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European farmers and especially organic farmers rely on legume–grass mixtures in
their crop rotation as an organic nitrogen (N) source, as legumes can fix atmospheric
N, which is the most important element for plant growth. Furthermore, legume–grass
serves as valuable fodder for livestock and biogas plants. Therefore, information about
aboveground biomass and N fixation (NFix) is crucial for efficient farm management
decisions on the field level. Remote sensing, as a non-destructive and fast technique,
provides different methods to quantify plant trait parameters. In our study, high-
density point clouds, derived from terrestrial laser scanning (TLS), in combination
with unmanned aerial vehicle-based multispectral (MS) data, were collected to receive
information about three plant trait parameters (fresh and dry matter, nitrogen fixation)
in two legume–grass mixtures. Several crop surface height metrics based on TLS and
vegetation indices based on the four MS bands (green, red, red edge, and near-infrared)
were calculated. Furthermore, eight texture features based on mean crop surface height
and the four MS bands were generated to measure horizontal spatial heterogeneity. The
aim of this multi-temporal study over two vegetation periods was to create estimation
models based on biomass and N fixation for two legume–grass mixtures by sensor
fusion, a combination of both sensors. To represent conditions in practical farming,
e.g., the varying proportion of legumes, the experiment included pure stands of legume
and grass of the mixtures. Sensor fusion of TLS and MS data was found to provide
better estimates of biomass and NFix than separate data analysis. The study shows the
important role of texture based on MS and point cloud data, which contributed greatly
to the estimation model generation. The applied approach offers an interesting method
for improvements in precision agriculture.

Keywords: multispectral, point clouds, grassland, remote sensing, texture

INTRODUCTION

Legume–grass mixtures, sown as temporary grassland and cultivated for 1–3 years, are substantial
crop rotation elements, especially for organically managed farms in the European temperate
climate. These crops are valuable forage for livestock and substrate for biogas plants. Furthermore,
farmers utilize the ability of legumes to fix nitrogen (N), which is the main essential element for
plant growth and health, to increase soil fertility and to reduce the amount of external fertilizer for
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the following cash crop (Fustec et al., 2010; Rasmussen et al.,
2012). Total aboveground biomass and the amount of fixed
N (NFix), which contributes greatly to the N cycle on field
and farm level, are important input variables for sustainable
management decisions (Kayser et al., 2010). Traditional methods
for grassland monitoring based on destructive biomass sampling,
manual plant height measurement, and laboratory work are time
and cost-intensive. Therefore, developments of non-destructive
measurement techniques from the field of remote sensing
provided interesting approaches and improvements for field data
acquisition (Wachendorf et al., 2018).

Remote sensing was successfully used to estimate different
biophysical and chemical plant traits in grasslands. As plant
height correlates with biomass, canopy surface height (CSH)
of grassland can be conducted by spatial information based on
three-dimensional (3D) point clouds with an ultrasonic sensor
(Fricke et al., 2011), Light Detection and Ranging (LiDAR)
(Anderson et al., 2018; Xu et al., 2020) or Structure from Motion
(SfM) based on RGB (red, green, blue) images (Wijesingha
et al., 2018; Grüner et al., 2019). In a previous study of
Grüner et al. (2019), SfM based on RGB images captured by
an unmanned aerial vehicle (UAV) with a horizontal spatial
resolution of ∼2 cm in two legume–grass mixtures was used
for biomass estimation. The authors pointed out that a higher
resolution and the inclusion of plant density information could
increase model accuracy. Depending on the scanning angle
and the range of the laser impulse, LiDAR can be used to
generate a deeper point cloud penetration and higher spatial
resolution and, therefore, can also cover single grass tillers
(Cooper et al., 2017; Madec et al., 2017). However, the sole
application of monochrome LiDAR systems generates only
spatial characteristics of vegetation traits like mean, maximum,
and median height metrics. Because of this, deriving information
on biochemical vegetation characteristics is limited.

These restrictions can be compensated by spectral sensors,
which quantify multi- and hyperspectral reflectance information
and can be used to calculate vegetation indices (VIs) (Reddersen
et al., 2014; Moeckel et al., 2017). A spectral sensor mounted
on a low-cost UAV serves as an interesting and simple tool
for grassland monitoring. VIs were already successfully used to
estimate grassland biomass, N content, NFix (Cho et al., 2007;
Gao et al., 2019; Grüner et al., 2020) and are highly correlated
to leaf area index (LAI) (Mutanga and Skidmore, 2004; He et al.,
2006; Darvishzadeh et al., 2008). However, the sole application
of VIs for biomass estimation is affected by soil background
color at low biomass levels (Huete et al., 1985) and saturates at
high biomass and LAI levels (> 2–3) (Carlson and Ripley, 1997;
Mutanga and Skidmore, 2004), as it captures reflectance only of
the top surface of the canopy.

Consequently, sensor fusion of spatial and spectral
information may overcome the limitations mentioned earlier
and gained considerable interest as a new approach to assess
forage yield and quality (Karunaratne et al., 2020). Most sensor
fusion studies in grasslands utilizing CSH metrics were based
on ultrasonic sensors (Fricke and Wachendorf, 2013; Moeckel
et al., 2017; Gebremedhin et al., 2019) or UAV-based RGB SfM
approaches (Geipel et al., 2014; Possoch et al., 2016; Lussem

et al., 2019; Karunaratne et al., 2020). Although LiDAR provides
high 3D point cloud resolution, the combination with a spectral
sensor was only done by Schaefer and Lamb (2016) in a Festuca
arundinacea-dominated grassland and never done for plant traits
such as N fixation. The results of Wang et al. (2017) showed
improved biomass estimation accuracy by LiDAR-based height
metrics and VIs in maize, compared with models solely based
on one sensor system. Similar results were found by Tilly et al.
(2015) in a barley experiment using combined terrestrial laser
scanning (TLS) and hyperspectral data. Therefore, the utilization
of LiDAR, in combination with VIs, could further enhance the
prediction accuracy of the forage parameter.

Grassland, as well as legume–grass mixtures, can be
botanically, structurally, and phenologically very diverse (Cho
et al., 2007; Schellberg et al., 2008; Biewer et al., 2009), as
they consist of a composition of different species, compared
with other crops, which are usually cultivated in monoculture.
CSH metrics and VIs ignore this horizontal heterogeneity
within vegetation. Texture features, derived from high-resolution
images of vegetation, proved to serve additional structural
information and correlate with heterogeneity (Gallardo-Cruz
et al., 2012). The analysis of texture describes the spatial and
statistical relationship of pixels (gray level values) and their
variation in a defined area of interest in an image (Haralick
et al., 1973; Wood et al., 2012). Texture features based on
spectral data are sensitive to the phenological growth stage of
the plant (Culbert et al., 2009) and increase data information of
crop canopy without additional sensors. The inclusion of texture
features for biomass and LAI estimation was mainly done in
forests (Lu, 2005; Wijaya et al., 2010; Morin et al., 2019) and
to a lower degree for crops such as rice (Li et al., 2019; Zheng
et al., 2019, 2020) and wheat (Yue et al., 2017). In grasslands, the
study of Grüner et al. (2020) investigated the influence of texture
features based on multispectral (MS) data on model accuracy
for biomass and NFix prediction in two legume–grass mixtures.
The study clearly showed promising results for fresh (FM) and
dry matter (DM) estimation, whereas, for NFix, the results were
not fully clear.

The present study aimed to develop a multi-temporal
estimation model for aboveground biomass and NFix of
two legume–grass mixtures. Estimation models were created
using CSH metrics generated from TLS data and UAV-
based MS data. Furthermore, texture features were extracted
from MS and CSH data, which was never done before for
grassland. As the study has a high number of predictors in
combination with high multi-collinearity, a common machine
learning algorithm, Random Forest (RF) (Breiman, 2001),
in combination with a previous variable selection, was used
for model generation (Belgiu and Drãguţ, 2016). Thus, the
specific objectives of this study are: (1) The development
of biomass (FM and DM) and NFix estimation models for
clover– (CG) and lucerne–grass (LG) mixtures (0–100% legumes)
based on two complete growing periods. (2) Comparing the
exclusive model generation based on CSH from TLS and based
on MS information from UAV-based MS imagery with the
prediction model based on the fusion of both sensors. (3)
Identifying the most important parameter for the prediction
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of the grass–legume mixtures and evaluate the contribution of
texture features.

MATERIALS AND METHODS

Experimental Site
The field study was carried out on a legume–grass experiment in
two consecutive growing seasons, 2018 and 2019, which is located
on the research farm of the Universität Kassel in Neu-Eichenberg

(51 23’N, 9 54’E, 227 m asl.) in Hesse, Germany (Figure 1A).
The mean annual precipitation and daily temperature of the
site are 661 mm and 8◦C, respectively, which was not reached
for the study years, especially for 2018 (Table 1). The research
farm is managed organically, and therefore, no fertilizer and
chemicals were applied.

The study design was adapted from Grüner et al. (2020) and
was continued for the growing season of 2019. Field plots (n = 24,
size: 1.5 × 12 m2) were sown in autumn 2017 and cultivated for
the following two study years with six different treatments in four

FIGURE 1 | (A) Overview about location of study site. (B) Location of sampling plots used for analysis overlayed on a false-color (band combination: NIR, red, green)
orthomosaic from May 2019. (C) Schematic view of flight plan used for spectral data collection (red line) and positions of terrestrial laser scans within the
experimental layout.

TABLE 1 | Total rainfall, number of samples, and UAV flight information for both research years.

Year Annual rainfall (mm) Harvest date Harvest Number of samples (n) Flight mode Flight altitude

2018 380 17.05.18 First harvest (H1) 72 Manually 50 m

20.06.18 Second harvest (H2) Manually 50 m

03.08.18 Third harvest (H3) Manually 20 m

2019 641 23.05.19 First harvest (H1) 68 Autopilot 20 m

04.07.19 Second harvest (H2) Autopilot 20 m

22.08.19 Third harvest (H3) Manually 20 m
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replicates, which were mowed three times a year in accordance
with the common agricultural practice within the region (Table 1
and Figure 1B). Due to unfavorable growing conditions at the
third sampling date in 2019, four plots were excluded from
further analysis. In total, 140 plots for the FM and DM modeling
and 94 plots for NFix were included in statistical analysis.

The six treatments were composed of two legume–grass
mixtures, CG and LG, and one pure stand of legumes (LCG
and LLG) and grass (GCG and GLG) for each mixture with a
seeding density of 35 kg ha−1 (Supplementary Table 1). CG
included 60% Lolium multiflorum, 30% Trifolium pratense, 5%
Trifolium hybridum L., and 5% Trifolium repens L., whereas LG
consisted of 40% Medicago sativa, 20% Festuca pratensis Huds.,
15% Lolium perenne L., 10% L. multiflorum, 10% T. pratense, and
5% Phleum pratense L.

Data Acquisition
TLS and UAV flight missions were done 1 day before every
harvest. A Leica real-time kinematic (RTK) global navigation
satellite system (GNSS) receiver with a measuring accuracy of
2 cm was used to measure the coordinates of the plot corners
of every plot (Figure 1C). An overview of the workflow for data
acquisition and processing is given in Figure 2.

Terrestrial Laser Scanning Data
Collection
A Leica ScanStation P30 (Leica Geosystem, Switzerland) was
used for the point cloud data collection. The laser transmits and
captures 1 million pulses per second at a wavelength of 1,550 nm
with a resolution of 3.2 mm at a 10 m distance. For each harvest
date, seven scans were taken, distributed in the experimental
field between the blocks and at the four borders of the field
to cover the plots from each side (Figure 1C). The laser was
mounted on a tripod at the height of approximately 1.70 m.
Three reflective control points were used at every scan for the
later point cloud alignment of the digital surface model (DSM).
The Leica RTK GNSS receiver measured the coordinates of the
control points. One additional TLS data set was generated after
the first harvest of the first study year for deriving the digital
elevation model (DEM).

Multispectral Data Collection
Spectral images were taken in the morning (8:00–12:00 a.m.)
with an MS sensor (Parrot Sequoia, MicaSense Inc, Seattle,
United States) mounted on a UAV (2018: DJI Phantom
3, Advanced; 2019: DJI Phantom 4 Professional, Shenzhen,
China). The sensor captures 1.2-megapixel images in four bands

FIGURE 2 | Workflow for model processing: Acquisition (green) of spectral information (green, red, red edge, NIR), of point cloud data from terrestrial laser scanning
data and of reference data for biomass and NFix ; data preprocessing (blue): eight texture features of each spectral band (four bands), 13 vegetation indices (VI), 15
crop surface height (CSH) parameters, eight texture features of mean CSH, fresh (FM) and dry matter (DM) yield, and NFix calculation; variable selection (gray); 100
random data splittings (yellow); modeling (red).
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[green: 530–570 nm; red: 640–680 nm; red edge: 730–740 nm;
near-infrared (NIR): 770–810 nm]. For automatic radiometric
calibration of every image, an upwelling sunshine sensor on
the top of the UAV measures the at-the-sensor irradiance. The
UAV was flown manually, except for the first two cuts in 2019,
where the autopilot (Pix4Dcapture, Lausanne, Switzerland) was
used (Table 1). Seven ground control points (GCP) were evenly
distributed in the pathways between and around the plots. The
Leica RTK GNSS receiver measured the coordinates of the GCPs.

Biomass Sampling and N Fixation
Determination
In 2018, the first 1.5 m of every plot was used for destructive
measurements between the main harvests (Grüner et al., 2020).
Therefore, this area was excluded for biomass sampling and
data processing in every plot in both years. At each harvest
date, two destructive samples of 0.25 m2 were taken from every
plot, which were weighed for FM determination and afterward
dried at 100◦C for 48 h to constant weight to determine the
DM content. For further analysis, weights were extrapolated
to tonnes per hectare. Additional subsamples of every plot
were taken for N concentration analysis, which was quantified
by an elemental microanalyzer (Elementar vario MAX CHN,
Langenselbold, Germany) and multiplicated with DM yield. To
determine NFix of the legumes and the mixtures, the difference
method, according to Stülpnagel (1982), was used (Eq. 1):

NFix = NL − NR (1)

where NL is the amount of N of legume in the pure stand and
in the mixture as the N fixing crop, whereas NR represents the
amount of N of the pure stand of grasses as the non-fixing
reference crop. Four samples from 2019 were not generated due
to problems in the laboratory (Table 1).

DATA PREPROCESSING

Crop Surface Height Parameter
The point cloud processing software Leica Cyclone 3D (Leica
Geosystem, Glattbrugg, Switzerland) was used for merging and
geo-referencing the point clouds of the TLS data sets using the
GCPs. After exporting the point clouds, R version 3.5.1 (R Core
Team, Vienna, Austria) was used for further computation. To
convert the 3D point cloud to 2D height information for the
DSMs and DEM of every plot, a raster with a 5 cm cell size was
overlaid, and the height values of the points (z-values) within
each cell were extracted. Due to geo-referencing, the DEM fitted
accordingly to the DSMs and was subtracted from each other to
calculate the CSH for every plot and harvest date (Eq. 2):

CSH = DSM − DEM (2)

In addition to the arithmetic mean CSH value of every plot, the
minimum (MIN), maximum (MAX), median, variance, standard
deviation, range, mode, skewness, kurtosis, canopy height relief
(based on Silva et al., 2017), and the percentiles of 25, 75, 90, and
95% were computed and averaged for each plot (18 m2).

Multispectral Bands and Vegetation
Indices
For photogrammetric processing, Agisoft PhotoScan
Professional (Agisoft LLC, St. Petersburg, Russia) was used for
MS orthomosaic generation. After alignment of the overlapping
images of each data set, a sparse point cloud was created with
the accuracy setting “high” and a key point and tie point limit of
40,000 and 1,000, respectively. The accuracy of the sparse point
cloud was enhanced by including GPS coordinates of the GCPs
and automatic camera calibration. To generate a dense point
cloud, parameter settings were set to “high” with a “mild” depth
filtering. As flight height varied (20 and 50 m), in the last step,
the MS orthomosaics were exported as a tagged image file format
with a 4.5 cm ground resolution for unified conditions. To extract
spectral information of every band for every plot, zonal statistics
in Quantum Geographical Information System (QGIS 3.4.9,
QGIS Development Team, Raleigh, NC, United States) was used
by creating polygon masks for each plot. Additional to the four
spectral bands, 13 VIs were used in this study (Supplementary
Table 2). VIs were calculated with the original spectral mean
value of every plot.

Texture Features
Haralick et al. (1973) proposed 14 texture features for the gray
level co-occurrence matrix of the image texture. Based on the
study of Grüner et al. (2020), eight of these gray level co-
occurrence texture features were used (Supplementary Table 3).
In QGIS, these eight features were provided by the Orfeo
Toolbox library (OTB, open-source; Grizonnet et al., 2017;
Morin et al., 2019), i.e., energy, entropy, correlation, inverse
difference moment, inertia, cluster shade, cluster prominence,
and Haralick correlation (Supplementary Table 3). Texture
feature extraction was done for the mean CSH and the four
spectral bands (green, red, red edge, and NIR), keeping settings
on default, “simple” texture set, and a radiometric resolution of
16 bits. In the final step, the average of every texture feature was
calculated for each plot.

Statistical Modeling and Variable
Selection
Biomass (FM and DM) and NFix were predicted based on
the height parameter (CSH including texture features) and
MS reflectance information (MS, including VIs and texture
features). The third model was based on a data fusion of the
CSH and spectral information (Fusion). Before each modeling
step, a variable selection based on the three-step procedure as
suggested by Genuer et al. (2010) was conducted to identify
the most important variables with the strongest relationship to
the dependent variables (i.e., FM, DM, and NFix). In the first
step (“thresholding step”), irrelevant variables were removed by
calculating the importance of each variable in 50 random forest
model runs (no model optimization is applied). In the second
step (“interpretation step”), the most informative variables are
selected based on the out-of-bag (OOB) error of 25 random forest
model runs. For the third step (“prediction step”), the ranked
variables from the second step were added to the final model only
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if the OOB error decreased significantly more than the average
variation obtained by adding noisy variables. The calculations
were done using the VSURF package (Genuer et al., 2015) in the
software environment R. RF was used from the R packages caret
(Kuhn, 2008) and randomForest (Liaw and Wiener, 2002). For
the optimization of the RF models using the selected variables,
the data sets were divided into two subsets, where a calibration
data set (75%) was used for model calibration, and the remaining
data set (25%) was used as validation data set. To reduce the
effect of autocorrelations between samples (e.g., samples from
the same treatment are more similar than samples from different
treatments) and to reduce the risk of overfitting, the data splitting
was done randomly 100 times. For the splitting, it was ensured
that the validation data set always contained samples of each
year, harvest date, and treatment (Roberts et al., 2017). During
the validation procedure, each sampling point was on average
(i.e., based on median) 25 times in the validation data set. For
model calibration, a cross-validation for hyper-parameter tuning

of mtry was done, which represents the number of randomly
chosen variables. Mtry was set by dividing the number of samples
(n) by 3 as recommended by Probst et al. (2018), where n was 140
for FM and DM (Table 1) and 94 for NFix (excluding pure grass-
plots). For model validation, the model performance between
observed and predicted FM, DM, and NFix was calculated using
the coefficient of determination of the validation (R2

val) (Eq. 3)
and the relative root mean squared error of prediction (rRMSEP)
(Eq. 4).

R2
val =

[
1−

∑n
i=1
(
yi − ŷi

)2∑n
i=1
(
yi − ȳi

)2

]
(3)

rRMSEP =

√∑n
i=1(yi−ŷi)

2

n

max
(
yi
)
−min

(
yi
) (4)

where y is the observed and ŷ the predicted value, ȳ the average
predicted value, and n the sample size. To determine the variable

FIGURE 3 | Cumulative fresh matter (FM) and dry matter (DM) yield and nitrogen fixation (NFix ) after first (H1), second (H2: H1 + H2), and third (H3: H1 + H2 + H3)
harvest in each of the two study years (2018 and 2019) for clover– (CG) and lucerne–grass (LG) mixtures (left) and pure stands of legumes (middle) and grass (right)
as included in mixtures.
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importance, the variables in all 100 models were sorted by the
median importance value. The importance value is the mean of
squared residuals (mean squared error), which is the difference
between calculated on OOB data for every decision tree and
permuted for each variable (Liaw and Wiener, 2002; Kuhn,
2008). To examine the effect of sampling year on the prediction
quality, the normalized deviation of the predicted from the
observed values (norm.dev) was calculated (Eq. 5). The resulting
values are scaled from −1 to 1, indicating underestimation and
overestimation, respectively. Subsequently, by using a Kruskal–
Wallis test and a pairwise comparison with the Dunn test, the
effect of year for each legume–grass mixture (CG and LG) on the
normalized deviation (i.e., deviation of predicted from observed
values) was calculated. Using this method, a systematic effect of
sampling year on the prediction quality could be evaluated.

norm. dev. =
ŷi − yi

ŷi + yi
(5)

where y is the observed and ŷ the predicted value.

RESULTS

Ground Truth Data
In both study years, all values for FM, DM, and NFix of CG
(mixture, legume, and grass) exceeded those for LG (Figure 3).
Due to severe drought in 2018, biomass and NFix were higher in
2019 for both CG and LG in the mixture and its legume, whereas
the grass showed the opposite. As no fertilizer was applied, the
grass suffered from nutrient deficiencies, especially in the second
growing period. The average annual FM yield after the third
harvest (H3) ranged between 10.36 for GLG_19 and 103.94 t ha−1

for LCG_19 and DM yield between 3.05 for GLG_19 and 14.70 t
ha−1 for LCG_19. The average NFix (H3) varied between 59.73 for
LG_18 and 369.24 kg ha−1 for LCG_18.

Biomass and NFix Prediction
The selection of the most important variables for each data set
(i.e., CSH, MS, and fusion) resulted in a reduced number of
variables for each dependent variable (i.e., FM, DM, and NFix).
Although for FM, the number of variables was nine for CSH and
MS and eight for the fusion data set, for DM, the number of
variables ranged from 10 for CSH to 14 for the fusion data set. For
NFix, the lowest number of variables was found for CSH (n = 6)
and the largest for fusion (n = 11).

The prediction accuracy of the models based on 100
random data splitting for calibration and validation is shown
in Figure 4. For FM, CSH prediction models performed
better than MS with a median rRMSEP of 13.08 and 13.82%,
respectively. Sensor fusion showed the best model accuracy
with an R2 of 0.81 and an rRMSEP of 12.20%. Similar to FM,
CSH showed a lower rRMSEP of 14.49% for DM compared
with MS with 16.42%. The best model performance with an
R2 of 0.82 and an rRMSEP of 12.79% was found for the
sensor fusion data set. Again, the model improvement was
statistically significant based on a Kruskal–Wallis test with

FIGURE 4 | Boxplots for model accuracy based on 100 randomly divided
calibration (75%) and validation (25%) for whole data set, including clover–
and lucerne–grass as mixtures and pure stands of legume and grass of
mixtures. Model generation was done with most important variables selected
during variable selection procedure from crop surface height (CSH)
information, including texture features, from multispectral (MS) information,
including texture and vegetation indices. Numbers in brackets indicate
number of selected variables used for model optimization. Boxes show 25
and 75% percentiles; solid line indicates median; whiskers represent 5 and
95% percentiles; circles show extreme values.

a pairwise comparison using the Dunn test. For NFix, MS
showed the better model accuracy with an rRMSEP of 17.64%
compared with CSH with 21.07%, although the best model was
achieved again by sensor fusion with an R2 of 0.76 and an
rRMSEP of 14.40%.

The plot of fit (Figure 5) of the 100 model runs for FM
and DM showed no clear pattern for CSH and MS. Only a
slight overestimation at low and underestimation at high yields
was visible. The fusion of CSH and MS reduced this. For
NFix, the over- and underestimation at low and higher yields,
respectively, were stronger, especially for CSH. This was also
reduced by sensor fusion.

Additionally, the effect of sampling year on the deviation
of the predicted from the observed values for FM, DM,
and NFix was examined (Figure 6). The results showed
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FIGURE 5 | Scatterplot based on 100 randomly divided calibration (75%) and validation (25%) for observed and predicted fresh (FM) and dry matter (DM) yield and
nitrogen fixation (NFix ) for whole data set at each of two study years (2018 and 2019) including clover– (CG) and lucerne–grass (LG) as mixtures, including
corresponding pure stands of legume and grass of mixtures. Dotted line indicates 1:1 diagonal, whereas solid line shows regression line.

a significant difference between the FM prediction of CG
in 2018 and 2019, with an overestimation in 2018 and
a slight underestimation in 2019. For LG, no significant
effects were found. For the DM predictions, no significant
differences for CG were found, whereas, for LG, the differences
were statistically significant (p < 0.01). For NFix, the effect
of year was statistically significant for both legume–grass
mixtures (Figure 6).

The importance of the RF model predictors (sorted
by median) is separately shown for CSH and MS as
well as for the sensor fusion in Figure 7. For FM, DM,

and NFix, the variable importance for CSH showed
that height parameter (e.g., average height of all points
from 90% percentile) and texture information (e.g.,
entropy) are relevant for the prediction. For MS, the
texture information of the NIR band made the greatest
contribution for both FM and DM. In contrast, for
NFix, the texture of the green band showed the highest
importance (Figure 7). For FM and DM, the most important
predictors for sensor fusion were CSH predictors, but also
MS predictors, especially the NIR band including texture.
For NFix sensor fusion, the texture features, especially

Frontiers in Plant Science | www.frontiersin.org 8 January 2021 | Volume 11 | Article 603921

https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles


fpls-11-603921 January 30, 2021 Time: 10:9 # 9

Grüner et al. Senor Fusion in Legume-Grass Mixtures

FIGURE 6 | Distribution of normalized deviations between predicted and
observed values for each legume–grass mixture (blue: clover–grass, orange:
lucerne–grass) and sampling year (dark: 2018, bright: 2019). Width of boxes
indicates frequency distribution of values. Dotted line characterizes level of
zero deviation (i.e., 100% correct prediction). Different letters indicate
significant differences between years (based on Kruskal–Wallis and Dunn test).
n.s. indicates that no significant differences in respect to sampling year were
found.

from the green band, made the greatest contribution.
Apart from the sensor fusion model for DM, VIs did not
show any importance.

DISCUSSION

The aim of the current multi-temporal study was the
development of estimation models for biomass and NFix of
two legume–grass mixtures based on structural and spectral
remote sensing information. RF, like other machine learning
algorithms, needs a substantial amount of ground truth data,
on the one side for calibration, but of similar importance,
for validation of the model (Breiman, 2001). Multi-temporal
studies, which cover a wider range of plant composition, yield,
and vegetation periods, are essential for model development
(Psomas et al., 2011; Ali et al., 2017). To our best knowledge,
studies using machine learning based on UAV MS or TLS
data for biomass prediction in grassland use only 1 year
data, such as Capolupo et al. (2015); Viljanen et al. (2018),
Anderson et al. (2018), Grüner et al. (2020), and Xu et al.
(2020). Although Askari et al. (2019) generated UAV-based
MS data for 2 years, each year included a different site.
The present study, in contrast, consists of data based on
two vegetation periods (i.e., three cuts each year) of the
same experimental site. Furthermore, our study covers two
legume–grass mixtures, typical for the European climate
including a wide range of legume proportion (0–100%) of
these mixtures, which makes our models transferable to
practical farming.

Model generation was first done separately for each sensor
system. For biomass estimation, CSH (14–15% rRMSEP)
performed slightly better than MS (15–17% rRMSEP). Xu et al.
(2020) used TLS data for aboveground biomass estimation in
a heterogeneous permanent grassland and showed that TLS
measurements are less affected by saturation than VIs as the
laser infiltrates deeper into the vegetation. This might explain the
advantage of TLS toward MS in this study. Grüner et al. (2020)
gained an rRMSEP of 10–11% for sole MS data but containing
subsamples between the harvests from 1 year, which may have
created more robust but also less generalizable models.

Sensor fusion of CSH and MS significantly improved
estimation model accuracy (12–13% rRMSEP). Our finding
broadly supports the work of other studies in this area, linking
crop height with MS information in grassland. Schaefer and
Lamb (2016) used LiDAR for CSH and an optical reflectance
sensor for measuring NDVI in a F. arundinacea-dominated
grassland. The sensors were both mounted on a wheeled vehicle,
1.8 m above ground, where sensor fusion reduced RMSEP of
46 and 36%, respectively, in a linear regression model. Lussem
et al. (2019) gained cross-validation results from multivariate
linear regression of different VIs each combined with CSH
from UAV RGB (90% percentile) with similar R2 between 0.57
and 0.75 for FM and R2 of 0.41 and 0.81 for DM, strongly
depending on harvest date. The study of Viljanen et al. (2018)
in a grassland experiment with different N fertilizing levels
showed that the best model performance was given by a
combination of VIs, RGB, and CSH features (rRMSE = 11–
15%) for multilinear regression and RF. Näsi et al. (2018)
could not confirm that biomass prediction by RF of grassland
based on spectral and structural (both UAV RGB) parameters
performed better than separate models. Nevertheless, rRMSE

Frontiers in Plant Science | www.frontiersin.org 9 January 2021 | Volume 11 | Article 603921

https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles


fpls-11-603921 January 30, 2021 Time: 10:9 # 10

Grüner et al. Senor Fusion in Legume-Grass Mixtures

FIGURE 7 | Importance of variables in prediction models based on 100 randomly divided calibration (75%) and validation (25%) for fresh (FM) and dry matter (DM)
and nitrogen fixation (NFix ) for whole data set including clover– and lucerne–grass as mixtures and pure stands of legume and grass of mixtures. Model generation
was done with crop surface height (CSH) information, including texture features, with multispectral (MS) information including texture and vegetation indices and with
sensor fusion (Fusion) based on both CSH and MS. Boxes show 25 and 75% percentiles; solid line indicates median; whiskers represent 5 and 95% percentiles;
circles show extreme values.

was on a very low level (2–6%) due to the low sample size
(n = 8) with little variability, which limits its comparability
and needs further investigations. Due to the severe drought
in 2018 and missing fertilizer, mature grass was growing high
with a very low amount of biomass, compared with mixtures
and pure stands of legumes (Grüner et al., 2020). Fricke and
Wachendorf (2013) showed that spectral information could
compensate for the overestimation of CSH at low biomass levels,
which might be a possible explanation of the benefit of sensor
fusion in our study. For NFix, MS (rRMSEP = 18%) performed
better than CSH (rRMSEP = 21%). MS results are consistent
with the measurements of the study of Grüner et al. (2020)
(rRMSEP = 18%). N fixation is highly correlated to DM of
legumes (Carlsson and Huss-Danell, 2003; Høgh-Jensen et al.,
2004) and consequently also to crop height. Sensor fusion for NFix
estimation further increased model accuracy (rRMSEP = 14%)
in our study. The deviations between the predicted and the
observed values confirm the expectations that a multi-temporal
data set is needed for stable modeling results. Although a broad
range of values for biomass and nitrogen fixation were collected

in the present study, changing weather conditions or different
agricultural practices might affect the predictions and need to be
covered separately.

The results show that the importance of the variables differs
between FM, DM, and NFix for the two sensors and their fusion.
Apart from mean values for crop height and reflectance from
the four spectral bands, our models contain several different
parameters from both sensor systems. The most important
variable of CSH and MS was based on texture features for
FM, DM, and NFix. Similar findings for MS were found by
Grüner et al. (2020), which is the only study so far, including
texture features based on spectral information for biomass
and NFix estimation of legume–grass mixtures. Our results
further support findings in other crops. Yue et al. (2019)
used texture for wheat aboveground biomass estimation based
on UAV RGB imaging with an R2 of 0.89 (RMSE = 0.82 t
ha−1) by multiple stepwise regression. A recent study by Zheng
et al. (2020) clearly showed an improvement of N content
estimation for rice by combining VIs and texture features by
UAV-based MS data.
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To our best knowledge, our study is the first extracting
texture features from TLS data in agricultural grasslands and,
furthermore, combining them with spectral information. Texture
detects other characteristics of plant structure than CSH and MS,
especially differences in plant growth stages (Gao et al., 2019)
and yield levels (Yue et al., 2019). Therefore, this supplementary
information improves biomass and NFix estimation.

Both sensors, for TLS point clouds and UAV MS imaging,
have their specific limitations, as they detect and measure
different biophysical and chemical properties of vegetation and,
furthermore, in our study from different altitude and view
angle positions (nadir vs. oblique). TLS covers the area of
interest in different distances within one scan due to the static
measurement position, whereas UAV-based measurements are
constant at equal flight altitude for the whole area. Therefore,
UAV-based RGB imaging for crop height measurement by SfM
in combination with MS data might have advanced handling;
nevertheless, point density and accuracy are lower than for
TLS (Wijesingha et al., 2018). As technical and computable
improvement increases rapidly, a higher image resolution is
expected in the next years for spectral sensors. Due to technical
issues with the UAV software, except of two flights, all remaining
flights were performed manually, which leads to uneven image
overlapping. Further studies must overcome these uncertainties
for unified flight missions and later analysis. Furthermore, image
resolution plays a crucial role in texture feature extraction.
In our study, MS resolution was 4.5 cm. Yue et al. (2019)
showed in a winter-wheat experiment that image resolution
between 5 and 15 cm showed an only low correlation between
texture and aboveground biomass due to mixed pixels of soil
and green vegetation. As legume–grass is rather heterogeneous
compared with cereals, an image resolution enhancement could
improve texture accuracy, which needs further research. In our
study, the MS sensor covered specific wavelengths of green, red,
red edge, and NIRS region. As the red edge region shifts to
longer wavelengths for senescent material compared with green
vegetation (Gao et al., 2019), a hyperspectral sensor can cover
a much broader area of wavelengths. However, this approach
needs more cost-intensive equipment and knowledge compared
with MS sensors.

CONCLUSION

Non-destructive quantification of plant traits in the grassland by
remote sensing on the field-level enables the farmer to evaluate
the status quo and to make prompt farm management decisions.
The present study differs from previous studies in respect of
(i) using CSH based on TLS in combination with MS data
for sensor fusion, (ii) extracting and including texture features
based on both TLS and MS information, and (iii) using multi-
temporal data based on two vegetation periods of two legume–
grass mixtures. The study showed that sensor fusion increased
estimation model accuracy compared with separate sensor
utilization and was a suitable method for estimating biomass and

N fixation in two legume–grass mixtures. Sensor fusion provides
a method to overcome the limits of each sensor and to improve
prediction model accuracy. The variable importance analysis
revealed that from a large number of available parameters,
the texture was important input information. Furthermore,
texture features can be easily implemented to the model, as
no additional sensor is required. Selection of the most suitable
texture feature for biomass and NFix estimation is important
for model performance and can simplify model understanding.
Nevertheless, feature selection of the optimal combination of
height metrics and texture features still needs further research,
as they performed differently for FM, DM, and NFix.

Our approach is not yet feasible for practical farming, as
TLS measurements are very time consuming and need advanced
technical know-how. Nevertheless, with increasing technical
and digital improvements in remote sensing, sensor fusion
has great potential. In particular, further development of the
UAV technique will allow sampling at field scale (with an area
of several hectares), which is a prerequisite for any practical
application of the proposed methods. Future research should
focus on enhanced point cloud density and implementation
of a UAV-based sensor system, which includes both CSH and
MS information. Furthermore, a temporal resolution to provide
a more holistic model and a deeper understanding of plant
traits throughout the vegetation phase are necessary, especially
for heterogeneous vegetation. The applied approach offers an
interesting method for improvements in precision agriculture
also for large areas.
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