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Genome-wide predictions are a powerful tool for predicting trait performance. Against
this backdrop we aimed to evaluate the potential and limitations of genome-wide
predictions to inform the barley collection of the Federal ex situ Genebank for Agricultural
and Horticultural Crops with phenotypic data on complex traits including flowering
time, plant height, thousand grain weight, as well as on growth habit and row type.
We used previously published sequence data, providing information on 306,049 high-
quality SNPs for 20,454 barley accessions. The prediction abilities of the two unordered
categorical traits row type and growth type as well as the quantitative traits flowering
time, plant height and thousand grain weight were investigated using different cross
validation scenarios. Our results demonstrate that the unordered categorical traits
can be predicted with high precision. In this way genome-wide prediction can be
routinely deployed to extract information pertinent to the taxonomic status of gene
bank accessions. In addition, the three quantitative traits were also predicted with
high precision, thereby increasing the amount of information available for genotyped
but not phenotyped accessions. Deeply phenotyped core collections, such as the
barley 1,000 core set of the IPK Gatersleben, are a promising training population to
calibrate genome-wide prediction models. Consequently, genome-wide predictions can
substantially contribute to increase the attractiveness of gene bank collections and help
evolve gene banks into bio-digital resource centers.

Keywords: bio-digital resource center, genome-wide prediction, barley, genetic resources, gene bank genomics

INTRODUCTION

Plant genetic resources are the key to adapting crops to a changing climate, but their actual use to
improve crops has remained limited. One major obstacle is that little information is available on
their intrinsic value for breeding (Keilwagen et al., 2014). On the one hand, this is due to the lack
of phenotypic information. Moreover, for most quantitative traits, the breeding value of a genetic
resource cannot be inferred from its per se performance. This stimulated pioneering activities in
biodiversity informatics to unlock historical phenotypic data from ex situ collections to assist the
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informed selection of gene bank accessions (Keilwagen et al.,
2014; Philipp et al., 2018; González et al., 2018a). The
consolidation of phenotypic information went hand in hand with
recent advances in gene bank genomics (Mascher et al., 2019).
This is exemplified by the generation of genetic fingerprints
of the entire barley collection (∼22,000) of the Federal ex
situ Genebank for Agricultural and Horticultural Crops (Milner
et al., 2019). Based on the genomic profiles, a core set of 1,000
domesticated barley accessions was identified to represent the
diversity space of the entire collection Milner et al., 2019).
Moreover, comprehensive historical data on thousand grain
weight, flowering time, and plant height, collected over seven
decades for about ∼13,000 accessions, has been made available
(González et al., 2018a,b). Despite these substantial efforts, the
value of the IPK collection for barley breeding needs to be further
leveraged with the final goal to convert it from a passive seed
repository into an active bio-digital resource center such as the
Arabidopsis Biological Resource Center (Knee et al., 2011).

To obtain a more comprehensive picture of phenotypic
variation for important agronomic traits, Yu et al. (2016)
proposed that, as a first step, phenotypic and genomic data of the
gene bank material should be combined to calibrate a genome-
wide prediction model. Genetic fingerprints can then be used
in a second step to predict the phenotypes of entire gene bank
collections. Genome-wide prediction has been intensively studied
in barley (e.g., Lorenz et al., 2012; Sallam et al., 2015; Schmidt
et al., 2016; Thorwarth et al., 2017; Abed et al., 2018; Bhatta
et al., 2020; Tsai et al., 2020) focusing on panels of elite breeding
lines. Their results highlight the potential, but also the challenges,
especially when predicting complex traits in populations that are
unrelated to the training population. The genomic diversity of
elite populations is much lower than that of gene bank collections
of barley (Schmid et al., 2018). It is therefore of interest to study
the feasibility of genome-wide predictions in the latter.

Genome-wide prediction has mostly focused on continuous
phenotypes and only a few studies have investigated the
prediction ability for unordered categorical (e.g., Heuer et al.,
2016), binomial (e.g., Technow and Melchinger, 2013), or ordinal
categorical traits (e.g., Montesinos-López et al., 2015). For gene
bank genomics, predicting unordered categorical traits is of
particular interest to complete the taxonomic status reported in
the passport records. The assignment of German Warmblood
horses into subpopulations by genome-wide prediction has been
successfully performed (Heuer et al., 2016). The application of
this methodology seems straightforward for gene bank genomics,
but has not been tested so far.

Our study makes use of a comprehensive and already
published data in barley (González et al., 2018a; Milner et al.,
2019) that comprise information on 306,049 high-quality SNPs
for 20,454 accessions. The overall goal was to deploy genome-
wide prediction to extend the body of phenotypic information
available for the IPK collection by focusing on flowering time,
plant height, and thousand grain weight as well as on growth
habit and row type. In particular, the objectives were to (1)
study the potential and limitations of genome-wide prediction
of the taxonomic status of barley accessions, (2) investigate the
ability to predict complex traits within and among different

barley subpopulations, and (3) draw conclusions on the potential
use of core collections as training populations in genome-
wide prediction.

MATERIALS AND METHODS

Genomic and Phenotypic Data
This study is based on previously published genomic (Milner
et al., 2019) and phenotypic information of the barley collection
of the Federal ex situ Genebank for Agricultural and Horticultural
Crop Species of Germany hosted at the Leibniz Institute of Plant
Genetics and Crop Plant Research (IPK) (González et al., 2018a,b).
In total, 22,626 barley accessions of the IPK gene bank were
fingerprinted applying genotyping-by-sequencing (GBS; Milner
et al., 2019). DNA was digested with PstI and MspI (New England
Biolabs), and sequencing was done with Illumina HiSeq 2500.
After quality control and filtering (Milner et al., 2019), 20,458
accessions remained, and the missing values were imputed using
FILLIN (Swarts et al., 2014) resulting in 306,049 SNPs. In this
study we excluded four wild barley accessions, thus in total
20,454 accessions were considered. Among the 20,454 accessions,
there are 15,557 spring, 3,691 winter, 147 intermediate/facultative
accessions. 1,059 individuals have no information about the
growth habit. Regarding row type, the collection comprised 3,823
two-rowed, 7,687 six-rowed, 712 deficiens, 338 intermedium,
and 246 labile accessions. A total of 7,648 accessions have no
information of the row type (Supplementary Table 1).

The phenotypic information includes data for flowering time
(FT), plant height (PH), and thousand grain weight (TGW;
González et al., 2018a,b). Phenotyping was done during the
regeneration of 12,872 spring and winter barley accessions in
the past seven decades. FT stands for the number of days
when 50% of the plants reached flowering, which corresponds
to the stage Z65 (Zadoks et al., 1974). For winter barley, FT is
given in days after the 1st of January of each year. For spring
barley, FT was given in days after the sowing date. PH was
assessed in cm from the soil surface to the top of the spike,
including awns. TGW was determined after seed harvest and
expressed in grams on a ∼12.5% grain moisture basis. For
spring barley, on average 4.4 data records were available per
accession. For winter barley, on average 3.5 data records were
available per accession. Linear mixed models were implemented
in conjunction with routines for assessment of data quality
modeling the phenotype as a function of the genotype, year, and
a residual (González et al., 2018a,b). Based on rigorous quality
assessment, high heritability estimates were obtained for the three
traits exceeding 0.8. Best linear unbiased estimations (BLUEs) of
all phenotyped accessions were used for each trait as described in
González et al. (2018b).

Analyses of the Population Structure
Pairwise Rogers’ distances (Rogers, 1972) among all accessions
were calculated based on the SNP matrix using the statistical
software R (R Core Team, 2019). Principal coordinate analysis
(PCoA) (Gower, 1966) was applied based on the Rogers’ distances
using the “cmdscale” function in R (R Core Team, 2019), and
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the first two PCos were plotted against each other in order to
portray the potential population structure due to row type status
and growth habit of the accessions.

Genomic Prediction for Growth Habit
and Row Type
As the number of intermediate (128) and facultative (19)
accessions is very small compared with the number of winter
and spring accessions, we decided not to treat them as separate
groups in genomic prediction. For simplicity, we merged the
intermediate and facultative accessions with the winter accessions
without deep biological rationale. Moreover, genomic data was
used to cluster the 1,059 individuals that had no growth
habit information into spring and winter barley populations.
Then, we clustered the 7,648 individuals without row type
information into five subpopulations (two-rowed, six-rowed,
deficiens, intermedium, and labile). The latter was done for
winter and spring barley separately.

We applied the genome-wide prediction method for
unordered categorical traits suggested by Heuer et al. (2016).
When there are only two groups (e.g., the prediction for growth
habit), it is equivalent to genome-wide prediction for binary
traits (Montesinos-López et al., 2015). This is easily done with a
genome-wide best linear unbiased prediction (GBLUP) model
for binary response. When there are K groups and K > 2
(e.g., the prediction for row type), a “one-versus-all” strategy
was recommended in Heuer et al. (2016). That is, for each i
(1 ≤ i ≤ K), the individuals with known group information were
regrouped into two classes: those in the i-th group and those in
the remaining groups. A GBLUP model with binary response
is then applied to predict the probability pi of each individual
belonging to the i-th group. Finally, the predicted group for each
individual is given by arg max1≤i≤K

{
pi
}

. The GBLUP model
with binary response was implemented using the R package
BGLR (Pérez and de los Campos, 2014).

The accuracy of the growth habit grouping was evaluated
by performing 20-fold cross-validation in the population of
accessions with known growth habit information. A balanced
sampling strategy was applied to divide the entire population
into 20 subsets, i.e., the proportion of accessions belonging to
each growth habit group in each subset equals the proportion
in the entire population. Similarly, the accuracy of row type
grouping was assessed by n-fold cross-validation where n is the
number of individuals in the smallest group with known row type
information (n = 129 for the winter barley population and n = 209
for the spring barley population).

Genomic Prediction for Flowering Time,
Plant Height and Thousand Grain Weight
Genome-wide prediction of FT, PH, and TKW was performed
using the GBLUP model (VanRaden, 2008). Briefly, the model is
described as follows:

y = Xβ+ g + e, (1)

where y is an n-dimensional vector of the observed phenotypic
values (n is the number of genotypes), β is the vector of covariates

including the common intercept term as well as (row type)
subpopulation effects, X is the corresponding design matrix, g
is the n-dimensional vector of the genotypic values and e is the
residual term. In the model, we assume that β are fixed effects, g
and e are random effects and g ∼ N

(
0, σ2

gG
)

and e ∼ N
(
0, σ2

e I
)
,

where G is the marker-derived additive genomic relationship
matrix as in VanRaden (2008), I is the identity matrix, σ2

g and σ2
e

are the corresponding variance components. The mixed model
equations for genome-wide prediction were implemented using
the R package BGLR (Pérez and de los Campos, 2014), in which
the prior of σ2

g was assumed to be an inverse χ2 -distribution.
We evaluated the prediction ability of GBLUP using the

following scenarios:

1. Five-fold cross-validation within each row type group.
2. Five-fold cross-validation in the combined data set with all

row type groups. To investigate the influence of row type
subpopulation structure, we implemented two methods:
1) ignoring row types; 2) treating the row type as a fixed
covariate. In addition to the overall prediction ability for
all accessions, we also calculated the prediction ability for
each row type subpopulation. In order to investigate the
influence of the geographic origin, we implemented a third
method in which the ancestry coefficients estimated by
ADMIXTURE (Alexander et al., 2009) were used as fixed
covariates. The number of subpopulations was set to 12
which is the same as in Milner et al. (2019).

3. Prediction across row type groups, i.e., using each row type
group as the training set to predict the performance of
accessions in each of the other groups.

4. Using the accessions in a previously defined core
collection comprising 1,000 accessions to predict the
remaining individuals.

5. Using all phenotyped accessions to predict the
remaining individuals.

6. Using the spring barley accessions to predict the
performance of the winter accessions and vice versa.

In scenarios 1 to 5, the genomic prediction was performed
for the winter and spring subpopulation separately. In particular,
accessions in the core collection were also divided into two
subsets according to the growth habit. The prediction ability in
scenarios 1 to 4 and 6 was estimated as the Pearson correlation
coefficient of the predicted and observed values.

For scenario 5, the prediction accuracy of each individual
was assessed by the reliability, which is defined as the squared
correlation between the true and predicted genotypic value
(Mrode, 2014). More precisely, let gi be the true genotypic value
of the i-th genotype (i.e., gi is the i-th entry of the vector g in
Eq. 1) and ĝi be the BLUP of gi, the reliability of ĝi is denoted by
ri = cor

(
gi, ĝi

)
. Let

C =
[
C11 C12
C21 C22

]
=

[
X′X X′

X 1+ G−1σ2
e

/
σ2
g

]
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be the coefficient matrix of the mixed model equations (MME,

Henderson, 1975). Let
[
C11 C12
C21 C22

]
be a generalized inverse matrix

of C. Then, the reliability can be calculated as

ri =

√
1−

diσ̂2
e

σ̂2
g

,

where σ̂2
g , σ̂2

e are the estimated variance components and di is the
diagonal element in C22 corresponding to the i-th genotype.

RESULTS

Genome-Wide Prediction to Cluster
Barley Accessions for Growth Habit and
Row Type
The principal coordinate analysis (PCoA) based on the
Rogers’ distance matrix was performed separately for winter
(Figures 1A,B) and spring barley accessions (Figures 1C,D).
In the winter barley population, the 2-rowed and 6-rowed
accessions were clearly separated by the first two PCos despite the
small proportion of 10.6% explained variation (Figures 1A,B).
The four deficiens accessions were closely related to the 2-
rowed accessions, while the intermedium accessions were more
closely related to the 6-rowed accessions. In the spring barley
population, the first two PCos together explained only 7.3% of
the variation (Figures 1C,D). Thus, the stratification by different
row types was less clear.

We studied the possibility of using genome-wide predictions
to cluster the accessions without prior information on the growth
habit and the row type. First, we focused on growth habit and
observed in the cross-validation study that on average 78.3%
of the genotypes were clustered into the correct growth habit
class. Therefore, the whole population with known information
on growth habit was used and the 1,059 accessions without
prior information were grouped into spring (999 accessions)
and winter barley (60 accessions). In the following analyses,
spring and winter barley populations were examined separately
to classify the accessions into their row type. We first conducted
a cross-validation study, which again showed a high prediction
ability with on average 91.7% of the genotypes correctly clustered
into their row type. Subsequently, the 7,648 individuals without
prior information were grouped into row types.

Phenotypic Accessions Showed a Broad
Variation for Flowering Time, Plant
Height, and Thousand Grain Weight
Details of the phenotypic data were outlined in a previous study
(González et al., 2018b) and we presented therefore only the
information, which was relevant for the genome-wide prediction
study. Phenotypic data was available for 53% of the spring
barley and for 69% of the winter barley accessions that have
been genotyped (Supplementary Figure 1 and Supplementary
Table 2). For winter barley, we observed substantial differences
in the distribution of the phenotypic values in each subpopulation

of row types in particular for flowering time and thousand grain
weight (Figure 2A). These differences were less pronounced in
spring barley (Figure 2B).

Evaluating the Accuracy of
Genome-Wide Prediction of Flowering
Time, Plant Height, and Thousand Grain
Weight in the Winter Barley Population
We performed genome-wide prediction within and across
subpopulation of row types (Scenarios 1 and 3). Since only two
accessions belong to the deficiens row type (Supplementary
Table 2), they were excluded in the analyses. The within-
subpopulation prediction abilities were high with values
exceeding 0.6 for all three traits except for flowering time
within the intermedium subpopulation (0.45, Table 1). The
across-subpopulation prediction abilities were lower than the
within-subpopulation prediction abilities. Despite that the size
of the 6-rowed subpopulation is nearly 20 times as large as
the intermedium subpopulation, using 6-rowed subpopulation
as training set to predict the performance of intermedium
subpopulation was not better than predicting within the
intermedium subpopulation.

We then performed genomic prediction by pooling all
accessions (Scenario 2), and observed that the overall prediction
abilities for the three traits were high and very similar for the two
different methods of treating row type subpopulation (Table 2).
The overall prediction ability was mainly driven by the 6-rowed
subpopulation as it contains more than 75% accessions of the
entire population (Supplementary Table 2). For the other two
subpopulations with smaller size (2-rowed and intermedium),
the way of treating row types had an influence on the prediction
ability: In the 2-rowed subpopulation, the prediction abilities for
thousand grain weight in the within-subpopulation scenario and
in the pooling scenario modeling row type as covariate were 14%
larger than ignoring row types. This may be explained by the
significant difference between the mean thousand grain weight
values of the 2-rowed and 6-rowed subpopulations (Figure 2A),
as well as the clear population stratification revealed by the
PCoA (Figures 1A,B). For the intermedium subpopulation, the
within-subpopulation prediction accuracy was much lower than
the one obtained in the two scenarios pooling all accessions for
all three traits. This may be explained by the small size of the
subpopulation (∼100 accessions). In particular, the genomic data
indicated that the intermedium subpopulation was not clearly
separated from the 6-rowed subpopulation (Figures 1A,B). Thus,
the prediction ability was increased by treating them as a
whole population.

In addition to the row types, the geographic origin of the
accessions is also a clear confounding factor in the population
structure (Milner et al., 2019). Nevertheless, using the ancestry
coefficients estimated by ADMIXTURE instead of row types
as fixed covariates did not increase the prediction ability
(Supplementary Table 3). In fact, the first two PCs together
only explained 5% of the total variation, despite the geographic
origins of the accessions can be distinguished (Milner et al.,
2019). Thus, our result indicated that the population structure
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FIGURE 1 | Principal coordinate analysis based on the Rogers’ distance matrix among the 3,898 winter (A,B) and 16,556 spring barley accessions (C,D). (A,C) The
accessions with known row type information were shown in different colors representing the different row types. (B,D) The accessions with unknown row type
information were added in magenta, while those with known information were recolored as black.

was well exploited by the genomic relationship matrix alone in
the GBLUP model.

Predicting the Genetic Values of
Non-Phenotyped Winter Barley
Accessions
Among the 3,898 genotyped winter barley accessions, there were
1,197, 1,216, and 1,791 accessions not phenotyped for flowering
time, plant height, and thousand grain weight, respectively.
Treating all phenotyped accessions as the training set, we
predicted the performances of the non-phenotyped accessions
(Scenario 5) using the GBLUP model and estimated the
corresponding reliabilities, i.e., the squared correlation between
the true and predicted genetic values (Figure 3A). As expected,
the reliabilities of the predicted values for the phenotyped

accessions were higher than those for the non-phenotyped ones.
Nevertheless, the mean reliability of the predicted values for
the non-phenotyped accessions were high for all three traits
in consideration (flowering time 0.716; plant height 0.690; and
thousand grain weight 0.663). There were 78.0, 74.3, and 70.4%
of non-phenotyped accessions, whose reliability of predicted
values was higher than 0.6 for flowering time, plant height, and
thousand grain weight, respectively.

Evaluating the Accuracy of
Genome-Wide Prediction of Flowering
Time, Plant Height, and Thousand Grain
Weight in the Spring Barley Population
As in the winter barley population, we performed genome-
wide prediction within and across subpopulations of row
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FIGURE 2 | The distribution of phenotypic values for flowering time (FT), plant height (PH), and thousand grain weight for each row type subpopulation of (A) winter
and (B) spring barley accessions. For the box-whisker plots, we used the standard settings of the R function “boxplot.” The horizontal line in the middle of the boxes
indicates the median of the data. The boxes extend to the first and third quantile. And the vertical lines extend further to 1.5 inter-quantile range, which is the
distance between the first and the third quantiles. All other observed points are plotted as outliers.

types (Scenarios 1 and 3). Similarly, we observed that the
within-subpopulation prediction abilities were high, with
values exceeding 0.6 for most trait-subpopulation combinations
(Table 3). The across-subpopulation prediction abilities
were, in most cases, lower than the within-subpopulation
prediction abilities. Exceptions occurred when using the

6-rowed subpopulation to predict flowering time and
plant height for the intermedium subpopulation, in which
case the prediction ability was increased by 8.7 and 6.3%,
respectively. However, the advantage of using the 6-rowed
subpopulation as the training set disappeared for the
trait thousand grain weight, despite that the size of the
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TABLE 1 | Genome-wide prediction abilities within and across row type
subpopulations for the winter barley accessions phenotyped for flowering time
(FT), plant height (PH), and thousand grain weight (TGW).

Trait Training set Test set

2-Rowed 6-Rowed Intermedium

FT 2-Rowed 0.691 (0.013) 0.439 (0.016) 0.260 (0.021)

6-Rowed 0.544 (0.005) 0.701 (0.007) 0.427 (0.005)

Intermedium 0.352 (0.103) 0.344 (0.070) 0.450 (0.052)

PH 2-Rowed 0.785 (0.005) 0.593 (0.051) 0.645 (0.020)

6-Rowed 0.493 (0.014) 0.830 (0.002) 0.712 (0.002)

Intermedium 0.500 (0.090) 0.532 (0.010) 0.713 (0.021)

TGW 2-Rowed 0.610 (0.012) 0.682 (0.012) 0.582 (0.017)

6-Rowed 0.354 (0.009) 0.860 (0.002) 0.728 (0.001)

Intermedium 0.128 (0.101) 0.651 (0.053) 0.741 (0.025)

The standard deviations of the prediction abilities were presented in brackets.

6-rowed subpopulation is about 30 times larger than the
intermedium subpopulation.

In the prediction by pooling all accessions together (Scenario
2), we observed that the overall prediction abilities in the
entire population were high for the three traits and very
similar for the two different methods of treating row types
(Table 4), which is similar to the results for the winter
barley population. Investigating each row type subpopulation
separately, we observed that for the two largest subpopulations
(2-rowed and 6-rowed), the prediction ability was similar to
the within-population prediction ability and the method of
treating row types did not play an important role. For the labile
subpopulation, the within-subpopulation prediction ability was
higher than the predictability obtained by pooling all accessions.
However, the prediction for the other two subpopulations
(deficiens and intermediate) benefited from adding the accessions
in other subpopulations into the training set and treating the
row type as covariates. Compared with the within-subpopulation
scenario, the prediction ability for flowering time increased
by 11.5% for the deficiens and 12.8% for the intermediate
subpopulation, whereas the prediction ability for plant height was

increased by 3.7 and 11.8%, respectively. For the thousand grain
weight, pooling all accessions also yielded better prediction ability
in these two subpopulations than the within-subpopulation
prediction scenario. But the way of treating row type had
an influence on the prediction ability. In the intermediate
subpopulation, we observed the same trend as in the winter
barley population that the prediction ability was highest when
ignoring the row type, while in the deficiens subpopulation,
the highest prediction ability was obtained by treating row type
as covariate. This may be explained by the result of PCoA
(Figures 1C,D), which showed that the deficiens subpopulation
can be distinguished from the two large subpopulations (2-
rowed and 6-rowed) whereas the intermediate subpopulation
is mixed with the 6-rowed subpopulation. As observed in the
winter population, using the ancestry coefficients estimated by
ADMIXTURE instead of row types as fixed covariates did not
increase the prediction ability (Supplementary Table 4).

Predicting the Genetic Values of
Non-Phenotyped Spring Barley
Accessions
Among the 16,556 genotyped spring barley accessions, there were
7,758, 7,783, and 9,645 accessions not phenotyped for flowering
time, plant height, and thousand grain weight, respectively. As
in the winter barley population, we predicted the performances
of the non-phenotyped accessions (Scenario 5) using the GBLUP
model and estimated the corresponding reliabilities (Figure 3B).
The mean reliability of the predicted values for the non-
phenotyped accessions was high for all three traits (flowering
time 0.783; plant height 0.771; and thousand grain weight 0.781).
There were 85.9, 84.3, and 84.9 of non-phenotyped accessions,
whose reliability of predicted values was higher than 0.6
for flowering time, plant height, and thousand grain weight,
respectively. Compared with the winter barley population,
the average reliability for the non-phenotyped spring barley
accessions was higher, possibly because of the larger size of
training population.

TABLE 2 | Genome-wide prediction abilities of flowering time (FT), plant height (PH), and thousand grain weight (TGW) obtained by applying five-fold cross validation to
the entire set of phenotyped winter barley accessions modeling the row type as covariate (RT).

Trait Method All 2-Rowed 6-Rowed Intermedium

FT RT-covariatea 0.717 (0.004) 0.701 (0.007) 0.703 (0.005) 0.593 (0.032)

RT-ignoredb 0.720 (0.004) 0.702 (0.007) 0.703 (0.005) 0.614 (0.030)

RT-withinc n.a. 0.691 (0.013) 0.701 (0.007) 0.450 (0.052)

PH RT-covariate 0.829 (0.002) 0.797 (0.004) 0.829 (0.003) 0.777 (0.008)

RT-ignored 0.828 (0.002) 0.798 (0.004) 0.829 (0.003) 0.782 (0.008)

RT-within n.a. 0.785 (0.005) 0.830 (0.002) 0.713 (0.021)

TGW RT-covariate 0.860 (0.002) 0.632 (0.013) 0.859 (0.002) 0.775 (0.018)

RT-ignored 0.853 (0.002) 0.556 (0.014) 0.854 (0.002) 0.813 (0.012)

RT-within n.a. 0.610 (0.012) 0.860 (0.002) 0.741 (0.025)

aRow type was treated as a covariate (fixed effect).
bRow type was not considered in the model.
cWith-in row type prediction, results were extracted from Table 1 for comparison.
For each row type subpopulation, the prediction ability was compared with the result obtained in the within-subpopulation prediction. The standard deviations of the
prediction abilities were presented in brackets.
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FIGURE 3 | The distribution of reliabilities for the predicted genetic values of (A) winter and (B) spring barley accessions. Reliabilities for the phenotyped and
non-phenotyped accessions were separately presented in white and gray boxes. FT, flowering time; PH, plant height; TGW, thousand grain weight.

TABLE 3 | Genome-wide prediction abilities of flowering time (FT), plant height (PH), and thousand grain weight (TGW) within and across row type subpopulations for the
spring barley accessions.

Trait Training set Test set

2-Rowed 6-Rowed Deficiens Intermedium Labile

FT 2-Rowed 0.690 (0.003) 0.459 (0.018) 0.527 (0.004) 0.389 (0.053) 0.742 (0.004)

6-Rowed 0.441 (0.011) 0.741 (0.003) 0.568 (0.002) 0.750 (0.001) 0.834 (0.001)

Deficiens 0.382 (0.015) 0.342 (0.044) 0.572 (0.032) 0.256 (0.101) 0.817 (0.004)

Intermedium 0.356 (0.075) 0.460 (0.022) 0.414 (0.048) 0.690 (0.036) 0.451 (0.074)

Labile −0.086 (0.176) 0.165 (0.114) 0.447 (0.015) 0.106 (0.131) 0.861 (0.008)

PH 2-Rowed 0.718 (0.003) 0.654 (0.010) 0.348 (0.008) 0.469 (0.028) 0.059 (0.016)

6-Rowed 0.547 (0.002) 0.815 (0.001) 0.376 (0.005) 0.712 (0.003) 0.429 (0.004)

Deficiens 0.493 (0.018) 0.417 (0.141) 0.601 (0.013) 0.467 (0.131) 0.255 (0.013)

Intermedium 0.422 (0.028) 0.493 (0.045) 0.250 (0.018) 0.670 (0.011) 0.141 (0.021)

Labile 0.006 (0.152) −0.051 (0.308) 0.341 (0.053) 0.029 (0.277) 0.544 (0.023)

TGW 2-Rowed 0.712 (0.003) 0.706 (0.007) 0.488 (0.006) 0.771 (0.010) 0.004 (0.010)

6-Rowed 0.325 (0.017) 0.863 (0.002) 0.364 (0.005) 0.754 (0.002) 0.228 (0.005)

Deficiens 0.358 (0.025) 0.353 (0.159) 0.633 (0.014) 0.205 (0.260) 0.143 (0.005)

Intermedium 0.287 (0.050) 0.597 (0.042) 0.386 (0.021) 0.852 (0.008) 0.250 (0.016)

Labile 0.161 (0.180) 0.416 (0.233) 0.219 (0.155) 0.530 (0.384) 0.477 (0.028)

The standard deviations of the prediction abilities were presented in brackets.

Predicting Ability From Spring to Winter
Barley Accessions and Vice Versa
We observed that the ability of cross-growth-habit prediction
(Scenario 6) was generally lower than within-growth-habit
prediction for all three traits (Table 5). For plant height and
thousand grain weight, the prediction ability from spring to
winter barley population was also high (above 0.7), but still
17.8 and 9.1% lower than the prediction ability within the
winter barley population. In most cases, the method of treating
the row type only played a minor role in the cross-growth-
habit prediction.

Prediction Using the Core Collections
A 1,000 barley core collection was selected from a population
consisting of 22,626 accessions with strictly filtered non-imputed

marker data (Milner et al., 2019), which is slightly larger than
the population of 20,454 accessions with imputed marker data
used in this study. A total of 904 out of 1,000 accessions
remained in the 20,454 samples. The number of core accessions
in each growth habit and row type subpopulation, as well
as the number of phenotyped accessions in each group was
shown in Supplementary Table 5. We evaluated the accuracy
of using phenotyped core accessions to predict the performance
of all remaining phenotyped accessions (Scenario 4, Table 6).
In the winter barley population, the number of phenotyped
core accessions was about 1/10 of the training set size in
the scenario of five-fold cross validation, but the prediction
ability was only 26.4, 12.0, and 9.9% lower for flowering
time, plant height and thousand grain weight, respectively.
In the spring barley population, the prediction ability was
28.9, 19.5, and 22.3% lower for the three traits, while the
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TABLE 4 | Genome-wide prediction abilities of flowering time (FT), plant height (PH), and thousand grain weight (TGW) obtained by applying five-fold cross validation to
the entire set of phenotyped spring barley accessions modeling the row type as covariate (RT).

Trait Method All 2-Rowed 6-Rowed Deficiens Intermedium Labile

FT RT-covariatea 0.734 (0.003) 0.685 (0.004) 0.741 (0.003) 0.638 (0.009) 0.779 (0.007) 0.859 (0.004)

RT-ignoredb 0.734 (0.003) 0.685 (0.004) 0.741 (0.004) 0.638 (0.008) 0.778 (0.006) 0.859 (0.004)

RT-withinc n.a. 0.690 (0.003) 0.741 (0.003) 0.572 (0.032) 0.690 (0.036) 0.861 (0.008)

PH RT-covariate 0.794 (0.001) 0.722 (0.002) 0.817 (0.001) 0.623 (0.008) 0.749 (0.007) 0.514 (0.010)

RT-ignored 0.791 (0.001) 0.719 (0.002) 0.815 (0.001) 0.614 (0.008) 0.751 (0.007) 0.530 (0.011)

RT-within n.a. 0.718 (0.003) 0.815 (0.001) 0.601 (0.013) 0.670 (0.011) 0.544 (0.023)

TGW RT-covariate 0.855 (0.001) 0.719 (0.004) 0.862 (0.001) 0.650 (0.012) 0.849 (0.006) 0.425 (0.019)

RT-ignored 0.841 (0.001) 0.693 (0.005) 0.850 (0.002) 0.600 (0.011) 0.893 (0.005) 0.349 (0.014)

RT-within n.a. 0.712 (0.003) 0.863 (0.002) 0.633 (0.014) 0.852 (0.008) 0.477 (0.028)

aRow type was treated as a covariate (fixed effect).
bRow type was not considered in the model.
cWith-in row type prediction, results were extracted from Table 3 for comparison.
For each row type subpopulation, the prediction ability was compared with the result obtained in the within-subpopulation prediction. The standard deviations of the
prediction abilities were presented in brackets.

TABLE 5 | Genome-wide prediction abilities of flowering time (FT), plant height (PH), and thousand grain weight (TGW) within and across growth habit populations for the
entire barley accessions.

Trait Training set Test set (RT-covariatea) Test set (RT-ignoredb)

Winter Spring Winter Spring

FT Winter 0.717 (0.004) 0.450 (0.031) 0.720 (0.004) 0.465 (0.007)

Spring 0.154 (0.001) 0.734 (0.003) 0.153 (0.002) 0.734 (0.003)

PH Winter 0.829 (0.002) 0.373 (0.034) 0.828 (0.002) 0.467 (0.049)

Spring 0.697 (0.002) 0.794 (0.001) 0.703 (0.001) 0.791 (0.001)

TGW Winter 0.860 (0.002) 0.473 (0.052) 0.853 (0.002) 0.517 (0.059)

Spring 0.788 (0.005) 0.855 (0.001) 0.777 (0.006) 0.841 (0.001)

aRow type was treated as a covariate (fixed effect).
bRow type was not considered in the model.
The within-population prediction ability was extracted from Tables 4 and 6 for comparison. The standard deviations of the prediction abilities were presented in brackets.

size of training set was only 1/15 of the one in the five-fold
cross validation.

DISCUSSION

Predicting Traits Determining the
Taxonomic Status of Gene Bank
Accessions
A number of traits are routinely phenotyped during each
multiplication cycle of gene bank accessions. This includes 25
phenotypic traits for barley, such as flowering time, plant height,
and thousand grain weight, which are subject of this study.
In addition, morphological traits are recorded to determine
the taxonomic characteristics upon introduction into the gene
bank collection and to verify the authenticity of the respective
accession during later multiplication cycles. Such descriptor
traits include row number, grain hull, awn length or ear
color. These are unordered categorical values. The IPK uses
the classification system according to Mansfeld (1950) for
taxonomic determination.

We used the traits growth habit and row type and investigated
the potential of genome-wide predictions to fill the information

gaps existing in the IPK barley collection. In line with the findings
on subpopulation assignment in German Warmblood horses
(Heuer et al., 2016), we observed a high accuracy in predicting
the correct class for both traits, which clearly underlines the
potential of genome-wide prediction as a promising future tool to
support gene bank managers in their tasks of characterizing their
collections. Interestingly, the rate of correct classification was
much higher for row type (91.7%) than for growth habit (78.3%),
which can be explained by a less pronounced subpopulation
differentiation for the latter (Figure 1 and Supplementary
Figure 1). The larger accuracy in classifying row type versus
growth habit may also be explained by less clear phenotype
classes for growth habit versus row type. A more detailed
investigation of the potential of genome-based classification of
growth habit can benefit from phenotypic data that will facilitate
a deeper description of the growth type. Summarizing, in the
case of classification of traits that lead to a strong population
differentiation, the description of accessions could be based on
predictions alone, otherwise a two-stage strategy with genome-
wide predictions followed by validation can be recommended.

An alternative to genome-wide prediction is classification
based on functional markers. Key genes are known, which
determine the row type such as Vrs1 and Vrs5 (for review see
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TABLE 6 | The prediction ability of flowering time (FT), plant height (PH), and thousand grain weight (TGW) using the accessions in the core collection as training set and
the remaining phenotyped accessions as test set.

Trait Growth habit Row type

2-Rowed 6-Rowed Deficiens Intermediate Labile All

FT Spring 0.512 (0.013) 0.541 (0.007) 0.250 (0.052) 0.608 (0.014) 0.617 (0.047) 0.522 (0.015)

Winter 0.445 (0.021) 0.540 (0.004) n.a. 0.182 (0.024) n.a. 0.531 (0.008)

PH Spring 0.607 (0.006) 0.684 (0.032) 0.223 (0.039) 0.676 (0.019) 0.113 (0.039) 0.639 (0.023)

Winter 0.589 (0.014) 0.759 (0.005) n.a. 0.659 (0.012) n.a. 0.733 (0.006)

TGW Spring 0.493 (0.015) 0.651 (0.039) 0.195 (0.115) 0.395 (0.112) 0.083 (0.066) 0.664 (0.037)

Winter 0.445 (0.033) 0.756 (0.003) n.a. 0.651 (0.011) n.a. 0.775 (0.004)

The standard deviations of the prediction abilities were presented in brackets.

Sakuma and Schnurbusch, 2020) or growth habit such as Vrn-
H1 (Fu et al., 2005). However, the genomic data of our study are
based on genotyping by sequencing. Therefore, prediction based
on functional markers is not possible at present, but is deemed
feasible with the increasing density of genomic information
as it is expected in the future. A further approach to boost
the prediction ability for growth habit can be to merge the
information of functional markers with genome-wide prediction
abilities. For instance, by bridging marker-assisted and genomic
selection the prediction accuracy was successfully improved for
heading time and plant height in hybrid wheat (Zhao et al., 2014).
Similarly, in silico determination of the taxonomic status of gene
bank accessions will benefit from the ever-increasing number of
genes known to be involved in the morphologic and phenologic
differentiation of plants.

Genome-Wide Prediction Is a Powerful
Tool for Gene Bank Managers to
Increase the Attractiveness of Their
Collections
Few studies have explored the potential of genome-wide
predictions for gene bank collections with a focus on wheat
(Crossa et al., 2016), sorghum (Yu et al., 2016), and cauliflower
(Thorwarth et al., 2018). In line with these findings, we also
observed very promising results with prediction abilities within
subpopulations ranging from 0.45 to 0.86 (Tables 1, 3). In
general, the prediction abilities were compatible with the
estimated heritabilities in González et al. (2018b). Namely,
the prediction abilities were higher for traits with higher
heritabilities. This clearly underlines that genome-wide
prediction is a powerful tool for gene bank managers.

The optimal strategy for compiling training populations for
genome-wide prediction has been intensively discussed in animal
and plant breeding (e.g., de Roos et al., 2009; Akdemir et al.,
2015). The prediction ability benefits from the size of the training
population. Therefore, the combination of data sets from several
subpopulations can be attractive to increase the prediction ability.
However, this strategy may also reduce the prediction ability if
the marker effects vary widely between populations, which is
likely to be the case if the subpopulations are not related (de
Roos et al., 2009). In line with these findings, we observed that
prediction from one row-type subpopulation to another resulted
in a strong decrease in prediction abilities compared to a scenario

within the subpopulation (Tables 2, 4). This was even more
pronounced for the prediction from winter to spring barley and
vice versa (Table 5). Interestingly, in most cases, combining data
from different subpopulation increased the prediction abilities
that were examined within the different subpopulations of row
types (Tables 2, 4). Thus, if integrated phenotypic data analysis is
feasible, which is not the case for spring and winter barley for the
traits under consideration, a joint training population comprising
all row type subpopulations may be recommended.

The pros and cons of modeling the subpopulation as cofactor
in genome-wide predictions were investigated in our study
(Tables 2, 4, 5). We found that considering a cofactor for
subpopulations in the case of clear subpopulation differentiation
combined with pronounced differences in the population means
for the trait under consideration is beneficial. Therefore, these
factors should be investigated before deciding which genome-
wide prediction model to use.

Previous studies on the potential of genome-wide prediction
in dairy cattle (Hayes et al., 2009) and wheat (He et al., 2016)
have demonstrated that the prediction ability varies widely
between individuals: Individuals, whose genetic background is
well represented in the training populations, can be predicted
very reliably compared to those who are not well represented. It
was therefore recommended to consider not only the predicted
value but also the reliability criterion in genomic selection
in wheat (He et al., 2016). We observed a large variation in
the reliability criterion (Figure 3), which indicates substantial
differences in the quality of the predictions in our collection
of barley genetic resources. Therefore, both parameters, the
predicted value and the reliability criterion should be presented.

Using a Barley Core Collection as
Training Populations
Driven by the still considerable costs, core collections for
gene bank collections are often defined for deep sequencing
and phenotyping. This was also the case for the IPK barley
collection (Milner et al., 2019): A core set of 1,000 accessions
was selected, representing the entire molecular diversity of the
barley collection. The strategy used is similar to approaches
to optimize the calibration set of reference individuals in
genome-wide prediction (Rincent et al., 2012). Therefore, it is
not surprising that we observed only a moderate decrease in
prediction abilities when using the core set compared to the
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total population (Table 6), considering that we reduced the
training population to a fraction of 1/15 of the original number of
individuals (Supplementary Table 5). The decrease in diversity
can be further reduced if core sets are selected in the context
of gene banks using even more efficient criteria for assembling
optimized training populations (Rincent et al., 2012). These more
advanced strategies should be taken into account in the future
assembly of core sets considering also the required sizes of
training populations needed to guarantee defined thresholds of
prediction accuracies.
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