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Reactive nitrogen species (RNS), mainly nitric oxide (NO), are highly reactive molecules
with a prominent role in plant response to numerous stresses including herbivores,
although the information is still very limited. This perspective article compiles the current
progress in determining the NO function, as either a signal molecule, a metabolic
intermediate, or a toxic oxidative product, as well as the contribution of molecules
associated with NO metabolic pathway in the generation of plant defenses against
phytophagous arthropods, in particular to insects and acari.
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INTRODUCTION

Plants are in constant struggle with a variety of biotic stresses in nature that limit their survival.
Among them, phytophagous arthropods are one of the most devastating groups. These herbivores
employ specialized feeding modes to obtain nutrients causing leaf defoliation, chlorosis, biomass
destruction, growth delay, and even worse consequences under severe infestations leading to an
important negative impact in crop yields. Plants have developed sophisticated protection strategies
against herbivore combining constitutive and inducible defenses, as the result of their long
coexistence during the last 100 million years (Santamaria et al., 2013, 2018a). While constitutive
defenses are constantly present, inducible ones are just activated in response to a specific threat,
being their nature and mechanism of action directly targeted to the precise feeder and dependent
on the plant species and developmental stage. The induction of defenses starts when plasma
membrane-specific receptors (pattern recognition receptors, PRRs) recognize conserved herbivore-
associated molecular patterns (HAMPs), microbe-associated molecular patterns (MAMPs) derived
from herbivore symbionts, or damage-associated molecular patterns (DAMPs) linked to the
herbivore injury. The perception of these molecular patterns promotes downstream short-term
responses, first at the membrane level (potential depolarization, Ca2+ influxes, etc.), followed by
the generation of reactive oxygen and/or nitrogen species (ROS and RNS) as signaling molecules,
the activation of kinase cascades, and the synthesis of hormones to finally regulate the expression
of defense genes (Fürstenberg-Hägg et al., 2013; Santamaria et al., 2018a). These cues prompt a set
of defense events known as pattern-triggered immunity (PTI), by activating signal transduction
pathways to synthesize defense metabolites (Jones and Dangl, 2006; Zipfel, 2014; Santamaria
et al., 2018a). Alternatively, plant intracellular receptors identify herbivore molecules, elicitors or
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effectors, that selectively can either trigger or compromise plant
immunity altering the defense machinery. This additional
response, termed effector-triggered immunity (ETI), is
considered an amplified reaction of the PTI (Tsuda and Katagiri,
2010). Early responses take place within minutes to hours after
herbivore detection to then induce late-term responses whose
products include defensive molecules with toxic, anti-nutritive,
deterrent, or repellent properties and volatiles to attract natural
enemies of the phytophagous pest (Santamaria et al., 2018a;
Stahl et al., 2018; Erb and Reymond, 2019). The whole process is
under the regulation of a complex hormonal crosstalk between
jasmonic acid (JA), salicylic acid (SA), and ethylene (ET),
besides other phytohormones. The known antagonistic relation
between SA and JA allows a fine-tune regulation of the defense
process (Erb et al., 2012; Schmiesing et al., 2016). Generally,
JA-depending pathway is activated by chewing insects, whereas
SA regulates responses induced by sucking-feeders (Bari and
Jones, 2009; Pieterse et al., 2012), and a balance between JA/SA
modulates defenses against sucking mites (Wei et al., 2014;
Zhurov et al., 2014; Santamaria et al., 2020a).

Despite all the information available about the plant defense
against arthropods, our knowledge on oxidative and particularly
on nitrosative signaling is poorly understood. Levels of ROS and
RNS, mainly hydrogen peroxide (H2O2) and nitric oxide (NO),
increase during insect and acari infestation, and the redox status
balance in the cell determines their function since moderate
ROS/RNS concentrations differentially sense defense signaling,
but an excess of oxidative stress produces chemical oxidation and
induces programmed cell death (Foyer and Noctor, 2005; Bittner
et al., 2017; Santamaria et al., 2017, 2018b).

NO METABOLISM

Nitric oxide is clearly recognized as an intra- and intercellular
signaling molecule involved in the regulation of a huge range
of plant processes ranging from development to resistance and
defense responses to biotic and abiotic stresses (Sanchez-Vicente
et al., 2019). Two pathways coexist in plants to produce NO,
reductive and oxidative ones, involving nitrite and arginine as
substrates, respectively (Leon and Costa-Broseta, 2020; Figure 1).
Within reductive pathways, NO production arises by both
enzymatic and non-enzymatic reactions and is usually dependent
on oxygen and NO2

− concentrations. Nitrate reductase (NR),
a multifunctional cytoplasmic enzyme, whose main function is
nitrate assimilation to produce NO2

− in a NADPH-dependent
way (Campbell, 2001), also shows nitrite reductase (NR) activity,
although this represents only 1% of its reductase ability under
normal conditions (Yamasaki and Sakihama, 2000; Rockel et al.,
2002; Astier et al., 2019). NO production through the action
of NR has been demonstrated using different approaches.
The mitochondrial electron transport chain (mETC) under
anaerobic/hypoxic conditions and the xanthine dehydrogenase–
oxidase under anaerobic conditions or phosphate deficiency
may also produce NO (Wang et al., 2010; Gupta et al., 2011;
Cantu-Medellin and Kelley, 2013). On the other hand, under
specific environmental conditions, such as low pH and high

concentrations of NO3
−, non-enzymatic reduction into NO takes

place (Wendehenne et al., 2001; Bethke et al., 2004; Stöhr and
Stremlau, 2006; Fancy et al., 2017).

The oxidative pathway involves the activity of specialized
enzymes as the nitric oxide synthases (NOSs), which oxidize
L-arginine to form L-citrulline and NO, and they are well
characterized in mammals (Alderton et al., 2001). However,
controversial results about this activity have been shown in plants.
Bioinformatics approaches have shown no NOS gene/protein in
higher plants (Jeandroz et al., 2016; Hancock, 2019), excluding
some algae (Foresi et al., 2015), and the typical mammalian
NO–cGMP signaling pathway has been also questioned (widely
reviewed in Astier et al., 2019). Nevertheless, NOS-like activity
has been extensively described in plants by the use of NOS
inhibitors and even by heterologous expression of mammalian
NOS (Zeidler et al., 2004; Ali et al., 2007; Astier et al., 2018), and
the denomination “NOS-like” is adopted for this activity.

Once synthesized, NO is highly reactive, and there are three
main types of molecules that react with NO: ROS, glutathione
(GSH), and metals (Romero-Puertas and Sandalio, 2016). NO
rapidly reacts when present, with the radical superoxide (O2

−)
generating peroxynitrite (ONOO−), which is one of the most
potent oxidant molecules in the cell leading to lipid peroxidation,
protein nitration (Ischiropoulos and al-Mehdi, 1995; Radi, 2004),
oxygenated forms of cysteine (Cys) residues (sulfenic, sulfinic,
and sulfonic acids), and S-glutathionylation (Martínez-Ruiz
et al., 2013). ONOO− has been shown to be produced under
different stress conditions in plants (Romero-Puertas et al., 2007;
Arasimowicz-Jelonek and Floryszak-Wieczorek, 2019). NO can
also react with lipid peroxyl radical (LOO·) to produce nitro-fatty
acids that are related to plant development and plant response
to abiotic stress (Rubbo, 2013; Mata-Perez et al., 2017). Besides,
the reaction of NO with GSH produces nitrosoglutathione
(GSNO), which is considered an endogenous NO reservoir
(Noctor et al., 2012) and acts as an S-nitrosylating agent. GSNO is
metabolized by GSNO reductase (GSNOR) to transform GSNO
into glutathione disulfide (GSSG) and ammonia. Thus, GSNOR
controls intracellular levels of GSNO and NO and, therefore,
plant responses under different conditions (Liu et al., 2001;
Yun et al., 2016). On the other hand, globins are proteins
able to metabolize NO producing NO3

− (Perazzolli et al.,
2004; Becana et al., 2020), and consequently, these proteins can
control NO levels by detoxification or through post-translational
modification (PTM) reactions (Perazzolli et al., 2006; Figure 1).

NO MECHANISM OF ACTION:
CROSSTALK WITH ROS AND H2S

Nitric oxide reactivity leads to its main mechanism of action
being PTM of proteins, which are carried out by a series
of RNS produced by the reaction of NO with other free
radicals as described before. PTMs best studied in plants are:
(i) S-nitrosylation/S-nitrosation, referred to the formation of
a nitrosothiol group in cysteines, with more than thousand
targets described in plants, although a small number have been
characterized (Sanchez-Vicente et al., 2019; Sandalio et al., 2019);
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FIGURE 1 | Schematic overview of NO sources and pathways in a plant cell and a heatmap of NO-associated genes expressed in the subcellular locations of
A. thaliana after spider mite feeding. The diagram shows the main sources and pathways of NO (black arrows) including both oxidative and reductive pathways, the
main scavengers (pink arrows) including superoxide ion, GSH, and hemoglobins, and the main NO mechanisms of action (orange arrows). Discontinued lines
represent the mechanisms not experimentally demonstrated. A heatmap showing transcriptomic data of NO-associated genes from A. thaliana at different
infestation times (30 min, 1, 3, and 24 h) with T. urticae is comprised within bubbles, positioned over the subcellular compartment where genes are expressed
according to SUBA predictions, with a score ≥0.5. IAA, indole-3-acetic acid; IBA, indole-3-butyric acid; GSH, glutathione; GSNO, S-nitrosoglutathione; GSNOR,
S-nitrosoglutathione reductase; Hbs, hemoglobins; L-Arg, L-arginine; mETC, mitochondrial electron transport chain; NR, nitrate reductase; NO, nitric oxide; NOS-L,
nitric oxide synthase-like; NOA, NO-associated protein; P-NO, nitrosylated protein; P-N-Tyr, nitrated protein; P-SNO, S-nitrosylated protein; PTMs, post-translational
modifications; XOR, xanthine oxidoreductase.

(ii) nitration, being mainly studied the addition of a nitro
group to Tyr side chain, with more than hundred targets
described and only a dozen characterized (Rubbo and Radi, 2008;
Sanchez-Vicente et al., 2019), and (iii) nitrosylation of transition
metals, with the formation of complex bonds to heme groups
(Martinez-Ruiz and Lamas, 2009), scarcely studied in plants. NO-
dependent PTMs result in the induction of different physiological
responses and/or signaling processes as alteration of gene
expression, metabolic changes, and phytohormone signaling.
Furthermore, NO may regulate other signaling pathways, such
as phosphorylation, oxidation, and ubiquitinylation (Cui et al.,
2018; Leon and Costa-Broseta, 2020; Lindermayr et al., 2020).
Therefore, the ability to regulate virtually all processes in the plant
makes NO a do it all molecule (Delledonne, 2005).

Post-translational modification regulation of proteins is quite
complex, however, due to the synergistic and antagonistic
interplays between the different PTMs (Sandalio et al., 2019).
Overlapping of different PTMs on the same protein is very
often and follows common pattern in different species, which
demonstrate the importance of multilevel PTM regulation in
cell metabolism (Duan and Walther, 2015). NO crosstalk with
other signaling molecules, such as the well-known ROS and
the lesser-known sulfide (H2S), leads to an interplay between
redox-dependent PTMs being targets the sulfur-containing
amino acids, such as cysteine. Thus, the first step in Cys
oxidation is S-nitrosylation while the main ROS involved in
signaling, H2O2, leads Cys to the following steps, its reversible
oxidation to sulfenic acid (–SOH; sulfenylation) and sulfinic acid
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(–SO2H; sulfinylation). Excessive ROS accumulation gives rise to
the irreversible sulfonic acid (–SO3H; sulfonylation) derivative
(Young et al., 2019). S-nitrosylation, sulfenylation, sulfinylation,
and intra- and intermolecular disulfide bond formations are rapid
and reversible mechanisms to regulate protein function, stability,
and location of proteins (Sandalio et al., 2019; Young et al.,
2019). Due to their transient nature, these sulfur modifications,
which can be reversibly reduced by thioredoxin and glutaredoxin
pathways, are regarded as redox switches, giving rise to rapid
finely tuned regulation of metabolic pathways and signaling
processes (Sandalio et al., 2019; Young et al., 2019). H2S, involved
in regulating various processes essential for plant survival, has
been demonstrated recently to be a signaling molecule in the
same degree of NO and H2O2 in plant systems (Gotor et al.,
2019; Hancock, 2019). The mechanism of action of H2S is related
with its high affinity for metals from metalloproteins, but it
also can oxidize Cys thiol groups to persulfide groups (R-S-SH)
promoting covalent PTMs termed persulfidation, which could
play a protective role for thiols against oxidative damage (Gotor
et al., 2019). Interestingly, RNS and ROS levels are regulated by
the interplay between ROS-, H2 S-, and NO-dependent PTMs.
Curiously, S-nitrosylation prevents ROS-dependent oxidative
damage to several proteins involved in the Calvin–Benson
cycle, probably by inducing conformational changes in specific
proteins (Tanou et al., 2012). Crosstalk between NO and H2S
has been reported in acclimation processes in citrus plants
(Molassiotis et al., 2016). On the other hand, antagonistic
interplay between protein Tyr nitration and phosphorylation
competing for the same Tyr sites has been reported, interfering
with different cellular processes, such as cell signaling via MAP
kinase cascades (Arasimowicz-Jelonek and Floryszak-Wieczorek,
2019). Although several proteins have been shown as targets
of NO-dependent PTMs under different stress conditions, in
particular, plant–herbivore interaction is a field that needs to be
better explored.

NO IN PLANT–HERBIVORE
INTERACTIONS

Some publications have described the rapid accumulation and
participation of NO as a common feature to insect-infested plants
(Table 1). Different arthropods including hemipteran (Smith and
Boyko, 2007; Moloi and van der Westhuizen, 2009; Liu et al.,
2011; Mai et al., 2014; Wozniak et al., 2017; Li et al., 2019;
Xu et al., 2020) and lepidopteran species (Arimura et al., 2008;
Bricchi et al., 2010) cause a rapid and transient increase of
NO levels in insect-damaged tissues. However, its physiological
significance remains to be established. NO has not been linked
to Vm depolarization as H2O2 has, but it has been related to
Ca2+ homeostasis and cGMP signaling (Wu and Baldwin, 2009;
Misra et al., 2011). Thus, it could exert its biological function
through the mobilization of secondary messengers or by the
modulation of protein kinase activity. NO interacts with ROS
and phytohormones (Mur et al., 2013) and, in consequence, may
indirectly act as regulator of the gene expression. In addition, the
PTM of proteins mediated by NO, described above, may have

potential regulatory effects in plant defense against herbivores
as it does toward plant pathogens (Mur et al., 2006; Martinez-
Medina et al., 2019).

In seedling leaves of pea (Pisum sativum), Mai et al. (2014)
described the convergence of NO and H2O2 accumulation with
the induction of JA, ET, and SA, hormones that sequentially
appeared within the first 24–96 h after the aphid Acyrthosiphon
pisum feeding. The simultaneous generation of hormones and
free radicals at the same time points suggested a synergistic
defense action in pea plants to aphid infestation. Moreover, the
application of exogenous NO donors (NO, GSNO, and SNP,
sodium nitroprusside) to pea plants infested with A. pisum
revealed the induction of defense reactions leading to a deterrent
result on the pea aphid feeding and the reduction in its
population growth (Wozniak et al., 2017). A side effect of SNP
treatment is the release of cyanide, a potent respiratory poison
with a deterrent effect on phytophagous arthropods who try to
elude it or detoxify (Pentzold et al., 2014; Keisham et al., 2019).
Campbell and Vallano (2018) analyzed the effects of atmospheric
NO2 leaf uptake on tobacco (Nicotiana tabacum) metabolism and
its impact in the tobacco responses to the lepidopteran Manduca
sexta. Results showed that the foliar assimilation of NO2
increased the nitrogen-derived defensive metabolites, particularly
of some alkaloids, and diminished insect feeding and growth.
To avoid this defense mechanism, herbivore modified somehow
the plant capacity to absorb the reactive nitrogen, prompting a
decrease in foliar nitrogen uptake and limiting the concentration
of metabolites in leaves. Moreover, accumulating evidences
indicate that an interactive fashion of phytohormones and NO
regulates guard cell ABA-signaling and stomatal closure, which
restricts the foliar uptake of NO2 (Sun et al., 2019). In turn, only
few available reports have demonstrated the function of enzymes
and other molecules associated with NO metabolic pathway
in the generation of plant defenses to pests. Li et al. (2019)
showed that the NO production in rice (Oryza sativa) plants was
associated with their responses to Nilaparvata lugens infestation,
in both susceptible and resistant cultivars. The rice planthopper
feeding induced the activity of the NOS-like enzyme only in
the susceptible cultivar, whereas no significant alterations of the
NR enzymatic activity were observed, in none of the two rice-
infested cultivars. These results suggested the active role of NOS
in rice defense mediated by NO. Likewise, Wünsche et al. (2011a)
examined the function of the GSNOR enzyme in the plant–
herbivore interaction by knocking-down GSNOR in Nicotiana
attenuata plants. A decrease in JA and ET levels in the silenced
plants was observed concomitant to an elevated susceptibility
to M. sexta attack. Accordingly, the GSNOR-silenced tobacco
plants showed a significant reduction of the trypsin proteinase
inhibitor activity and in the diterpene glycosides content, both
considered secondary defensive metabolites dependent on the
JA derivatives. Wünsche et al. (2011b) also proved that the
N. attenuata NO-associated protein 1 (NOA1) was required for
the accumulation of JA and JA-Ile and the generation of defenses
againstM. sexta. NOA1-silenced tobacco plants compromised the
production of most of the carbon-based defensive compounds
while the synthesis of nitrogen-rich defense metabolites was not
altered. These results were probably due to the role of NOA1
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TABLE 1 | Participation of NO and NO-related enzymes in the plant defenses against phytophagous insects.

Species Description Effects References

Plant Herbivore

Several species Several aphids Infestation Accumulation of NO Smith and Boyko (2007)

Phaseolus lunatus Spodoptera littoralis Infestation Accumulation of NO Arimura et al. (2008)

Triticum aestivum Diuraphis noxia Infestation Accumulation of NO Moloi and van der Westhuizen (2009)

Phaseolus lunatus Spodoptera littoralis Infestation Accumulation of NO Bricchi et al. (2010)

Oryza sativa Nilaparvata lugens Infestation Accumulation of NO Liu et al. (2011)

Induction of NOS activity

Nicotiana attenuat a Manduca sexta Infestation of GSNOR knock-down Reduction of JA and ET Wünsche et al. (2011a)

Reduction of trypsin proteinase inhibitor activity and
diterpene glycosides

Nicotiana attenuata Manduca sexta Infestation of NOA1 Knock-out Reduction of carbon-based defensive molecules Wünsche et al. (2011b)

Pisum sativum Acyrthosiphon pisum Infestation Accumulation of NO, H2O2, JA, SA, and ET Mai et al. (2014)

Pisum sativum Acyrthosiphon pisum Infestation and application of NO donors Accumulation of NO Wozniak et al. (2017)

Induction of defensive molecules (phenylalanine
ammonia lyase and pisatin)

Nicotiana tabacum Manduca sexta Infestation Induction of nitrogen-derived defensive metabolites
(alkaloids)

Campbell and Vallano (2018)

Decrease in foliar N-uptake

Oryza sativa Nilaparvata lugens Sogatella furcife ar Infestation of MAPK20-5 Knock-out Accumulation of NO and ET Li et al. (2019)

Nicotiana tabacum Bemisia tabaci Infestation of NOA1 knock-out Accumulation of NO Xu et al. (2020)

Suppression of JA-dependent defenses
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in plant chloroplast functions and in the allocation of carbon
resources within phenylpropanoid pathway (Wünsche et al.,
2011b). Very recently, Xu et al. (2020) have demonstrated that
the hemipteran Bemisia tabaci infestation activated NO signaling
in tobacco, leading to suppression of JA-dependent defenses
and improving nymph performance. Additionally, they have
confirmed the NOA1 involvement in the JA-mediated responses
to B. tabaci.

The mechanism by which NO mediates the enhancement of
plant defenses against pests is still poorly studied, but a recent
publication by Li et al. (2019) has linked a mitogen-activated
protein kinase, OsMAPK20-5, to NO production in N. lugens-
infested rice plants. The OsMAPK20-5 gene expression was up-
regulated by female adult feeding, which presumably could be a
response to oviposition. Surprisingly, the levels of NO and ET
increased after insect feeding in the OsMAPK20-5-silenced plants
and consequently improved rice resistance to brown planthopper
and oviposited eggs. According to the authors, OsMAPK20-5
could enable rice plants to control excessive hyperaccumulation
of NO and ET and thereby to prevent autotoxicity. Importantly,
in field trials, MAPK20-5-silenced rice lines displayed a wide
protection not only to the N. lugens but also to the white-
backed planthopper Sogatella furcifera. Therefore, NO could
mediate defense responses in plants against pests acting as a signal
molecule, a metabolic intermediate, or a toxic oxidative product.

Since no information on the NO’s role in the interplay between
plant and phytophagous acari was available, we did a search of
NO-related genes in the RNA sequencing of Arabidopsis thaliana
in response to the spider mite Tetranychus urticae after 30 min,
1, 3, and 24 h of feeding (Supplementary Material; Santamaria
et al., 2020b). Nineteen NO-associated genes, mainly encoding
nitrate transporters, NRs, and nitrilases, were differentially
expressed at different time points of infestation. Nitrate
transporters showed different expression patterns based on their
subcellular in silico location. Generally, those transporters located
at the cytoplasmic membrane were rapidly induced by mite
infestation, followed by the ones located at the vacuole. NIA1
and NIA2 genes that encode RNS were highly up-regulated at
30 min after mite feeding but were repressed at 24 h. Glutathione
synthetase 2 (GSH2) gene putatively located at the chloroplast
and cytosol and arginine amidohydrolase 2 (ARGAH2) gene
product located at the mitochondria presented the opposite
expression pattern being induced at longer infestation time
(Figure 1). These differential expression profiles are according
to the consecutive steps of plant defense to mite attack since
after mite perception, signaling is first activated at the cell
membrane level and then transmitted through the cytosol to the
rest of the organelles to finally induce the expression of defensive
genes. In addition, the identified genes were classified into five

different over-expressed categories based on their Gene Ontology
(GO) biological function, all of them related to RNS metabolic
processes (Supplementary Table 1). These data suggested their
functional significance during T. urticae infestation. Further
studies are needed to clarify the NO and NO metabolic pathways
in the plant defenses against acari feeders.

In conclusion, the current information on how plant responses
are regulated by NO and NO-related molecules constitutes still a
set of unknown events to be explored, particularly, in the plant–
acari interplay. An advanced understanding of the NO function
in plant–herbivore interactions will be a strong tool to enhance
crop performance and potentially lead to biotechnological
approaches for pest control in agricultural systems.
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