivalent to the terminal velocity (Augspurger, 1986).

After measurements of SSV, samara wings and seeds (i.e.,
wing-removed samara) were carefully separated and weighed
to determine wing mass (Wmass, g) and seed mass (Smass, g),
respectively. Seed length (SL, cm) and width (SW, cm) were
measured using a Vernier caliper. Detached-wing length (WL,
cm), width (WW, cm), and area (WA, cm2) were assessed using
the WinFOLIA Leaf Analysis Software (Regent Instruments,
Quebec City, QC, Canada). To reduce variations in weight and
morphology caused by seed desiccation, all measurements were
completed within 1 week after collection.

Data Analysis
Wing mass ratio (WMR) was determined using Wmass/Fmass.
Seed morphological index (SMI) was calculated as SL/SW. Wing
aspect ratio was calculated using WL/WW. Wing loading (WL)
was calculated by dividing the samara’s mass by its wing area
(Wyse et al., 2019). To explore samara variations within species

and individual mother plants, all the traits were subjected
to Kruskal–Wallis test with 999 times permutation test. To
explore the interrelationships among samara traits, a Spearman
correlation analysis was conducted. A generalized linear model
(GLM) was used to examine the relationships between samara
traits and plant height, plant DBH and elevation, and the
relationships between samara traits and SSV of H. hainanensis.
All analyses were performed in R 4.0.2 (R Core Team, 2020).

RESULTS

Decomposition of Samara Trait
Variations
Samara traits of H. hainanensis showed substantial intraspecific
variations, both among and within individuals (Table 1 and
Figure 1). Mass-related traits (i.e., fruit, seed, and wing mass, and
WMR) showed large variations (>22%), while morphological
traits of seeds (length, width, and SMI) had relatively small
variations (<9%). The wing area had a larger variation than the
wing aspect ratio among different samaras (20.34 and 14.84%,
respectively). The largest variations detected were in wing loading
and SSV (28.57 and 35.65%, respectively). The SSV ranged from
1.39 to 9.02 m s−1 among different samaras.

Results of the Kruskal–Wallis test showed significant
differences among trees for all samara traits (Table 1). Over 50%
of the variations in almost all samara traits were explained by
variation within individual mother trees (Figure 1). Moreover,
variations among individuals for wing mass, wing area, wing
aspect ratio, SMI, and SSV explained less than 25% of the total
variations (Figure 1).

Relationships Between Samara Traits
and Intrinsic and Extrinsic Factors
There were weak correlations between samara traits and intrinsic
(i.e., DBH, tree height, Figures 2, 3) and extrinsic factors (i.e.,
elevation, Figure 4). Most samara traits showed no significant

TABLE 1 | Distribution characteristics of samara traits and Kruskal–Wallis test (χ2)
among trees of Hopea hainanensis.

Samara trait Mean Median Minimum Maximum SD CV (%) χ2

Fmass (g) 0.87 0.87 0.30 1.43 0.21 24.14 469.77**

Smass (g) 0.69 0.69 0.13 1.25 0.18 26.09 484.32**

Wmass (g) 0.18 0.18 0.08 0.30 0.04 22.22 217.33**

WMR (g g−1) 0.21 0.21 0.09 0.56 0.05 23.81 359.56**

SL (cm) 1.51 1.53 1.02 1.85 1.21 7.99 426.66**

SW (cm) 1.06 1.06 0.70 1.31 0.92 8.70 419.35**

SMI (cm cm−1) 1.43 1.43 1.06 1.72 0.08 5.59 130.18**

WA (cm2) 12.83 12.96 4.63 21.61 2.61 20.34 91.49**

WAR (cm cm−1) 3.64 3.62 1.98 5.48 0.54 14.84 181.40**

WL (g cm−2) 0.07 0.07 0.02 0.20 0.02 28.57 434.49**

SSV (m s−1) 4.74 4.53 1.39 9.02 1.69 35.65 103.28**

Fmass, Smass, Wmass, WMR, SL, SW, SMI, WA, WAR, WL, and SSV stand for fruit
(i.e., intact samara) mass, seed (i.e., wing-removed samara) mass, wing mass, wing
mass ratio, seed length, seed width, seed morphological index, wing area, wing
aspect ratio, wing loading, and samara settling velocity, respectively; **P < 0.01.
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FIGURE 1 | Variation decomposition of samara traits of Hopea hainanensis within- and among individuals.

relationships with DBH of mother trees (Figure 2), except wing
mass (r = –0.145, P < 0.001), WMR (r = –0.192, P < 0.001), and
wing area (r = –0.082, P = 0.016), showing weak but significant
negative correlation with DBH; and wing loading showed weak,
significant positive correlation with DBH (r = 0.070, P = 0.038).
The relationships between samara traits and tree height showed
almost the same trends as those of samara traits and DBH,
except regarding wing area ratio, which showed a weak positive
correlation (r = 0.077, P = 0.024); whereas SSV showed a weak
negative correlation (r = –0.113, P < 0.001) with tree height
(Figure 3). Some samara traits (i.e., fruit, seed and wing mass,
seed width, and wing area) decreased with the elevation a.s.l.
(mother tree location), while other traits showed no significant
correlation with elevation (Figure 4).

Correlations Among Samara Traits
Significant correlations between the mass and morphological
traits of samaras were present (Table 2). Fruit, seed and wing
mass, SL and width, and wing area were positively correlated to
each other, with the highest correlation between fruit and seed

mass (r = 0.99, P < 0.01, Table 2). Wing loading was positively
correlated with fruit and seed mass and SL and seed width, but
negatively correlated with WMR, SMI, wing area, and aspect ratio
(Table 2). However, wing mass showed no significant relationship
with wing loading (r = –0.01, P = 0.798, Table 2).

No significant relationship was detected, neither between SSV
and wing mass (r = –0.056, P = 0.099), nor between SSV and
SMI (r = –0.061, P = 0.076). SSV was positively correlated with
fruit and seed mass, SL and seed width, and wing loading, but
negatively correlated with WMR, wing area and aspect ratio
(Figure 5). Those correlations were consistent even considering
the potential dependence of data from the same maternal tree,
except the relationship between SSV and wing area (r = –0.242,
P = 0.349; Supplementary Figure 1).

DISCUSSION

In this study, we found substantial intraspecific variations
in samara traits of H. hainanensis, both among and within
individuals, and within-individual variation was larger than
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FIGURE 2 | Correlation between samara traits [(A) fruit mass; (B) seed mass; (C) wing mass; (D) wing mass ratio; (E) seed length; (F) seed width; (G) seed
morphological index; (H) wing area; (I) wing aspect ratio; (J) wing loading; (K) samara settling velocity] and DBH of Hopea hainanensis. Regression lines with 95%
interval (shaded area) were plotted for significant relationships with P < 0.05.

among-individual variation. Its samara dispersal potential was
mainly affected by the samara mass and morphological traits.
Substantial proportions of intraspecific variation in its samara
dispersal were explained by the samara mass and morphological
traits. However, plant height, DBH, and elevation seems
independent of variation in the samara traits.

Intraspecific Variations in Samara Traits
Intraspecific seed variations are considered to have important
evolutionary and ecological implications (Sipe and Linnerooth,
1995). If among-individual variations are higher than within-
individual variations, it could be inferred that heritable seed traits
might be subjected to ecological and evolutionary selection in
communities (Sipe and Linnerooth, 1995; Herrera, 2017; Wyse
et al., 2019). Whereas higher within-individual seed variations
are thought be a “bet-hedging” strategy to adapt to spatial
and temporal environmental changes (Herrera, 2017), which
is barely subjected to ecological and evolutionary selections.
Most of the samara trait variations of H. hainanensis, including
SSV, were found within individuals. This result implies that
samaras of H. hainanensis might adopt a “bet-hedging” strategy
(Herrera, 2017; Wyse et al., 2019) in coping with environmental
heterogeneity in lowland tropical cloud forests, such as those in
the Bawangling Natural Reserve (Long et al., 2015).

Relationships Between Samara Traits
and Intrinsic and Extrinsic Factors
Factors related to seed intraspecific variations can be decomposed
into intrinsic (e.g., plant height and age and growth status) and
extrinsic (e.g., local microclimate, soil nutrient, and elevation)
factors (Schupp et al., 2019). In this study, we used tree height and
DBH as surrogate indices ofH. hainanensis age (Long et al., 2015).
It is difficult to measure the actual age of tropical trees using
ordinary dendrochronology protocols because of the absence
of clear annual growth rings (Rozendaal and Zuidema, 2011).
Interspecies comparison studies found that taller species tend
to have larger seeds compared to shorter species (Díaz et al.,
2016). However, we encountered limited and weak correlations
between samara traits and tree age, even though we sampled
a substantial range of tree heights (13–33 m) and DBH (23–
64 cm) in H. hainanensis, which was consistent with Clark et al.
(2005) and Augspurger et al. (2016, 2017); these authors reported
that no tree traits could be predictive of seed traits, including
dispersal distances.

Two contrasting hypotheses have been used to explain the
relationship between seed traits and elevation – the “stress-
tolerance” hypothesis and the “energy constraints” hypothesis
(Qi et al., 2014). The “stress-tolerance” hypothesis claims that
larger seeds have more advantages in coping with the stressful
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FIGURE 3 | Correlation between samara traits [(A) fruit mass; (B) seed mass; (C) wing mass; (D) wing mass ratio; (E) seed length; (F) seed width; (G) seed
morphological index; (H) wing area; (I) wing aspect ratio; (J) wing loading; (K) samara settling velocity] and tree height of Hopea hainanensis. Regression lines with
95% interval (shaded area) were plotted for significant relationships with P < 0.05.

environments in higher elevation (Pluess et al., 2005), whereas,
based on the “energy constraints” hypothesis (Qi et al., 2014),
seed mass and morphological traits may be negatively correlated
with elevation, as lower temperatures inhibit leaf photosynthesis
and seed development at higher elevations (Qi et al., 2014, 2015).
In our study, we found that samara size- related traits (i.e.,
mass) decreased with the increase in elevation, which seems
to support the “energy constraints” hypothesis. In other words,
samaras at lower elevations might have a higher advantage
regarding samara mass than those at higher elevations, which
would lead to higher seed germination and seedling growth
rates. On the other hand, no significant relationship between
samara settling velocity (at windless status) and elevation
was verified. Nevertheless, the Bawangling Natural Reserve
frequently suffers from strong wind disturbances (e.g., typhoons)
(Yang et al., 2017), which has been found to contribute to
seed dispersal of dominant species such as Dacrydium pierrei
in this area (Wu et al., 2018). In this context, samaras at
higher elevations would disperse farther due to higher wind
speed and smaller seed mass, according to the estimated seed
dispersal distance formula proposed by Cremer (1977). These
results suggest a (weak) tradeoff between seedling establishment
and seed dispersal distance (Meyer and Carlson, 2001; Fricke
et al., 2019; Chen and Giladi, 2020) for H. hainanensis.

Additionally, these results suggest that intraspecific variation
in the samara traits of this wind-dispersed species cannot
be explained by the intrinsic (i.e., plant height and DBH)
or extrinsic (elevation) factors we explored in this study.
Other factors such as genetic and edaphic factors need to be
considered and might explain those intraspecific variations in
future.

Relationships Between Samara Traits
and Samara Settling Velocity
Seed dispersal is a mechanism that allows plants to cope with
environmental change, stochasticity, and uncertainty (Cochrane
et al., 2015). Seed traits (e.g., seed mass and seed morphology) and
their variations are closely related to seed behavior and dispersal
distance (Sonkoly et al., 2017). Thus, seed mass and morphology
are usually used to estimate seed dispersal potential (Augspurger,
1986; Minami and Azuma, 2003). Our study found that samara
mass-related traits and samara morphological traits were inter-
correlated with each other, and eight of those ten samara traits
we studied explained variations in SSV. This result suggests that
the samara dispersal potential of H. hainanensis is highly affected
by samara traits, which may have profound implications for
population demography and genetics of H. hainanensis.
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FIGURE 4 | Correlation between samara traits [(A) fruit mass; (B) seed mass; (C) wing mass; (D) wing mass ratio; (E) seed length; (F) seed width; (G) seed
morphological index; (H) wing area; (I) wing aspect ratio; (J) wing loading; (K) samara settling velocity] of Hopea hainanensis and elevation. Regression lines with
95% interval (shaded area) were plotted for significant relationships with P < 0.05.

Furthermore, we found weak but significant evidence of a
positive relationship between samara seed mass and SSV. This
might imply that the large seeds of H. hainanensis may have
better seedling performance but inferior dispersal, as found

TABLE 2 | Spearman correlation coefficients among samara traits of
Hopea hainanensis.

Fmass Smass Wmass WMR SL SW SMI WA WAR

Smass 0.99

Wmass 0.62 0.51

WMR −0.56 −0.67 0.24

SL 0.84 0.84 0.52 −0.51

SW 0.88 0.89 0.51 −0.57 0.80

SMI −0.20 −0.22 −0.08 0.18 0.13 −0.44

WA 0.30 0.20 0.73 0.40 0.19 0.19 −0.03

WAR −0.27 −0.30 −0.06 0.31 −0.28 −0.29 0.07 0.15

WL 0.65 0.72 −0.01 −0.84 0.60 0.64 −0.17 −0.48 −0.37

Fmass, Smass, Wmass, WMR, SL, SW, SMI, WA, WAR, and WL stand for fruit
(i.e., intact samara) mass, seed (i.e., wing-removed samara) mass, wing mass,
wing mass ratio, seed length, seed width, seed morphological index, wing area,
wing aspect ratio, and wing loading, respectively. Bold values indicate statistical
significance at P < 0.05.

in other species (Saatkamp et al., 2019). Interestingly, wing
morphological traits (e.g., wing area and wing aspect ratio)
and dispersal investment (i.e., wing mass ratio) – instead of
wing mass – showed negative relationships with SSV. Thus,
samaras with larger wing area (and with larger wing mass ratio,
Table 2) can disperse farther from mother trees. In other words,
H. hainanensis invests less biomass on wings, for dispersal.
Interspecies comparisons from 83 wind-dispersed species also
discovered that there was no significant relationship between
maximum plant height and dispersal investment (Thomson et al.,
2018). However, we do not know if samara wings have other
ecological functions aside from dispersal, for example, affecting
seedling emergence or growth, or both.

Wing loading is usually used as an indicator of dispersal
potential (Andersen, 1993; Liang et al., 2020; Wyse and Hulme,
in press). Previous studies found wing loading (or its square
root) may account for 40–80% of total variation in descent rate
(Matlack, 1987; Sipe and Linnerooth, 1995; Augspurger et al.,
2016; Wyse et al., 2019) of some species, but few studies examined
this trait in Dipterocarpaceae species with sepal-winged samaras,
such as H. hainanensis. In our study, we also verified that samara
wing loading is the most effective predictor of SSV among 10
samara morphological and size traits of H. hainanensis, which
explains 56.7% of total variations of SSV (Figure 5).
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FIGURE 5 | The relationship between samara traits [(A) fruit mass; (B) seed mass; (C) wing mass; (D) wing mass ratio; (E) seed length; (F) seed width; (G) seed
morphological index; (H) wing area; (I) wing aspect ratio; (J) wing loading] and samara settling velocity of Hopea hainanensis. Regression lines with 95% interval
(shaded area) were plotted for significant relationships with P < 0.05.

Conservation Implications for
H. hainanensis
A previous study observed that the seeds of H. hainanensis,
which are typically recalcitrant, have a higher germination rate
but shorter lifespan than other Dipterocarpaceae species (Wen
et al., 2002). This suggests that samara dispersal would play
an important role on seed fate and determine whether the
seed can arrive to a “safe site” to germinate. A recent study
found that the samaras of H. hainanensis failed to spread
from the mother trees (Lu et al., 2020). Actually, the dense
understory could have prevented the dispersal by changing the
understory aerodynamics or samaras could have intercepted by
the understory plants, even if the samaras could potentially
be wind-dispersed further away. This implies that human-
aided natural regeneration is necessary for recovering the
H. hainanensis populations. Different approaches could be used
to this end, such as removing part of the litters and understory

to improve the understory’s aerodynamics, helping samaras to
disperse and decreasing the chance of samaras aggregating with
each other. In another moment, transport some fallen samaras
that aggregated around mother trees and are yet to germinate to
new “safe sites” (e.g., flat landform with slightly acidic soil and
higher soil phosphorus content) (Lu et al., 2020). Another option
would be to transplant some fresh seedlings that are aggregating
around mother trees to other sites.

Limitations
In this study, we only focused on the main distribution area of
H. hainanensis. The findings in our study might be applied to
other populations only with caution due to potential population
genetic divergence. As such, future studies on samara trait
variations of H. hainanensis among multiple populations are
needed. Another limitation is that we only studied SSV in still
air; the flight behavior and dispersal distance of H. hainanensis
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samaras would be more complicated in windy environments.
Thus, field investigation of the spatial distribution pattern of
seed rain and seed germination characteristics and wind-tunnel
experiments (e.g., Liang et al., 2020) of H. hainanensis would
provide more information on samara dispersal potential.

CONCLUSION

Substantial intraspecific (both among and within individuals)
variations of samara traits in H. hainanensis were found.
The within-individual variation was higher than the among-
individual one, which indicates a “bet-hedging” strategy of
H. hainanensis. Intrinsic (plant height and DBH) and extrinsic
(elevation) factors could explain little regarding variations in
samara traits. We verified that the samara dispersal potential
of H. hainanensis was mainly affected by its mass and
morphological traits.
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