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The hydroxycinnamic acid amides (HCAAs) are a diverse group of plant-specialized 
phenylpropanoid metabolites distributed widely in the plant kingdom and are known to 
be involved in tolerance to abiotic and biotic stress. The HCAA clovamide is reported in a 
small number of distantly related species. To explore the contribution of specialized metabolites 
to disease resistance in cacao (Theobroma cacao L., chocolate tree), we performed 
untargeted metabolomics using liquid chromatography – tandem mass spectrometry (LC-MS/
MS) and compared the basal metabolite profiles in leaves of two cacao genotypes with 
contrasting levels of susceptibility to Phytophthora spp. Leaves of the tolerant genotype 
‘Scavina 6’ (‘Sca6’) were found to accumulate dramatically higher levels of clovamide and 
several other HCAAs compared to the susceptible ‘Imperial College Selection 1’ (‘ICS1’). 
Clovamide was the most abundant metabolite in ‘Sca6’ leaf extracts based on MS signal, 
and was up to 58-fold higher in ‘Sca6’ than in ‘ICS1’. In vitro assays demonstrated that 
clovamide inhibits growth of three pathogens of cacao in the genus Phytophthora, is a 
substrate for cacao polyphenol oxidase, and is a contributor to enzymatic browning. 
Furthermore, clovamide inhibited proteinase and pectinase in vitro, activities associated with 
defense in plant-pathogen interactions. Fruit epidermal peels from both genotypes contained 
substantial amounts of clovamide, but two sulfated HCAAs were present at high abundance 
exclusively in ‘Sca6’ suggesting a potential functional role of these compounds. The potential 
to breed cacao with increased HCAAs for improved agricultural performance is discussed.

Keywords: Theobroma cacao, Phytophthora, metabolomics, clovamide, hydroxycinnamic acid amide,  
black pod rot, polyphenol oxidase, oomycete

INTRODUCTION

The Food and Agriculture Organization of the United Nations has declared 2020 as the 
International Year of Plant Health, one of the major goals of which being to “keep plants 
healthy while protecting the environment” (FAO, 2019). This is no small challenge since an 
estimated 17–30% of major crops are lost yearly to disease (Savary et  al., 2019), and this crop 
loss has been met with ever-increasing use of chemical pesticides associated with negative 
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environmental impacts (Maggi et al., 2019; Sharma et al., 2019). 
Increasing host plant resistance to pathogens by traditional 
breeding or genetic engineering is one important strategy to 
reduce crop losses and the use of pesticides. This approach 
necessitates a more complete understanding of plant resistance, 
which utilizes an astonishing array of interconnected mechanisms 
(Wang et  al., 2019), including production of defense-related 
small molecules, or metabolites, with a wide range of structures 
and activities. In this work we  describe clovamide, a 
hydroxycinnamic acid amide (HCAA) metabolite, as an important 
resistance factor in cacao (Theobroma cacao, chocolate) against 
pathogens in the genus Phytophthora, an oomycete (water mold) 
genus comprised of over 100 species, many of which are globally 
important plant pathogens with broad host ranges (Thines, 2014).

Plant secondary or specialized metabolites are small molecules 
(phenolics, terpenoids, alkaloids, etc.) well known for their 
role in abiotic and biotic stress tolerance (Dixon, 2001; Hartmann, 
2007; Isah, 2019). HCAAs, also referred to as N-phenylpropenoyl-
L-amino acids (NPAs; Lechtenberg et  al., 2012), are a class 
of specialized metabolites that play a significant role in plant 
stress tolerance, particularly in defense against necrotrophic 
and hemi-biotrophic pathogens (Martin-Tanguy, 1985; Macoy 
et al., 2015). HCAAs typically form via the amide condensation 
of hydroxycinnamoyl-CoA thioesters and amines (Bontpart 
et al., 2015; Petersen, 2016). They contribute to stress tolerance 
in numerous plant species due to their high antioxidant activity 
(Zacares et al., 2007), cell wall reinforcing properties (Gunnaiah 
et  al., 2012), or direct antimicrobial activity (Newman et  al., 
2001; Kyselka et  al., 2018). The role of HCAAs in defense 
is supported by in vivo evidence. An Arabidopsis mutant of 
AtACT, which catalyzes formation of agmatine‐ and putrescine-
containing HCAAs, was more susceptible to the necrotrophic 
fungus Alternaria brassicola (Muroi et al., 2009). Furthermore, 
transgenic Torenia hybrida overexpressing AtACT exhibited 
enhanced resistance to the necrotrophic fungus Botrytis 
cinerea (Muroi et al., 2012). Additionally, potato overexpressing 
AtACT and a MATE transporter required for excretion of 
coumaroyl-agmatine into the extracellular space had enhanced 
resistance to Phytophthora infestans (Dobritzsch et al., 2016). 
Tomato overexpressing hydroxycinnamoyl-CoA: tyramine-N-
hydroxycinnamoyl transferase (SlTHT) had elevated levels of 
the HCAAs coumaroyl‐ and feruloyl-tyramine and enhanced 
resistance to Pseudomonas syringae (Campos et  al., 2014). 
High relative accumulation of HCAAs in potato in response 
to P. infestans infection is associated with tolerance to the 
pathogen (Yogendra and Kushalappa, 2016). To our knowledge, 
the role of HCAAs in cacao resistance to Phytophthora spp. 
has not been described to date.

Clovamide, an HCAA consisting of caffeic acid and L-3, 
4-dihydroxyphenylalanine (L-DOPA) moieties joined by an 
amide bond, is reported in a small number of distantly related 
plant species, including Trifolium spp. (Yoshihara et  al., 1977; 
Kolodziejczyk-Czepas et al., 2017), Vernonia fastigiata (Masike 
et  al., 2017), Dalbergia spp. (Van Heerden et  al., 1980; 
El-Sharawy et  al., 2017), Acmella oleracea (Nascimento et  al., 
2020), and cacao (Sanbongi et  al., 1998). Clovamide has 
garnered considerable attention for its potential human health 

benefits as an anti-inflammatory and neuroprotective compound 
(Park et  al., 2007, 2017; Fallarini et  al., 2009; Zeng et  al., 
2011; Kolodziejczyk-Czepas et  al., 2017; Tsunoda et  al., 2018) 
and as an anti-microbial with activity against the human 
pathogens influenza A subtype H5N1 (El-Sharawy et al., 2017), 
Trypanosoma evansi (same source), and Heliobacter pylori 
(Niehues et  al., 2011). Clovamide’s role in plant defense has 
not been described to our knowledge, although treatment of 
red clover seedlings with the plant defense hormone jasmonic 
acid induced clovamide accumulation in roots, suggesting a 
role in defense (Tebayashi et  al., 2000).

Cultivation of cacao provides the raw material for a multi-
billion dollar international chocolate industry and is an important 
source of income to over 5 million farmers worldwide (Ingram, 
2015; Beg et al., 2017). Pathogen pressure limits cacao production 
by up to 30% annually and pathogens in the genus Phytophthora 
(P. megakarya, P. palmivora, P. tropicalis, P. citropthora, P. heveae, 
etc.), which cause Black pod rot (BPR), make the greatest 
contribution to this loss (Ploetz, 2007).

Various management strategies for BPR exist but have not 
addressed the crop losses in a satisfactory way. Partial control 
of BPR can be achieved in the field with chemical and cultural 
strategies, such as pruning, sanitation, more frequent harvesting 
of ripe pods or fruits (Guest, 2007). These control strategies, 
however, are labor and knowledge intensive and their adoption 
is often hindered by limited access to extension services (Hebbar, 
2007) or the high cost of inputs (OpokuI et  al., 2007; Wessel 
and Quist-Wessel, 2015). With these limitations in mind, genetic 
improvement of cacao for BPR resistance is widely considered 
as the most promising strategy to combat the disease at scale 
(Flament et  al., 2001; Lanaud et  al., 2009; Thevenin et  al., 
2012). Understanding the biological mechanisms of cacao 
resistance to BPR would help breeders to more quickly incorporate 
resistance traits into high yielding varieties.

Several studies have been undertaken to elucidate cacao 
defense mechanisms against BPR. Since the first genetic map 
of cacao in 1995 (Lanaud et  al., 1995), several quantitative 
trait loci (QTL) analyses have identified over 60 QTL associated 
with BPR resistance (Lanaud et  al., 2009; Akaza et  al., 2016; 
Barreto et al., 2018), highlighting the oligogenic nature of BPR 
resistance and the challenge this presents to breeders. Functional 
characterization of genes and associated mechanisms underlying 
QTL has not been demonstrated. Since the advent of next-
generation sequencing technologies and the sequencing of the 
first cacao genome (Argout et  al., 2011) large scale gene 
expression, or transcriptomics, studies have also been used to 
study BPR resistance. Such studies have revealed several defense 
mechanisms potentially important for distinguishing tolerant 
from susceptible genotypes, including higher relative superoxide 
production in response to salicylic acid treatment (Fister et al., 
2015), more rapid transcriptional response to infection (Pokou 
et  al., 2019), and higher relative infection-induced expression 
of genes putatively involved in hormone signaling and protease 
inhibition in tolerant genotypes (Legavre et  al., 2015).

Here, we  present the results of an untargeted liquid 
chromatography–tandem mass spectrometry (LC-MS/MS) 
metabolomics analysis comparing leaf metabolites between two 
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well-known cacao genotypes contrasting for resistance to 
pathogens in the genus Phytophthora: the tolerant ‘Scavina 6’ 
(‘Sca6’) and the susceptible ‘Imperial College Selection 1’  
(‘ICS1’) (Lanaud et  al., 2009; Fister et  al., 2015, 2019). 
We observed that ‘Sca6’ leaves accumulated much higher levels 
of several HCAAs relative to ‘ICS1.’ The most abundant metabolite 
feature in ‘Sca6’ extracts was clovamide, which was up to 
~58-fold higher in ‘Sca6’ leaves based on targeted quantification. 
Pure synthetic clovamide inhibited in vitro growth of  
P. megakarya, P. palmivora, and P. tropicalis, three major causal 
agents of BPR, at a physiologically relevant concentration. 
Additionally, clovamide inhibited proteolysis and pectolysis  
in vitro, was confirmed as a substrate for cacao polyphenol 
oxidase, and contributed to enzymatic browning in tissue 
damage assays. Both genotypes tested accumulated clovamide 
in fruit epidermal peels, but two sulfated HCAAs were 
accumulated at high levels exclusively in ‘Sca6.’ Taken together, 
these results indicate that clovamide accumulation is an important 
factor in ‘Sca6’ tolerance to Phytophthora spp. in leaves and 
sulfated HCAAs may play a similar role in fruit peels.

RESULTS

Metabolomics Reveals High Accumulation 
of HCAAs in Leaves of ‘Sca6’ Relative to 
‘ICS1’
Untargeted LC-MS/MS metabolomics was performed to compare 
basal (not infected) metabolite profiles in methanolic extracts 
of intermediate developmental “stage C” leaves (Mejía et  al., 
2012) from the tolerant ‘Sca6’ and the susceptible ‘ICS1’  
cacao genotypes to generate a dataset with 1,719 metabolite 
features (signals of a particular mass to charge ratio, “m/z”, 
and retention time). Three statistical filters were applied to 
prioritize metabolite features for annotation. Firstly, features 
were selected that were significantly different between genotypes 
(p  <  0.05). There were 364 features higher in ‘Sca6’ and 371 
higher in ‘ICS1’ (p  <  0.05). Secondly, features with a fold-
difference of 5 or higher were selected, resulting in 183 
features higher in ‘Sca6’ and 121 higher in ‘ICS1.’ Thirdly, 
of those higher in ‘Sca6’ (>5-fold, p  <  0.05), the 30 most 
abundant features in ‘Sca6’ were selected for structural 
annotation. Mass spectrometer signal intensities for these 
top  30 features (S-1 through S-30) are presented in Figure  1 
with their corresponding putative annotations in Table  1.  
A full list of MS/MS fragments for each metabolite feature 
is provided in Supplementary Data File 1.

Of the top  30 features higher in ‘Sca6’ (>5-fold, p  <  0.05), 
26 were annotated as hydroxycinnamic acid amides (HCAAs), 
including molecular ions ([M-H]−) of caffeoyl-DOPA/clovamide 
(S-4, S-16), coumaroyl-tyrosine (S-7), coumaroyl-DOPA (S-8), 
sinapoyl-tyrosine (S-10), caffeoyl-tryptophan (S-13), and feruloyl-
DOPA (S-21) (Table 1). Several features were putatively annotated 
as adducts or stable isotopes of their respective molecular ions 
based on shared retention time with a mass that is a multiple 
of, and/or a fragment in MS/MS that matches the associated 
molecular ion. For example, S-1 has a mass consistent with 

a coupling of two molecules of caffeoyl-DOPA/clovamide  
([2 M-H]−) shares a retention time with S-4 (caffeoyl-DOPA/
clovamide), has a fragment in MS/MS matching that of S-4, 
and is therefore a likely adduct of S-4. Metabolite feature S-3 
is likely a stable isotope of S-1 ([M + 1-H]−), although for 
simplicity distinction between adducts and stable isotopes is 
not made in Table  1.

Since most of the 30 metabolite features in Table  1 were 
in the class of HCAAs, a semi-targeted search for other 
HCAAs was performed by generating a library of hypothetical 
HCAA MS1 parent ion masses ([M-H]−) and MS/MS fragment 
masses for 250 compounds consisting of a (hydroxy) cinnamic 
acid moiety and an amine moiety (see methods). Examples 
of diagnostic HCAA fragments are shown in Figure  2A. 
Full MS/MS spectra and fold changes between genotypes 
for all predicted HCAAs in the dataset are available in 
Supplementary Data File 2.

Twenty-five metabolite features ([M-H]−) in the LC-MS/
MS data were putatively annotated as HCAAs using this 
predictive approach. Some predicted HCAAs had more than 
one metabolite feature match. For example, feruloyl-DOPA 
had two matches with retention times ~22  s apart, which 
may represent cis/trans isomers at the double bond in the 
ferulic acid moiety, although such isomers cannot 
be  distinguished by LC-MS/MS. For HCAAs with multiple 
matches in the data set, MS signal intensity for the most 
abundant is presented (Figure  2B). HCAAs containing amine 
moieties with aromatic side chains were all significantly higher 
in ‘Sca6’ than ‘ICS1’. HCAAs containing aspartate or glutamate 
amine moieties were produced at the same amount in both 
genotypes. Coumaroyl-histidine and cinnamoyl-agmatine were 
higher in ‘Sca6’, while caffeoyl-histidine appeared higher but 
was not statistically significant (p  ≈  0.155).

Clovamide (caffeoyl-DOPA) was the most abundant signal 
in ‘Sca6’ extracts based on LC-MS signal and was ~41.5-fold 
higher than in ‘ICS1’ based on combined signal intensities of 
the molecular ion and associated adducts and stable isotopes 
(S-1, S-3:S-5, S-11, S-12, and S-14 from Table  1). Based on 
these results, previous reports of clovamide as a polyphenol 
oxidase (PPO) substrate and proteolysis inhibitor (Sullivan and 
Hatfield, 2006; Sullivan and Zeller, 2013), and previous work 
citing PPO-mediated browning as a major factor in BPR 
resistance of ‘Sca6’ (Spence, 1961), clovamide was selected for 
organic synthesis, targeted quantification, and further functional 
characterization to investigate its role in resistance to 
Phytophthora spp.

Clovamide Synthesis
In order to obtain sufficient amounts of pure clovamide for 
functional testing, organic synthesis was performed. Clovamide, 
(−)-N-[3',4'-dihydroxy-(E)-cinnamoyl]-3-hydroxy-L-tyrosine, was 
synthesized from trans-caffeic acid and L-DOPA methyl ester 
following methods by Xie et  al. (2013). Structural confirmation 
was done by 1H NMR to obtain the following spectra, consistent 
with previous reports (Stark and Hofmann, 2005):

1H NMR (500  MHz, DMSO-d6) δ 12.59 (s, 1H), 9.37 (s, 
1H), 9.13 (s, 1H), 8.74 (s, 1H), 8.69 (s, 1H), 8.20 (d, J = 8.0 Hz, 1H),  
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7.19 (d, J  =  15.7  Hz, 1H), 6.93 (d, J  =  2.0  Hz, 1H), 6.82 (dd, 
J  =  8.2, 2.0  Hz, 1H), 6.73 (d, J  =  8.1  Hz, 1H), 6.62–6.59 (m, 
2H), 6.47 (dd, J  =  8.1, 2.0  Hz, 1H), 6.40 (d, J  =  15.7  Hz, 
1H), 4.45–4.41 (m, 1H), 2.89 (dd, J  =  13.9, 4.9  Hz, 1H), 2.72 
(dd, J  =  13.9, 9.2  Hz, 1H).

Clovamide Is Higher in ‘Sca6’ Than in 
‘ICS1’ Throughout Leaf Development, but 
Not in Fruit Peels
Due to the apparently high degree of clovamide adduct 
formation in LC-MS (Table  1) and the potential for matrix 
effects interfering with quantification by LC-MS (Taylor, 2005), 
High-performance liquid chromatography coupled with a diode 
array detector (HPLC-DAD) was chosen as the method for 
quantification of clovamide. Five serial dilutions (1:5) of 
clovamide were prepared from 0.05 to 0.00008  mg/ml and 
analyzed by HPLC-DAD to generate a calibration curve 
(r2  =  0.9993; limit of detection  =  1.845  μg/ml; limit of 
quantification  =  6.149  μg/ml).

Three leaf developmental stages as defined by Mejía et  al. 
(2012) and fruit peel (exocarp and ~2  mm mesocarp) from 
one fruit pod developmental stage were analyzed for clovamide 
content. Extracts from stage A/B leaf (young and red), stage 
C leaf (intermediate and bronze), stage D/E leaf (mature and 
green), and fruit peel (mature, unripe, and 4–5  months old) 
tissues were analyzed using HPLC-DAD and clovamide was 
quantified (Figures  3A,B). In stage A/B, C, and D/E stage 
leaves clovamide was 12.9-, 43.2-, and 58.8-fold higher, 
respectively, in ‘Sca6’ than ‘ICS1’ (p  <  0.01). In contrast to 
leaves, both genotypes produced substantial amounts of clovamide 
in pod peels and ‘ICS1’ had ~1.8-fold more than ‘Sca6’ 
(p  =  0.089).

Extracts from stage C leaves were also analyzed using thin-
layer chromatography (TLC; Figure 3C). The synthetic standard 
fluoresced blue under long wave ultraviolet excitation (365 nm), 
had a retention factor of 0.81  ±  0.004, and aligned with a 
bright band in ‘Sca6’ extracts but not in ‘ICS1.’

Clovamide Participates in Polyphenol 
Oxidase-Mediated Enzymatic Browning
Work by Sullivan and Zeller (2013) has demonstrated that 
clovamide can inhibit proteolysis in forage crops (~50%), likely 
as a result of its oxidation and crosslinking with proteins, and 
that this effect was enhanced by PPO (~80%). This system of 
quinone generation by PPO-mediated oxidation of phenolics 
and subsequent crosslinking with proteins is a process known 
as enzymatic browning or melanization (Yamane et  al., 2010; 
Figure  4A).

To determine if clovamide is a substrate of cacao PPO, 
total protein extracts from stage C leaf were assayed for PPO 
activity with clovamide as a substrate (Figure 4B). Leaf protein 
extracts of ‘ICS1’ had ~2.5-fold higher PPO activity than ‘Sca6’ 
(p  <  0.05). The PPO activity detection method employed was 
a TNB quinone trap (Esterbauer et al., 1977), which can detect 
non-enzymatic oxidation of o-diphenols to quinones as well 
as PPO-mediated oxidation. Clovamide alone showed detectable 
quinone formation, indicating non-enzymatic oxidation. Quinone 
formation was enhanced by the presence of ‘Sca6’ (~3.1-fold, 
p  =  0.0762) and ‘ICS1’ (~7.8-fold, p  =  0.0024) protein extracts 
compared to clovamide alone, indicating PPO activity 
towards clovamide.

Further PPO activity assays were performed with additives 
to test for latent PPO activity (SDS), peroxidase interference 
in quinone formation (catalase), and PPO inhibition (kojic 
acid). Sodium dodecyl sulfate (SDS) has been reported to 
enhance or activate latent activity of PPO from some plant 
species for certain phenolic substrates (Moore and Flurkey, 
1990; Jiménez and García-Carmona, 1996; Gandía-Herrero 
et al., 2005; Winters et al., 2008; Derardja et al., 2017). Inclusion 
of SDS at 0.25% (w/v) in this work did not enhance quinone 
formation, indicating that cacao leaf PPO does not display 
latent activity towards clovamide (Supplementary Figure  1). 
Inclusion of catalase did not affect PPO activity, while a 
significant reduction in PPO activity was measured for ‘ICS1’ 
protein extracts in the presence of 5  mM kojic acid 

FIGURE 1 | Relative abundance of the 30 most abundant features in ‘Sca6’ of those >5-fold higher than in ‘ICS1’ (p < 0.05). Feature IDs (S-1 through S-30) match 
those in Table 1. MS counts represent mass spectrometer signal intensity of peaks integrated in XCMS Online (Tautenhahn et al., 2012). Error bars represent 
standard deviation. n = 3.
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(Supplementary Figure 1). Catalase eliminates peroxide formed 
by peroxidases, which can confound PPO measurements by 
contributing to quinone formation (Gertzen and Escobar, 2014), 
and kojic acid is a known PPO inhibitor (Chen et  al., 1991). 
Taken together, these results show that the enhanced quinone 
formation in the presence of cacao protein extracts is likely 
due to PPO.

Since clovamide was more abundant in ‘Sca6’ but PPO 
activity was higher in ‘ICS1,’ a browning assay was developed 
to measure the extent of browning in ground stage C leaf 
tissue (Supplementary Figure  2 for assay development). Leaf 
disks were ground in water and browning/melanization (Abs418 nm) 
was measured in the supernatant after a 30-min incubation 
period. This provides a combined readout of PPO activity and 
phenolic substrate availability by measuring the final product, 
that is browning or melanization. Supernatant from ground 
‘Sca6’ tissue produced ~2.26-fold more browning than ‘ICS1’ 
(p  <  0.01; Figure  4C). This demonstrates that even though 
‘ICS1’ leaves had higher PPO activity, PPO substrate availability 
determines the extent of browning.

Clovamide was added to the leaf disk browning assays to 
test for enhancement of browning (Figure  4D). Clovamide 
addition enhanced browning (Abs418  nm) relative to the solvent 
control in ‘Sca6’ by 0.20  ±  0.034 and in ‘ICS1’ by 0.31  ±  0.055 
(both p  <  0.01, paired t-test). The contribution to absorbance 

of clovamide in the absence of leaf tissue (Abs418  nm  =  0.016) 
does not account for the observed enhancement in browning, 
so the browning enhancement was dependent on oxidation 
by leaf proteins. Clovamide addition caused a greater 
enhancement of browning (ΔAbs418  nm) in ‘ICS1’ than ‘Sca6’ 
(p  <  0.05, Figure  4D), likely due to the higher PPO activity 
in ‘ICS1’ leaves (Figure  4B).

Clovamide Inhibits Proteinase K and 
Pectinase
Sullivan and Zeller (2013) reported clovamide as a potent 
inhibitor of proteolysis in forage, an effect that was enhanced 
by PPO activity. Protease inhibitors have been demonstrated 
as important resistance (and virulence) factors in plant-pathogen 
interactions (Jashni et  al., 2015), which suggests clovamide 
may contribute to BPR resistance in this capacity. To explore 
this further, a proteolysis assay was performed to test if cacao 
leaf extracts can enhance proteolysis inhibition of clovamide.

In vitro proteolysis assays were performed in a reaction 
consisting of casein (substrate) and Proteinase K with the 
addition of clovamide, ‘Sca6’ stage C leaf protein, or both 
(Figure  5A). After protein precipitation, soluble amino acids 
were quantified spectroscopically by ninhydrin staining compared 
to a standard curve generated with glycine (r2  =  0.9966). 
Clovamide alone (2  mM) inhibited proteolysis by ~27%, and 

TABLE 1 | Putative annotations of the 30 most abundant features in ‘Sca6’ of those >5-fold higher than in ‘ICS1’ (p < 0.05).

Feature ID in Figure 1 M/Z RT (min) Top 4 MS/MS fragments Annotation Fold up in ‘Sca6’

S-1 717.197 5.64 222.04, 178.05, 358.09, 161.02 Adduct/isotope of S-4 (Caffeoyl-DOPA) 95.1
S-2 685.207 6.25 178.05, 222.04, 145.03, 342.10 Adduct/isotope of S-8 (Coumaroyl-DOPA) 2636.4
S-3 718.200 5.65 NA Adduct/isotope of S-4 (Caffeoyl-DOPA) 98.7
S-4 358.094 5.65 135.04, 161.02, 178.05, 160.04 Caffeoyl-DOPA/Clovamide [M-H]- 18.8
S-5 715.181 5.65 715.18, 553.14, 312.09, 286.11 Adduct/isotope of S-4 (Caffeoyl-DOPA) 69.7
S-6 686.211 6.25 NA Adduct/isotope of S-8 (Coumaroyl-DOPA) 2705.4
S-7 326.105 6.94 119.05, 145.03, 134.06, 146.06 Coumaroyl-Tyrosine [M-H]− 63.5
S-8 342.099 6.27 135.04, 119.05, 161.02, 163.04 Coumaroyl-DOPA [M-H]− 82.5
S-9 699.187 6.29 356.08, 206.04,…, 342.10 (7th) Adduct/isotope of S-8 (Coumaroyl-DOPA) 2221.6

S-10 386.090 6.96 224.06, 137.02, 232.02, 135.05 Sinapoyl-Tyrosine [M-H]− 192.5
S-11 716.186 5.65 NA Adduct/isotope of S-4 (Caffeoyl-DOPA) 67.8
S-12 719.203 5.65 NA Adduct/isotope of S-4 (Caffeoyl-DOPA) 59.9
S-13 365.116 8.50 135.05, 142.07, 161.02, 229.06 Caffeoyl-Tryptophan [M-H]− 825.8
S-14 359.097 5.64 NA Adduct/isotope of S-4 (Caffeoyl-DOPA) 20.0
S-15 456.062 5.68 96.96, 79.96,…, 358.10 (5th) Caffeoyl-DOPA, Alkyl-Sulfated [M-H]− 13.3
S-16 358.094 5.38 135.05, 161.02, 178.05, 133.03 Caffeoyl-DOPA/Clovamide [M-H]− 62.1
S-17 700.190 6.29 NA Adduct/isotope of S-8 (Coumaroyl-DOPA) 1962.5
S-18 356.079 6.21 137.02, 160.04, 125.02, 218.04 Unknown 132.6
S-19 687.213 6.25 NA Adduct/isotope of S-8 (Coumaroyl-DOPA) 1049.1
S-20 683.192 6.27 296.09, 145.03,…, 342.10 (7th) Adduct/isotope of S-8 (Coumaroyl-DOPA) 337.4
S-21 372.110 7.01 135.04, 146.04, 218.05, 250.07 Feruloyl-DOPA [M-H]− 22.0
S-22 711.363 13.30 223.13, 665.35, 459.22, 2015.12 Unknown 9.1
S-23 797.437 13.62 751.42, 223.13, 309.21, 797.43 Unknown 5.1
S-24 327.108 6.94 NA Adduct/isotope of S-7 (Coumaroyl-Tyrosine) 62.6
S-25 452.067 7.18 452.07, 178.05,…, 372.11 (6th) Feruloyl-DOPA, Aryl-Sulfated [M-H]− 393.8
S-26 343.103 6.27 NA Adduct/isotope of S-8 (Coumaroyl-DOPA) 78.9
S-27 326.105 8.61 135.05, 161.02, 147.04, 133.03 Caffeoyl-Phenylalanine [M-H]− 557.9
S-28 388.105 6.12 137.02, 135.04, 125.02, 209.05 Unknown 333.3
S-29 440.067 6.27 96.96, 79.96,…342.10 (9th) Caffeoyl-Tyrosine, Alkyl-Sulfated [M-H]− 90.5
S-30 684.196 6.25 NA Adduct/isotope of S-8 (Coumaroyl-DOPA) 147.3

Feature IDs (S-1 through S-30) match those in Figure 1. “m/z” is median mass/charge ratio. “RT” is median retention time in minutes. The four most intense MS/MS fragments are 
reported, and in some cases less intense signals that were diagnostic are presented with their rank in abundance relative to other MS/MS signals in parentheses. Fold changes 
(‘Sca6’ vs. ‘ICS1’) were calculated in XCMS Online (Tautenhahn et al., 2012). Suspected molecular ions ([M-H]−) are bold.
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a combination of ‘Sca6’ protein and clovamide inhibited 
proteolysis by ~40% (p  <  0.01). ‘Sca6’ protein alone did not 
have an effect on proteolysis, ruling out proteolysis inhibition 
by components of leaf protein extract. PPO assays showed 
that leaf protein extracts enhanced quinone formation 
(Figure  4B), which is consistent with the hypothesis that the 
quinone product of clovamide oxidation is the cause of 
proteolysis inhibition.

Pectin degrading enzymes produced by plant pathogens are 
well known to play a major role in cell wall degradation and 
virulence (Prade et  al., 1999; Herron et  al., 2000; Herbert 
et  al., 2003; Abbott and Boraston, 2008; Lionetti, 2015; Liu 
et  al., 2017). In infected cacao pods, P. megakarya and  
P. palmivora induced expression of 27 and 40, respectively, 
pectinase transcripts (pectin methylesterases, polygalacturonases, 
and pectate lyases; Ali et al., 2017), implicating them as virulence 

A

B

FIGURE 2 | Semi-targeted LC-MS/MS analysis of HCAAs in leaf tissue (‘ICS1’ and ‘Sca6’). (A) Generic HCAA structure and diagnostic MS/MS fragments based 
on clovamide fragmentation (Arlorio et al., 2008) used to predict HCAAs in LC-MS/MS data. Two examples, Caffeoyl-DOPA (clovamide) and Coumaroyl-Tryptophan, 
are shown. (B) Relative abundance of putative HCAAs detected in LC–MS data. “N.D.” = not detected. *p < 0.05, **p < 0.01 (Welch’s t-test), n = 3. Error bars 
represent standard deviation.
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factors in BPR development. Spence (1961) reported oxidation-
dependent pectinase inhibition by cacao pod extracts. Based 
on this we hypothesized that clovamide is a pectinase inhibitor.

Clovamide was assayed for inhibition of pectinase from 
Aspergillus niger (Figure  5B). After incubating pectinase with 
pectin and various treatments, pectin remaining in solution 
was determined spectroscopically using ruthenium red and a 
standard curve generated by serial dilutions of pectin 
(r2 = 0.9985). The percentage of pectin degraded was normalized 
to that of a pectinase only control. Epigallocatechin gallate 
(EGCG), a known inhibitor of pectin methylesterase, was 
included as a positive control (Lewis et al., 2008; Jiang et al., 2014).

Clovamide (2  mM) inhibited pectin degradation by ~55% 
(Figure 5B), compared to the pectinase only control (p < 0.0001). 
Combining clovamide with ‘Sca6’ protein extract resulted in 
a  ~  46% reduction in pectin degradation (p  <  0.0001) but 
was not significantly different from the clovamide only treatment 
(p = 0.3189). EGCG (2 mM) reduced pectin degradation ~30% 
relative to the control (p  <  0.0001), and the ‘Sca6’ protein 
plus EGCG (~26% reduction) was not significantly different 
from EGCG alone (p  =  0.9129).

The addition of ‘Sca6’ protein did not enhance the effectiveness 
of clovamide at inhibiting pectolysis, as it did for proteolysis 
inhibition. ‘Sca6’ protein in the absence of clovamide, however, 
caused an increase in pectin degradation (~49%, p  <  0.0001). 

This pectolysis-enhancing effect was measured in ‘ICS1’ and ‘Sca6’ 
protein extracts (Figure  5C). The cacao protein extracts alone 
had no detectable pectinase activity but enhanced the activity 
of A. niger pectinase (p  <  0.0001 for ‘Sca6’ and ‘ICS1’).

Regardless of the enhanced pectolysis by cacao leaf protein, 
clovamide was effective at inhibiting pectin degradation 
substantially in the presence or absence of cacao protein extracts. 
Clovamide therefore probably plays an important role in defense 
against cell wall degradation during BPR infection.

Clovamide Inhibits in vitro Growth of 
Phytophthora spp.
The ability of clovamide to inhibit growth of three major 
BPR-causing pathogens (Phytophthora spp.) was assayed. 
Growth inhibition was first performed on V8-agar media 
(Jeffers and Martin, 1986) (Figures 6A,B). Clovamide (2 mM) 
inhibited growth of P. megakarya (10.65 ± 3.203%, p < 0.01) 
and P. palmivora (9.149  ±  2.088%, p  <  0.001) but did not 
display significant inhibition of P. tropicalis (1.687 ± 0.8850%, 
p  =  0.0851).

Since clovamide inhibited proteolysis and pectolysis in vitro 
(Figures  5A,B), we  hypothesized that nitrogen source and 
pectin matrix may have an effect on clovamide’s growth inhibition 
potential. Thus, a synthetic media was prepared based on 
Henniger Synthetic Media (Henniger, 1963), but with all nitrogen 

A B

C

FIGURE 3 | Clovamide detection and quantification in cacao leaf and fruit peel. (A) High performance liquid chromatography – diode array detector (HPLC-DAD, 
320 nm) chromatogram of ‘Sca6’ and ‘ICS1’ stage C leaf extracts, including UV absorbance spectra for peaks of interest. I.S. = internal standard. (B) Clovamide 
content (mg/gram tissue) from HPLC-DAD. **p < 0.01, ***p < 0.001, t-test (n = 5 for leaves, n = 3 for fruit peel). Error bars represent standard deviation. (C) Thin-
layer Chromatography (TLC) plate with clovamide standard and stage C leaf extracts from ‘ICS1’ and ‘Sca6’. White line drawn near bottom of plate is origin of 
sample loading. Photograph taken under 365 nm UV excitation.
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sources removed and replaced by casein protein (8 g/L). Pectin 
was included (0.1% w/v) as well to produce Henniger/Casein/
Pectin media. Under these conditions, there was indeed a 
significant effect and clovamide inhibited growth of all pathogens 
as follows (Figures  6C,D): P. megakarya (35.71  ±  3.098%, 
p  <  0.0001), P. palmivora (20.89  ±  2.644%, p  <  0.001), and 
P. tropicalis (9.725  ±  1.200%, p  <  0.0001).

Metabolomics of Fruit Peel Extracts 
Reveals Accumulation of Sulfated HCAAs 
Exclusively in ‘Sca6’
Fruit peels (exocarp and ~2  mm mesocarp) from both ‘Sca6’ 
and ‘ICS1’ contained clovamide, which suggests that clovamide 
is not a distinguishing factor in fruit (pod) resistance between 
the two genotypes (Figure 3B). Therefore, to determine if other 

metabolites differentiate the two genotypes in this tissue, 
untargeted LC-MS/MS was performed on fruit peel extracts. 
Fruits (4–5  month old) were wounded and inoculated with 
mycelium plugs of P. palmivora “GhER1349” or sterile media 
plugs (mock inoculated control). Metabolite extraction and 
LC-MS/MS were performed 72  h after inoculation. Sample 
groups separated distinctly in principle component analysis 
(PCA) of the LC-MS data, with PC1 separating by treatment 
(mock vs. P. palmivora) and PC2 separating by genotype (‘Sca6’ 
vs. ‘ICS1’; Figure 7A). The associated loading chart (Figure 7B) 
shows contributions of individual metabolites to each principle 
component in the PCA plot.

Data filtering was performed on mock-inoculated ‘Sca6’ and 
‘ICS1’ samples as previously described for leaf to detect differences 
in basal (not infection-induced) metabolites. Of metabolite 
features >5-fold higher (p  <  0.05) in ‘Sca6’ (mock) vs. ‘ICS1’ 

A

B

C

D

FIGURE 4 | Clovamide’s contribution to enzymatic browning as a polyphenol oxidase (PPO) substrate. (A) Diagram of PPO-mediated formation of quinones from 
generic o-diphenol substrate and subsequent melanization/browning. Adapted from Yamane et al. (2010). (B) PPO activity (quinone formation) of ‘ICS1’ and ‘Sca6’ 
stage C leaf protein extracts with clovamide as substrate. [Clovamide] = 0.5 mM in all treatments shown. p-values from t-test, n = 3. (C) Browning in supernatant 
(Abs418 nm) of ground stage C leaf disks in water (**p < 0.01, n = 4). (D) Enhanced browning in supernatant (ΔAbs418 nm) by addition of clovamide (~27.7 μg clovamide 
added per leaf disk, see methods; *p < 0.05, n = 4). Clov = clovamide. Error bars in (B–D) represent standard deviation.
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(mock), the two most abundant ‘Sca6’ metabolites (m/z 452.07 
and 438.05, [M-H]−) had striking fold-changes (7,070‐ and 
7,152-fold higher in ‘Sca6’ mock vs. ‘ICS1’ mock). The same 
compounds are indicated in the loading chart (Figure  7B). 
The compounds were manually annotated as arylsulfated feruloyl-
DOPA and arylsulfated clovamide, respectively, based on shared 
MS/MS fragments with the base compounds feruloyl-DOPA 
and clovamide, and the presence of a fragment of m/z 79.96, 
which indicates a sulfate group on an aromatic ring (Weidolf 
et  al., 1988). MS/MS spectra for the two sulfated HCAAs and 
other metabolites indicated in Figure  7B can be  found in 
Supplementary Data File 3.

Aryl-sulfated feruloyl-DOPA (m/z 452.07, [M-H]−) was also 
in the top 30 metabolite features identified in the leaf metabolomics 
experiment (Table 1, metabolite feature S-25), but was considerably 
less abundant than clovamide. In fruit peel, aryl-sulfated feruloyl-
DOPA (m/z 452.07, [M-H]−) was overall the most abundant 
signal in ‘Sca6’ (mock treatment) and aryl-sulfated clovamide 
(m/z 438.05, [M-H]−) was the ninth most abundant.

Clovamide, aryl-sulfated clovamide, feruloyl-DOPA, and aryl-
sulfated feruloyl-DOPA (Figure 8A) were not induced by infection, 
but rather a significant reduction was observed for all four 
HCAAs upon infection by P. palmivora (Figure  8B).  
A proanthocyanidin monomer (catechin/epicatechin; m/z = 289.07, 
[M-H]−) and a proanthocyanidin dimer (m/z 577.14, [M-H]−), 
also indicated in Figure  7B, decreased with infection but were 
not different between genotypes (Supplementary Figure  3).

A follow-up LC-MS/MS experiment was performed to test 
if the sulfated HCAAs were induced by wounding in the mock 
inoculated control treatment. Extracts of three unwounded 
fruits were compared to three wounded fruits of both genotypes. 

Aryl-sulfated feruloyl-DOPA (m/z 452.07, [M-H]−) was again 
the most abundant signal in ‘Sca6,’ and neither of the sulfated 
HCAAs were induced by the wounding treatment 
(Supplementary Figure  4). In contrast to leaves, grinding of 
fruit peel in water did not result in more supernatant browning 
in ‘Sca6’ than ‘ICS1’ (Supplementary Figure  5).

Taken together, two putative sulfated HCAAs, aryl-sulfated 
feruloyl-DOPA (m/z 452.07, [M-H]−) and aryl-sulfated clovamide 
(m/z 438.05, [M-H]−), constitute the major differences between 
‘Sca6’ and ‘ICS1’ in fruit peel. The two compounds decrease 
during infection similarly to clovamide.

DISCUSSION

Our findings that clovamide and sulfated HCAAs accumulate 
to very high levels in a pathogen tolerant genotype (‘Sca6’) as 
compared to a pathogen susceptible genotype (‘ICS1’) implicated 
clovamide as a potentially important contributor to plant defense 
in cacao. We  characterized several properties of clovamide 
consistent with this hypothesis and found that clovamide 
contributes to PPO-mediated enzymatic browning, inhibits 
pectolysis and proteolysis, and inhibits the growth of three 
Phytophthora species that infect cacao. Taken together, our data 
demonstrate that clovamide is an important metabolite in the 
plant’s arsenal of defense compounds, along with other HCAAs.

Our approach spanning untargeted metabolomics to 
functional analysis of clovamide’s role in defense provides 
a straightforward roadmap for future experiments. Metabolite 
identification from LC-MS/MS data is notoriously difficult, 
especially so in plants, which produce a remarkable diversity 

A B C

FIGURE 5 | Enzyme inhibition by clovamide and effect of cacao stage C leaf protein pectinase activity. (A) Proteolysis inhibiton by clovamide. “PK” = proteinase K. 
PK included in all treatments shown, with the addition of ‘Sca6’ protein, clovamide (2 mM), or both. Data represents two experiments (n = 5 from each). 
(B) Pectolysis inhibition by clovamide. “Pase” = pectinase from A. niger. “EGCG” = epigallocatechin gallate. Pase included in all treatments, with the addition of 
clovamide (2 mM), EGCG (2 mM), ‘Sca6’ stage C leaf protein, or ‘Sca6’ protein in combination with either phenolic compound. Data represents two experiments 
(n = 3 from each). (C) Enhancement of pectinase (A. niger) activity by cacao stage C leaf protein (n = 3). No pectinase (“-Pase”) and pectinase (“+Pase”) with or 
without addition of ‘ICS1’ or ‘Sca6’ leaf protein. Shared letters mean no difference by Tukey-HSD at p < 0.0001 (A), p < 0.05 (B), or p < 0.0001 (C). Error bars 
represent standard deviation.
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of secondary or specialized metabolites that are not yet 
searchable in spectral databases (Shahaf et  al., 2016; Perez 
de Souza et  al., 2017; Viant et  al., 2017). To address this 
bottleneck, we  applied simple filters to our LC-MS/MS data 
to focus annotation efforts on high priority metabolite features: 
>5-fold higher in ‘Sca6,’ p < 0.05, 30 most abundant in ‘Sca6’. 
Since most of these features were annotated as HCAAs, 
we expanded our scope and performed a semi-targeted search 
for HCAAs using calculated masses and predicted fragment 
masses. Of the HCAAs higher in ‘Sca6,’ we  selected the most 
abundant, clovamide, for synthesis, targeted quantification, 
and functional characterization.

Clovamide, a Novel Source of 
Phytophthora spp. Resistance and a 
Potential Breeding Target for Cacao
The cacao genotype ‘Sca6’ has been an important source of 
resistance to BPR for breeders, and has served as an international 

reference for resistance (Tahi et al., 2000; Lachenaud et al., 2001;  
Pokou et  al., 2008; Akaza et  al., 2009; Thevenin et  al., 2012). 
The molecular and biochemical underpinnings of its resistance, 
however, have remained elusive. This work demonstrates that 
clovamide content of ‘Sca6’ is likely a major factor in the 
observed difference in leaf resistance compared to ‘ICS1.’

‘Sca6’ has also been heavily relied upon as a source of 
resistance to Witches’ Broom Disease (WBD, caused by 
Moniliophthora perniciosa; Pires et al., 2012; Feitosa Jucá Santos 
et  al., 2014). Although the effect of clovamide against  
M. perniciosa was not evaluated, the potential for this compound’s 
importance in WBD resistance exists. Clovamide has previously 
been reported as an inhibitor of influenza A subtype H5N1 
(virus) and T. evansi (protozoa; El-Sharawy et  al., 2017), and 
H. pylori (Niehues et  al., 2011), and may therefore have broad 
spectrum antimicrobial activity.

Progress in breeding of cacao has been hampered by long 
generation times, self-incompatibility, complex inheritance of 

A B

C D

FIGURE 6 | Phytophthora spp. growth inhibition by clovamide. (A) Growth inhibition (%) by clovamide of three Phytophthora species on V8 media. (B) V8 media 
plates with P. megakarya mycelia with 0 mM clovamide (top) and 2 mM clovamide (bottom). (C) Growth inhibition (%) by clovamide of three Phytophthora species 
on semi-synthetic Henniger/Casein/Pectin (“HenCasPec”) media. (D) HenCasPec media plates with P. megakarya mycelia with 0 mM clovamide (top) and 2 mM 
clovamide (bottom), stained with calcofluor and photographed under 365 nm excitation for contrast between white mycelia and white media. Growth inhibition data 
from two experiments (n = 4 from each), except P. palmivora on HenCasPec, which represents one experiment. p < 0.01 (**), p < 0.001 (***), p < 0.0001 (****), t-test. 
Error bars in (A) and (C) represent standard deviation.
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oligogenic resistance, limited resources of breeding programs, 
and reliance on a relatively small proportion of available genetic 
diversity (Lanaud et  al., 2009, 2017; Bekele and Phillips-Mora, 
2019). Significant strides have been made in genetic mapping 
of resistance QTL associated with BPR and WBD resistance 
(Lanaud et  al., 2009; Akaza et  al., 2016; Barreto et  al., 2018). 
Application of microsatellite markers and genomic selection 
has shown promise for accelerating breeding of cacao (Schnell 
et  al., 2007; McElroy et  al., 2018). However, genetic markers, 
while useful, are not yet understood at a mechanistic level. 
Incorporation of metabolite markers such as leaf clovamide 
as early selection criteria in breeding programs would 
be  beneficial, especially since such anti-microbial agents can 
be  directly detected as opposed to genetic markers that are 
merely linked to resistance. Furthermore, high/low abundance 
of clovamide in methanolic extracts of leaf tissue can easily 
be  qualitatively scored using TLC (Figure  3C). This simple, 
rapid, and inexpensive TLC marker should be  tested in cacao 
populations with ‘Sca6’ parentage (and others) to validate its 
potential utility as a breeding marker for BPR and WBD 
resistance. High performance – liquid chromatography coupled 

with a diode array detector (HPLC-DAD) is quantitative and 
more sensitive than TLC and may also be  employed where 
available. The compound is constitutively produced in ‘Sca6’ 
leaves, which means that no induction by pathogen inoculation 
is required to perform this screen, further simplifying the 
implementation of this marker.

Polyphenol Oxidase and Cacao Resistance
Polyphenol oxidase (PPO) activity has been reported in cacao 
leaf, pod (fruit), and seed tissues towards the substrates catechol, 
L-DOPA, dopamine, 4-methylcatechol, epicatechin, and catechin 
(Lee et  al., 1991; Okey et  al., 1997; Simo et  al., 2011; Macedo 
et  al., 2016; Ondobo et  al., 2017; Fantinato et  al., 2018). PPO 
activity has also been reported to increase upon infection by 
P. palmivora in cacao stems (Okey et al., 1997) and P. megakarya 
infection in pods (Simo et  al., 2011). Spence (1961) proposed 
that the higher P. palmivora resistance of ‘Sca6’ pods compared 
to those of ‘ICS1’ was due to faster enzymatic browning, although 
specific metabolites involved in browning were not determined. 
In the same study, cacao pods infected with P. palmivora showed 
increases in lesion size and a reduction in lesion browning in 

A

B

FIGURE 7 | LC-MS metabolomics of pod (fruit) infection by P. palmivora overview. (A) Principle Components Analysis (PCA) of LC-MS data, P. palmivora-infected 
or mock inoculated. (B) Loading chart showing contribution of individual metabolite features to each principle component. Greater deviation from zero on either axis 
represents a larger contribution to the respective principle component. Major contributors to each principle component are indicated with median mass to charge 
ratios (m/z) and putative annotations. All m/z shown are suspected molecular ions ([M-H]−) except one indicated as an isotope.
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a low oxygen atmosphere. While the evidence suggests that 
PPO-mediated browning is an important factor in BPR resistance, 
characterization of individual o-diphenol substrates found at 
appreciable concentrations in cacao tissue is limited to catechin 
and epicatechin (Simo et  al., 2011; Macedo et  al., 2016). To 
our knowledge, clovamide has not been characterized as a 
substrate for cacao PPO prior to this study. We  were able to 
demonstrate that clovamide and related HCAAs decreased during 
P. palmivora infection (Figure  8B) as did a proanthocyanidin 
monomer and dimer (Supplementary Figure  3), a pattern 
consistent with PPO-mediated oxidation.

Special care should be taken when evaluating the contribution 
of PPO substrates to resistance. Growth inhibition of a PPO 
substrate such as clovamide in vitro may be  difficult to relate 
to growth inhibition of a pathogen in planta. A PPO substrate 
could lack direct toxicity to a pathogen but slow nutrient 
acquisition by inhibition of excreted digestive enzymes, or act 
as a physical barrier through oxidative coupling with cell wall 

components. The higher level of growth inhibition in synthetic 
Henniger/Casein/Pectin media compared to V8-agar 
(Figures 6A,C) may be due to such effects on nutrient acquisition. 
Henniger/Casein/Pectin media lacks amino acids, nitrate, and 
ammonium, with casein protein as the sole source of nitrogen. 
Furthermore, the protein is in a matrix of pectin. In order 
to acquire nitrogen for growth, the pathogens must rely on 
their ability to access protein in a pectin matrix and degrade 
the protein with excreted proteases. Protease and pectinase 
inhibition by clovamide (Figures 5A,B) provides an explanation 
for the higher degree of growth inhibition measured in Henniger/
Casein/Pectin media compared to V8-agar. If a PPO substrate 
requires PPO activity to undergo oxidation to quinone, and 
if it lacks direct toxicity to a pathogen, in vitro growth inhibition 
assays may underestimate its contribution to resistance in planta. 
Clovamide can undergo non-enzymatic oxidation on a short 
time scale (Figure  4B; 10-min assay), and browning of media 
containing clovamide was visible by the end of growth inhibition 

A
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FIGURE 8 | Changes in four HCAAs during fruit/pod infection by P. palmivora. (A) Putative structures of two sulfated HCAAs, feruloyl-DOPA, and clovamide. Parent 
ion m/z ([M-H]−) and diagnostic MS/MS fragments shown. (B) Metabolite abundance of the same four HCAAs in ‘ICS1’ and ‘Sca6’ fruit/pod tissue, mock inoculated 
or infected by P. palmivora. MS Counts represent mass spectrometer signal intensity of peaks integrated in XCMS Online (Tautenhahn et al., 2012). Shared letters 
mean no difference by Tukey-HSD (p < 0.05, n = 3). Error bars represent standard deviation.
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assays (Figure  6B). This property of clovamide may be  what 
allows for the observed growth inhibition in vitro. For other 
PPO substrates, it may be necessary to incorporate PPO activity 
into the assay to facilitate quinone formation.

Clovamide exhibited the highest degree of growth inhibition 
in P. megakarya, followed by P. palmivora, and P. tropicalis 
(Figures  6A,C). This pattern is inversely related to the growth 
rates of the three pathogens in vitro (Supplementary Figure 6). 
P. tropicalis grows the fastest in vitro and P. megakarya grows 
the slowest. The relatively lower degree of growth inhibition 
of P. tropicalis by clovamide may be due to its growth outpacing 
the oxidation of clovamide in the assay. This may be  another 
factor to consider when evaluating growth inhibition by 
PPO substrates.

Tissue Specificity of HCAA Accumulation
This work highlights the importance of considering tissue-
specific resistance mechanisms. While ‘Sca6’ accumulates far 
more clovamide than ‘ICS1’ in leaf tissue, both genotypes 
produce substantial amounts of clovamide in fruit peel. In 
fruit peel, ‘Sca6’ distinguishes itself from ‘ICS1’ by accumulating 
sulfated HCAAs. Lechtenberg et  al. (2012) reported clovamide 
accumulation in pod husk but not in leaf, similar to what 
we  observed in ‘ICS1’ (Figure  3B), although the authors did 
not specify genotype or leaf developmental stage.

Leaf resistance has been demonstrated to correlate reasonably 
well with field resistance measured as infected pod count (Tahi 
et  al., 2000, 2006). This could be  due to shared resistance 
mechanisms across tissues, reduced secondary inoculum 
produced during leaf infection for subsequent pod infection, 
or both. Leaf and pod tissues could also have distinct but 
related mechanisms of resistance, such as HCAA accumulation 
in leaves and sulfated HCAA accumulation in pods, meaning 
that QTL studies of disease resistance may reveal different 
loci depending on which tissue’s resistance is used as the 
phenotype. For example, QTL analysis of leaf resistance may 
reveal biosynthetic genes in the pathway up to clovamide (e.g., 
BAHD-acyltransferases; Sullivan and Bonawitz, 2018), whereas 
analysis of pod phenotypes may reveal genes involved in 
sulfation of HCAAs (e.g., sulfotransferases; Hirschmann et  al., 
2014). Supplementary Figure 7 presents hypothetical biosynthetic 
pathways to clovamide and sulfated clovamide, which may 
guide candidate gene selection in future QTL analyses. 
Considering tissue-specific resistance traits further complicates 
the already challenging task of breeding cacao but may 
be  advantageous in addition to selection for markers in QTL 
with consensus across tissues.

The role of sulfated HCAAs in ‘Sca6’ pod remains unclear. 
The compounds may be  undergoing non-enzymatic or 
PPO-mediated oxidation during BPR infection by Phytophthora 
spp., which is supported by their reduction during infection 
by P. palmivora (Figure  8B). Regardless of the position of the 
sulfate group in the aryl-sulfated clovamide (Figure  8A), the 
molecule still has at least one unsulfated o-diphenol moiety, 
making it a candidate PPO substrate. The aryl-sulfated feruloyl-
DOPA, depending on position of the sulfate (Figure  8A), may 
or may not have one exposed o-diphenol group to serve as 

a substrate for PPO. Sulfate esters of aromatic rings are known 
to be  labile, however, and may undergo hydrolysis 
non-enzymatically or by the action of arylsulfatases, which 
may liberate o-diphenol moieties from the sulfated forms (Ragan, 
1978; Simpson and Widlanski, 2006; Raghuraman et  al., 2007; 
Mattarei et  al., 2015). In contrast to this hypothesis and 
observations by Spence (1961), enhanced browning was not 
observed in ground ‘Sca6’ pod tissue compared to ‘ICS1’ 
(Supplementary Figure 5). Perhaps the sulfate group somehow 
favors covalent cross linking with chemical species other than 
proteins, which is associated with melanization and browning. 
For example, HCAA binding at the cell wall by covalent binding 
to lignin would not necessarily manifest as browning. HCAA 
deposition at cell walls has been observed in wheat during 
infection by Fusarium graminearum, which resulted in cell 
wall thickening associated with resistance (Gunnaiah et al., 2012).

The role these sulfated HCAAs is not clear at this point. 
However, their structural similarity to clovamide, high abundance 
in the tolerant ‘Sca6,’ and virtual absence in the susceptible 
‘ICS1’ suggest that they may be  important factors in defense 
against Phytophthora spp. This work demonstrated that clovamide 
is a growth inhibitor of Phytopthora spp. as well as a proteolysis 
and pectolysis inhibitor. Similar assays with purified forms of 
these sulfated HCAAs or genetically modified plants with 
modulated accumulation of sulfated HCAAs will be  required 
to unambiguously test their role in conferring resistance to 
Phytophthora spp.

Antimicrobial Activity/Enzyme Inhibition of 
Clovamide and Potential Mechanisms 
Thereof
As mentioned previously, clovamide has been reported as a 
potent inhibitor of influenza A subtype H5N1 (virus) and  
T. evansi (protozoa; El-Sharawy et  al., 2017). Niehues et  al. 
(2011) determined that clovamide can partially inhibit adherence 
of Heliobacter pylori to gastric epithelial cells, an important 
factor in H. pylori virulence. In this work, we  report growth 
inhibition of three species of Phytophthora. This broad-spectrum 
antimicrobial activity may suggest a generic mechanism, such 
as o-diphenol oxidation to quinone and indiscriminate covalent 
cross-linking to reducing groups (-SH, -NH2) in proteins, rather 
than a specific one such as selective binding to the active site 
of an essential enzyme. If this were true, similar broad-spectrum 
enzymatic inhibition might also be expected. Clovamide inhibits 
alfalfa proteases (Sullivan and Zeller, 2013), proteinase K from 
Tritirachium album (Figure 5A), and pectinase from Aspergillus 
niger (Figure  5B). While it is unclear as of yet if clovamide 
is acting directly on these enzymes to inhibit them, or if it 
is cross-linking protein and pectin substrates making them 
less digestible, the current evidence suggests a generic mechanism.

Cacao leaf protein extracts enhanced the activity of pectinase 
from A. niger but had no detectable pectinase activity on 
their own (Figure  5C). The pectinase activity enhancement 
could be  due to pectin methylesterase or expansin activity 
in the cacao protein extracts. De-methylesterification should 
enhance binding to ruthenium red used in the assay and 
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subsequent pectin precipitation (Lionetti, 2015), which would 
manifest as an apparent increase in pectin concentration 
relative to pectin solution without cacao protein. This was 
not observed in our experiment so pectin methylesterase 
activity is not likely responsible for the observed effect. 
Expansin activity cannot be  ruled out, however. Cucumber 
alpha-expansin protein has been reported to enhance fungal 
pectin lyase activities (Wei et  al., 2010), and the cacao leaf 
protein used in the assay was from actively expanding “stage 
C” leaves. Endogenous plant proteins such as pectin 
methylesterases and expansins, while important for normal 
development, may inadvertently assist pathogen-excreted pectin 
degrading enzymes. The same could be  said for endogenous 
plant proteases. Deployment of a broad-spectrum enzyme 
inhibitor such as clovamide may be an effective way to inhibit 
enzymatic activities, plant‐ or pathogen-derived, that facilitate 
pathogen progression through plant tissue.

Potential for Genetic Engineering of 
Clovamide Biosynthesis in Other Crops 
and Limitations
The genus Phytophthora contains over 100 species, many of 
which are plant pathogens with broad host ranges (Thines, 
2014). Introducing clovamide biosynthesis into other crops 
affected by Phytophthora spp. may be  an effective approach 
to enhance resistance. Furthermore, increased clovamide content 
in food may provide human health benefits due to its anti-
inflammatory and neuroprotective properties (Park et al., 2007, 
2017; Fallarini et  al., 2009; Zeng et  al., 2011; Kolodziejczyk-
Czepas et  al., 2017; Tsunoda et  al., 2018). The recent cloning 
and characterization of a hydroxycinnamoyl-CoA:L-DOPA 
hydroxycinnamoyl transferases (HDT) from red clover 
(Trifolium pratense) capable of catalyzing the formation of 
clovamide from caffeoyl-CoA and L-DOPA (Sullivan and 
Bonawitz, 2018; Bouchez et  al., 2019) means it is now 
conceivable to transfer clovamide biosynthesis into other crops 
via genetic engineering.

There are potential limitations to use of clovamide as a 
means of enhancing disease resistance or health-promoting 
properties of crops, however. Clovamide has been previously 
studied in cacao and cocoa products (chocolate and cocoa 
powder) with respect to its antioxidant activity (Sanbongi 
et  al., 1998) but also for its contribution to astringency (Stark 
and Hofmann, 2005). Negative effects on flavor attributes of 
other crops may make high-clovamide genotypes less desirable 
to consumers. Furthermore, clovamide will likely enhance 
browning associated with o-diphenol oxidation. Browning in 
fruits and vegetables is generally viewed as undesirable, leading 
to rejection by consumers and considerable post-harvest losses 
(Queiroz et al., 2008). This strong preference for non-browning 
produce has even led to the development and approval 
PPO-silenced apple and potato varieties with reduced browning 
(Waltz, 2015a,b).

It is unclear at this point if breeding for high leaf clovamide 
content in cacao will be  accompanied with increases in seed 
content associated with undesirable flavor. Arlorio et  al. (2008) 

reported reductions (up to ~59%) in clovamide content of cacao 
seeds during roasting, an important step in the post-harvest 
processing of cacao seeds into edible cocoa. Perhaps special 
attention to post-harvest processing conditions can ameliorate 
negative flavor impacts of clovamide in cacao.

MATERIALS AND METHODS

Untargeted Metabolomics of Leaf Tissue: 
Liquid Chromatography – Mass 
Spectrometry
Stage C (mid-stage of development) leaf tissue (Mejía et  al., 
2012) was collected from ‘Sca6’ and ‘ICS1’ trees grown in a 
greenhouse as previously described (Swanson et  al., 2008). 
Three to five leaves from different branches on a tree were 
combined per sample and flash frozen in liquid nitrogen after 
midrib removal. Three clonally propagated trees were sampled 
per genotype. Tissue was ground in liquid nitrogen and extracted 
with 80% methanol and 0.1% formic acid in water (v/v), using 
a 3:1 solvent to tissue ratio (μl:mg) as previously described 
(De Vos et  al., 2007). Genistein was included as an internal 
standard (2.5  μg/ml; Calderón et  al., 2009). Extracts were 
filtered using 0.2  μm spin columns (Norgen Biotek Corp. Cat. 
#40000) before LC-MS/MS analysis. LC-MS grade solvents 
were used.

Liquid Chromatography–Mass Spectrometry (LC-MS/MS) 
was performed at the Pennsylvania State University 
Metabolomics Facility at the Huck Institutes of the Life 
Sciences. Reverse phase HPLC was performed to separate 
samples (5  μl) with a Prominence 20 UFLCXR system 
(Shimadzu, Columbia, MD) equipped with a Waters (Milford, 
MA) BEH C18 column (100  ×  2.1  mm, 1.7  μm) maintained 
at 55°C, using a 20-min aqueous acetonitrile gradient with 
a flow rate of 250  μl/min. HPLC grade water with 0.1% 
formic acid was Solvent A and HPLC grade acetonitrile with 
0.1% formic acid was solvent B. The HPLC gradient was as 
follows: 3% B increased to 45% B from 0 to 10  min, 45% 
B to 75% B from 10 to 12  min, hold at 75% B from 12 to 
17.5  min, return to initial conditions (3% B). A Duospray™ 
ion source was used to deliver eluate to a 5600 (QTOF) 
TripleTOF Mass Spectrometer (both AB Sciex, Framingham, 
MA). The ion source was operated in ESI mode with a 
capillary voltage of 4.5  kV (negative ion mode), with a 
declustering potential of 80  V. The mass spectrometer was 
operated in Information Dependent Acquisition (IDA) mode 
with a 100  ms survey scan from 50 to 1,500  m/z. Up to 20 
product ion scans (MS2) were performed per duty cycle using 
a collision energy of 50  V with a 20  V spread.

Liquid chromatography–mass spectrometry (LC-MS) data 
were analyzed using XCMS Online (peak alignment and Welch’s 
t-test for each metabolite feature; Tautenhahn et  al., 2012). 
MS-Dial (v2.58) was used to extracts MS/MS (MS2) spectra 
for metabolites of interest (Tsugawa et  al., 2015).

Metabolite features were putatively annotated by searching 
in the METLIN database (Guijas et  al., 2018) or based on 
matching MS/MS fragments to those previously reported in the 

https://www.frontiersin.org/journals/plant-science
www.frontiersin.org
https://www.frontiersin.org/journals/plant-science#articles


Knollenberg et al. Clovamide and Theobroma Cacao Resistance

Frontiers in Plant Science | www.frontiersin.org 15 December 2020 | Volume 11 | Article 617520

literature (Arlorio et al., 2008; Alonso-Salces et al., 2009; Szajwaj 
et al., 2011; Oracz et al., 2019). Alkyl‐ and aryl-sulfated derivatives 
were annotated based on ~96.96  Da and ~79.96  Da MSMS 
fragments, respectively, as described by Weidolf et  al. (1988).

Semi-Targeted Search for HCAAs in  
LC-MS/MS Dataset
A semi-targeted search for HCAAs was performed by generating 
a library of hypothetical HCAA MS1 parent ion masses and 
MS/MS fragment masses for 250 compounds. In order for 
a compound in our LC-MS/MS data to be  considered a 
match, it must match the parent ion ([M-H]−) in MS1 
(±0.05  Da) and contain at least one of the diagnostic MS/
MS fragments. This library consisted of compounds with 
hydroxycinnamoyl moiety in an amide bond with an amine 
moiety. Hydroxycinnamoyl moieties (cinnamoyl, coumaroyl, 
caffeoyl, feruloyl, and sinapoyl) in combination with all 
proteogenic amino acids, GABA, DOPA, the decarboxylated 
forms of the amino acids, and several polyamines (spermine, 
spermidine, cadaverine, and putrescine) gave a list of 250 
predicted compounds. MS/MS fragments were calculated based 
on characteristic fragmentation patterns observed near the 
amide bond in caffeoyl-DOPA (clovamide), as described by 
Arlorio et  al. (2008), (Figure  2A).

Hydroxycinnamic acid amides (HCAAs) containing a 
decarboxylated amino acid (agmatine, tyramine, etc.) as the 
amine moiety were considered artifacts of in-source fragmentation 
if they co-eluted with the corresponding carboxylated form. For 
example, coumaroyl-tyramine was initially identified but later 
ruled out as an ionization artifact due to in-source decarboxylation 
of coumaroyl-tyrosine, which had the same retention time.

The isobaric monodeoxyclovamides coumaroyl-DOPA and 
caffeoyl-tyrosine could not be differentiated by MS/MS fragments, 
since two features in the LC–MS/MS dataset had all four 
diagnostic MS/MS fragments for both compounds (see 
Supplementary Data File 2). The two compounds were therefore 
annotated based on relative retention times for the two 
compounds reported by (Bouchez et  al., 2019).

Synthesis of Clovamide
Trans-Clovamide was synthesized using methods described by 
Xie et  al. (2013), starting with trans-caffeic acid (Cayman 
Chemical 70602) and L-DOPA methyl ester (Sigma-Aldrich 
D1507). The product was dissolved in DMSO-d6 and analyzed 
(1H NMR) on a Bruker AVIII-HD-500. Retention time and 
absorbance spectrum of the product were compared with 
commercial clovamide (Cayman Chemical 16138) using 
HPLC-DAD.

HPLC-DAD for Targeted Analysis of 
Clovamide
Stage A/B, C, and D/E leaves (Mejía et al., 2012) were collected 
from clonally propagated ‘Sca6’ and ‘ICS1’ trees grown as 
previously described (Swanson et  al., 2008). Five trees of 
each genotype were sampled. Three to five pooled leaves of 
the same developmental stage from the same tree constituted 

a replicate. Cacao pods (4–5  month old fruits) were kindly 
provided by next day shipping by Dr. Ricardo Goenaga 
(USDA-ARS, Mayaguez, PR). Three pod peel samples from 
each genotype were collected using a potato peeler (exocarp 
plus ~2  mm mesocarp). Frozen, ground tissue was extracted 
as above except a 20  μl:1  mg solvent:tissue ratio was used 
and genistein was not included. 100  μl of extract was dried 
in a SpeedVac (Savant) and re-dissolved with sonication in 
300  μl 10:90:0.1 methanol:water:formic acid (v/v/v) with 
2.5  μg/ml rosmarinic acid as an internal standard (Cayman 
Chemical 70900). Extracts were filtered using 0.2  μm spin 
columns (Norgen Biotek Corp. Cat. #40000) before 
HPLC-DAD analysis.

High-performance liquid chromatography (HPLC) was 
performed on an Agilent 1260 Infinity system with an Agilent 
Poroshell EC-C18 column (150  ×  3  mm, 2.7  μm) maintained 
at 40°C, using a 45-min aqueous methanol gradient with a 
flow rate of 0.5  ml/min. HPLC grade water with 0.1% formic 
acid was solvent A and HPLC grade methanol with 0.1% formic 
acid was solvent B. The solvent gradient was as follows: 5% 
B to 95% B from 0 to 30  min, hold at 95% B from 30 to 
40  min, return to initial conditions (5% B) for 5  min. Sample 
injection volume was 10  μl. Absorbance at 320  nm was used 
to detect clovamide. Comparison of retention time and 
absorbance spectra to that of pure clovamide was used for 
compound identification. Solutions of clovamide (0.05, 0.01, 
0.002, 0.0004, and 0.00008  mg/ml) were analyzed to generate 
a standard curve for quantification in cacao extracts.

Thin-Layer Chromatography for Clovamide 
Detection
Three stage C leaf samples from ‘Sca6’ or ‘ICS1’ were extracted 
as described above (3,1 solvent,tissue ratio). Ten microliters 
of the leaf extract or clovamide standard (10  μM) were loaded 
per lane (1  cm width) on 10  cm  ×  10  cm HPTLC Silica gel 
60 plates (Merck). Plates were developed with 100:10:10:10 
ethyl acetate:glacial acetic acid:formic acid:water (v:v:v:v) until 
the solvent front reached ~90% of the plate length. Plates 
were photographed under 365  nm UV excitation.

Protein Extraction From Cacao Leaf
The protein was extracted from stage C leaves of three ‘Sca6’ 
and three ‘ICS1’ trees according to Pirovani et  al. (2008), with 
the addition of 2 μl/ml Plant Protease Inhibitor Cocktail (Sigma 
P9599) in the extraction buffer. Metabolites were removed by 
buffer exchange in 10  kDa cutoff centrifugal filters (Amicon® 
Ultra – Merck Millipore Ltd.) using protein storage buffer 
(50/50  v/v glycerol/Tris-HCl, 20  mM, pH 7.5). The protein 
was quantified using the Qubit™ Protein Assay Kit (ThermoFisher 
Q33211), diluted to 150  ng/μl in protein storage buffer, and 
stored at −20°C for PPO and pectolysis assays. Protein was 
precipitated in 90% ice-cold ethanol and re-suspended in 
2-(N-morpholino) ethanesulfonic acid (MES) buffer (0.2  M, 
pH 6.5) for use in proteolysis assays. This extra step was 
included to ensure complete removal of protease inhibitors 
from the protein extraction.
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Polyphenol Oxidase Activity Assay
Polyphenol oxidase (PPO) activity assays were performed as 
described by Sullivan and Foster (2013) using the 2-nitro-5-
thiobenzoic acid (TNB) quinone trap assay (Esterbauer et  al., 
1977). Each reaction master mix contained 965  μl McIlvaine’s 
buffer (pH 7), 20  μl TNB solution, 10  μl clovamide (50  mM 
in DMSO), 5  μl cacao leaf protein (‘Sca6’ or ‘ICS1’, 150  ng/μl). 
From this master mix, 200  μl were dispensed in a microtiter 
plate (3 technical replicates per reaction). Reactions were incubated 
10  min at 25°C and Abs412  nm was measured every 30  s. The 
slope of the linear regression was calculated in Microsoft Excel 
and converted to nmol quinone/min using the conversion factor 
91.0  nmol/Abs412  nm (Esterbauer et  al., 1977) adjusted for to the 
pathlength in the microtiter well (0.6  cm). PPO activity was 
measured for three biological replicates (separate clonally 
propagated trees) of ‘Sca6’ and ‘ICS1.’ Controls were performed 
without clovamide (DMSO only) to account for potential metabolite 
carryover from protein extractions and without protein (buffer 
only) to account for non-enzymatic oxidation of clovamide. 
Catalase (Thermo Scientific J12885-03) was included (280  U/
ml) in one iteration of the experiment to account for peroxidase 
activity (Gertzen and Escobar, 2014). Kojic acid (Cayman Chemical 
22712), a PPO inhibitor, was included in some assays at 1  mM 
or 5  mM (Gertzen and Escobar, 2014). Reactions including 
SDS (0.25% w/v) were also performed to test for latent PPO 
activity (Moore and Flurkey, 1990). ANOVA was performed 
and means were separated by pairwise t-tests (two-sided).

Browning Assay
A cork borer (9  mm) was used to cut out leaf disks from stage 
C leaves, which were placed in 2  ml screw cap tubes with 1  ml 
water and stainless-steel beads (1  ×  3  mm and 2  ×  1  mm). 
Leaf disks were ground in a TissueLyser (Qiagen) for 8  min at 
30 Hz and incubated at 25°C (total 30 min since start of grinding). 
Samples were centrifuged (14,000  ×  g, 5  min) and absorbance 
(418 nm) of the supernatant was measured in a spectrophotometer. 
Four leaves from different trees were analyzed from each genotype. 
Clovamide (0.077% v/v of 100 mM stock in DMSO, or ~27.7 μg 
per sample) or DMSO (0.077%) were added to samples before 
grinding to determine the effect of clovamide on browning. 
This amount was calculated based clovamide quantification data 
(HPLC-DAD) and the average mass of a leaf disk to determine 
the average amount of clovamide per ‘Sca6’ leaf disk.

The wavelength for analysis was determined by performing 
the assay in the presence or absence of kojic acid (5  mM), 
a PPO inhibitor. Absorbance intensities (325–600  nm scan) 
of the kojic acid treated samples were subtracted from those 
of samples ground in water to identify ~418 nm as the absorbance 
maximum for PPO-mediated browning (mean Absmax from 
three ‘Sca6’ and three ‘ICS1,’ see Supplementary Figure  2).

Note on Clovamide Concentration Used in 
Proteolysis, Pectolysis, and Growth 
Inhibition Assays
In order to assess clovamide’s ability to inhibit digestive enzyme 
function and Phytophthora spp. growth in vitro, it was important 

to test clovamide at a concentration that is physiologically relevant. 
Average leaf water content of stage A/B, C, and D/E leaves 
(79.8, 83.0, and 63.7% w/w) was determined and combined 
with clovamide content determined by HPLC (mg/g tissue) to 
estimate molarity in the tissue. Leaf clovamide content ranged 
from 0.14 to 0.28  mM in ‘ICS1’ and 3.61 to 11.24  mM in 
‘Sca6’ A clovamide concentration of 2  mM was chosen because 
it is in the physiologically relevant range and could be delivered 
as a 100  mM stock solution in DMSO while maintaining a 
low DMSO concentration (2% v/v) in the final media or buffer. 
Giannakopoulou et  al. (2014) reported no toxicity of DMSO 
to other Phytophthora species at concentrations less than 2.5% (v/v).

Proteolysis Assay
Proteolysis assays were adapted from Sullivan and Foster (2013) 
and used casein (Sigma C7078) digestion by Proteinase K from 
T. album (Sigma P8044) as a model reaction. Each 100 μl reaction 
consisted of 84  μl MES buffer (0.2  M, pH 6.5), 12  μl casein 
(0.833  mg/ml stock in MES for 0.1  mg/ml final concentration), 
1 μl ‘Sca6’ cacao leaf protein (40  ng/μl in MES), 2 μl clovamide 
(100  mM stock in DMSO), and 1  μl Proteinase K (1  mg/ml 
stock in MES). Negative controls were run with buffer in place 
of enzymes (‘Sca6’ protein or Proteinase K) and DMSO in place 
of clovamide. Reactions were incubated 18  h at 37°C. After 
incubation, un-digested protein was precipitated by adding 900 μl 
cold ethanol (−20°C) followed by centrifugation for 10  min at 
14,000  ×  g (4°C). To quantify soluble amino acids in the 
supernatant, 750  μl was mixed with 150  μl ninhydrin solution 
(3.5  mg/ml in ethanol), heated for 10  min at 90°C in a screw 
cap tube, allowed to cool to room temperature, and Abs570  nm 
was measured in a spectrophotometer. A standard curve was 
prepared using glycine to determine amino acid concentrations 
in the samples. Percentage of proteolysis was calculated as amino 
acid concentration relative to the Proteinase K control without 
clovamide or cacao protein. The experiment was performed twice 
with five replicates each time. ANOVA and post-hoc Tukey-HSD 
were performed to determine statistical significance. Experiment 
was treated as a block in ANOVA.

Pectolysis Assay
Pectolysis assays were adapted from methods by Torres et  al. 
(2011) for detection of endo-polygalacturonase activity. Apple 
pectin (Sigma 93854) digestion by pectinase from A. niger (Sigma 
17389) was used as a model reaction. Epigallocatechin gallate 
(EGCG, Sigma E4143), a known inhibitor of pectin methylesterases, 
was used as a positive control (Lewis et  al., 2008; Jiang et  al., 
2014). Pectin precipitation by ruthenium red (Cayman Chemical 
14339) was used for pectin quantification. Pectin solution (0.15% 
w/v) was prepared in 10  mM KOH and pectinase solution 
(0.025  mg/ml) was prepared in acetate buffer (0.1  M, pH 4.25). 
Each reaction consisted of 46 μl pectin solution, 50 μl pectinase 
solution or acetate buffer, 2  μl DMSO or 100  mM clovamide 
or 100  mM EGCG (final concentration 2  mM), and 2  μl of 
cacao protein (150  ng/μl) or protein storage buffer as described 
above. Assays to determine the pectinase enhancing effect of 
cacao proteins were generally the same but used 48  μl pectin 
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solution and no DMSO. Reactions were incubated 45  min at 
25°C. After incubation, 50  μl of the reaction was mixed with 
950  μl of ruthenium red solution (0.3  mg/ml in acetate buffer 
with 0.05% v/v β-mercaptoethanol), briefly vortexed, and 
centrifuged for 5  min 14,000  ×  g to precipitate pectin. The 
supernatant was measured with a spectrophotometer (Abs535  nm), 
and pectin concentration was determined by comparison to a 
standard curve generated with serial dilutions of pectin. The 
concentration of pectin in a control reaction without pectinase 
and the concentration of pectin remaining in each reactions’ 
supernatant were used to calculate the percentage of pectin 
degraded. For pectinase inhibition assays, values were normalized 
to reactions without inhibitor. The pectinase inhibition assay 
was performed twice with three replicates each time. ANOVA 
and post-hoc Tukey-HSD were performed to determine statistical 
significance. Experiment was treated as a block in ANOVA.

Phytophthora spp. Growth Inhibition 
Assays
All Phytophthora cultures were kindly provided by Dr. Brian 
Bailey (USDA-ARS, Beltsville, MD). P. megakarya isolate 
Ca-ZTH0145, P. palmivora isolate Gh-ER1349, and P. tropicalis 
isolate Eq-73-73 were growth on 20% V8-agar media (Jeffers 
and Martin, 1986). As previously described (Fister et al., 2016), 
mycelium plugs from the growing edge of the colony were 
collected 2  days after culture initiation and used to inoculate 
plates for growth inhibition assays.

Assay plates (60  ×  15  mm) each contained 6  ml of media 
with either 2% (v/v) DMSO or 100  mM clovamide stock in 
DMSO (final concentration 2  mM). Two media were used for 
assays: V8-agar or Henniger/Casein/Pectin (“HenCasPec”) 
adapted from (Henniger, 1963). HenCasPec media consisted 
of (per liter): 0.4  g KH2PO4, 0.1  g CaCl2 (anhydrous), 0.1  g 
MgCO3, 0.02  g FeSO4•7H2O, 0.2  g succinic acid, 10  g glucose, 
5  g sucrose, 1  mg thiamine•HCl, 30  mg beta-sitosterol, 8  g 
casein (Sigma C7078), 1  g pectin from apple (Sigma 93854), 
and 10  g agarose. The pH was adjusted to 7.0 with KOH and 
media was autoclaved. Cultures were incubated for 68  h and 
photographed. White mycelium was not easily visible on the 
white HenCasPec media so those plates were stained with 
0.01% calcofluor (as Fluorescence Brightener 28, Sigma F3543) 
for 2 min and washed once with 1 M NaOH before photographing 
under 365  nm UV excitation. Colony areas were determined 
in ImageJ, and percent growth inhibition was calculated relative 
to the mean area of control plates for each experiment. Each 
experiment had four replicate plates and was performed twice 
with the exception of P. palmivora on HenCasPec media, which 
represents one experiment. ANOVA and post-hoc Tukey-HSD 
were performed to determine statistical significance. Experiment 
was treated as a block in ANOVA.

Untargeted Metabolomics of Fruit Peel 
Tissue: Liquid Chromatography – Mass 
Spectrometry
Fruits/pods (4–5 month old) were surface sterilized by submerging 
with 100% ethanol for 20  s and allowed to dry in a sterile hood. 

A cork borer (3  mm) was used to make a small hole in 
the pod ~5 mm deep. Inside the holes, either a sterile V8-agar 
media plug (“mock”) or a plug with P. palmivora “GhER1349” 
mycelium (“Ppal”) was inserted. Pods were incubated at 27°C 
with a 16  h/8  h light/dark cycle in a plastic bag containing 
a sterile, wet paper towel to maintain humidity. At 72  h 
after inoculation, a cork borer (3  cm) was used to delineate 
a circle around the original infection site. The agar plug 
was removed and a potato peeler was used to collect the 
disk of tissue around the site of infection to a depth of 
~0.25  cm (exocarp and ~2  mm mesocarp). Three such disks 
of tissue were collected per pod and pooled to make one 
replicate. Three replicates were collected for each treatment. 
For the “ICS1 mock” treatment, only two pods were available. 
To make a third replicate, tissue disks from pods 1 and 2 
were collected and pooled. Tissue was flash frozen in liquid 
nitrogen and extracted and analyzed by LC-MS/MS as described 
above for leaf.

The experiment was repeated to determine the effect of 
wounding. Three pods of each genotype were wounded as 
above with a cork borer and three pods were left untreated. 
Tissue was collected after a 72-h incubation (as above). Samples 
were prepared for LC-MS/MS as above, except a 20  μl:1  mg 
solvent:tissue ratio was used for metabolite extraction in 
this experiment.

Statistics
All LC-MS data were processed in XCMS Online (Tautenhahn 
et  al., 2012) using Welch’s t-test for metabolite abundance 
comparisons between groups. Student’s t-tests, ANOVA, and 
post-hoc Tukey-HSD for mean separation were performed in 
JMP® Pro 14 (SAS Institute Inc., Cary, NC, 1989–2019) or 
GraphPad Prism 8. For duplicated experiments (proteolysis, 
pectolysis, Phytophthora spp. growth inhibition), experimental 
replicate was treated as a block in ANOVA to ensure there 
was no effect of experiment before data were pooled from 
both experiments.
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