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Wine grape (Vitis vinifera L.) is the most widely cultivated fruit crop in the world.

However, the climactic characteristics in some growing regions are suboptimal for grape

production, including short season length and excess precipitation. Grape growers can

utilize an array of methods to mitigate these issues, including “early leaf removal,” a

management practice involving the removal of leaves from selected basal nodes along

shoots around bloom. This meta-analysis reviews the extensive literature on this practice,

with specific regards to application at “pre-bloom” (PB). One hundred seventy-five

publications on the topic of “early leaf removal” were identified using key terms and

subsequently narrowed via eight data curation steps. The comparison between treated

(PB) and control plants in these studies revealed two important results. First, PB lowered

bunch rot disease (−61%), partially through reducing the compactness of clusters.

Second, PB promoted a significant increase in fruit total soluble solids (◦Brix, +5.2%),

which was related to the increase in the leaf-to-fruit ratio. Furthermore, cultivar and

rootstock were found to have a large influence on the success of PB, while the

contribution of climate was smaller. In conclusion, PB significantly lowers yield and bunch

rot disease and increases ◦Brix, both of which improve grape and wine quality.

Keywords: bunch rot, canopy management, defoliation, fruit quality, grapevine, rootstock

HIGHLIGHT

- A meta-analysis of 59 publications revealed that the wine grape management practice
“pre-bloom leaf removal” consistently decreased bunch rot disease, yield, and cluster
compactness while improving fruit sugar concentrations.

INTRODUCTION

Grapevines are among the most intricately managed food crops due to their sensitivity to external
and internal factors, such as the environment and source–sink relations (Kliewer and Dokoozlian,
2005). The interaction between internal and external factors has given rise to the notion of
“terroir,” unique to viticulture and enology (Van Leeuwen, 2010). Several viticultural practices
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are utilized to align vine growth, vine development, and fruit
ripening (internal factors) with environment conditions (external
factors). One such practice is “leaf removal,” otherwise referred
to as “defoliation” or “leaf thinning.” Leaf removal is a technique
that involves the removal of a select number of leaves that cover
the fruiting region along shoots (Poni et al., 2006). This allows
for a more open fruit-zone microclimate, which can lead to
numerous production and fruit quality benefits.

Using the Eichhorn-Lorenz grape phenology scale as a
reference (Coombe, 1995), the two most researched times of leaf
removal application are (1) “early,” which includes application
from “pre-bloom” (E-L 17, flower caps on) through “bloom” (E-
L 23, flower caps off) and “fruit set” (E-L 27, berries >2mm), as
well as (2) “late,” which centers around “veraison” (E-L 35, berry
ripening initiation).

The primary objective of early leaf removal practices is
the mitigation of yield loss from cluster rot diseases, such
as gray mold (Botrytis cinerea) and sour rot, particularly in
compacted cluster varieties (Poni et al., 2017). In warm/hot, dry
growing regions, gray mold is more prominent. Gray mold is a
necrotrophic fungus ubiquitous to crops and particularly fruit
production (Ky et al., 2012). It initially infects fruit from the
surface, followed by degradation of subtending tissues, leading to
a loss of yield while compromising quality-related metabolites,
such as organic acids, phenolics, and volatiles. In cool/warm
regions that receive high volumes of precipitation during the
fruit ripening period, sour rot is the more problematic form
of bunch rot disease. The bacteria and yeast comprising the
sour rot complex convert the fruit sugars (glucose, fructose)
into acetic acid and other metabolites, such as acetaldehyde,
galacturonic acid, gluconic acid, ethanol, ethyl acetate, and
glycerol (Zoecklein et al., 1995). Increases in the concentration of
acetic acid engenders a noticeable “vinegar” flavor to wines made
from these fruits, thus lowering quality and value.

The second major objective of early leaf removal is to enhance
fruit and wine quality (Tardaguila et al., 2010; VanderWeide et al.,
2018). Crop load regulation is required in specific regions to meet
yield standards in some prominent production regions, such
DOCG in Italy or AOC in France. Additionally, in warm/hot,
dry growing regions, the yield of highly fruitful cultivars must
be reduced to maintain vine balance, and early leaf removal
provides an effective tool to achieve targeted crop levels. This,
in turn, leads to an improvement in both basic fruit quality
components as well as total anthocyanins (Tardaguila et al.,
2012; Poni and Gatti, 2017; Silvestroni et al., 2018). In addition
to crop level, the capacity of a grapevine to produce “high-
quality” fruit is related to seasonal accumulation of growing
degree days (GDDs). Cool/warm regions are defined by lowmean
day temperatures, while the low GDDs experienced by vineyards
in cool regions can also hinder the accumulation of hexoses in
fruit (Liang et al., 2014).

Leaf removal at pre-bloom consistently induces a reduction
in fruit set in both red and white cultivars (Poni et al., 2009;
Sabbatini and Howell, 2010; Tardaguila et al., 2010; Molitor
et al., 2011; Acimovic et al., 2016). Carbon deprivation from leaf
removal at this stage impacts meiosis in inflorescence, reducing
the flow of hexoses and decreasing flower fertility (Lebon et al.,

2004). The severity of leaf removal at either pre- or after-
bloom greatly affects fruit set, as well as developmental processes
throughout fruit ripening. Using Pinot noir (Vitis vinifera L.),
Acimovic et al. (2016) evaluated the response of removing 4,
6, 8, or 10 leaves. They reported that the removal of six and
eight leaves only induced the desired effect on reducing fruit set
and improving fruit quality. Removal of 4 leaves had little to no
effect, while 10 leaves induced a severe carbon stress on vines,
decreasing yield below an economical viable threshold (Acimovic
et al., 2016). This decrease in fruit set lowers the compactness
of clusters, which has significant impact on gray mold (Gubler
et al., 1991; Palliotti et al., 2011; Sivilotti et al., 2016) and sour rot
(Zoecklein et al., 2000; Mosetti et al., 2016; Sivilotti et al., 2016).

An increase in total soluble solids (TSS) was observed in
fruit subjected to pre-bloom leaf removal when compared to
the undefoliated control (Poni et al., 2006; Zenoni et al., 2017),
while some results were mixed between treatments and years
(Acimovic et al., 2016). Mixed results were seen for alterations
in pH and titratable acidity (Intrieri et al., 2008; Acimovic
et al., 2016; Zenoni et al., 2017). Pre-bloom leaf removal’s effect
on total phenolics is inconsistent, with some studies observing
a consistent increase compared to the control (Poni et al.,
2006; Intrieri et al., 2008) and others reporting no differences
(Talaverano et al., 2016). Themajority of publications reported an
increase in anthocyanins with pre-bloom leaf removal compared
to the control (Poni et al., 2006; Lee and Skinkis, 2013; Pastore
et al., 2013; Zenoni et al., 2017), while some results were mixed
between years, treatments, or varieties (Tardaguila et al., 2010),
and some reporting no differences in all years and treatments of
experimentation (Lee and Skinkis, 2013; Acimovic et al., 2016;
Sivilotti et al., 2016).

Previous reviews in viticulture have focused on grapevine
management practices (Smart, 1985), with some devoting space
to this practice (Poni et al., 2017). Still others have reviewed
the practice of early leaf removal within a specific region
(Verdenal et al., 2019) or with a particular focus on aroma
biosynthesis (Wang et al., 2018; Alem et al., 2019). However, no
review or meta-analysis has been published in the literature that
approaches the impact of early leaf removal on major production
and quality traits. The objectives of this meta-analysis were 2-
fold. The first objective was to understand whether pre-bloom
leaf removal has a consistent impact on production and fruit
quality parameters regardless of differences in climate, cultivar,
rootstock, vine age, or berry color. The second objective was
to assess whether factors, such as climate, cultivar, rootstock,
vine age, or berry color influence the success of pre-bloom leaf
removal on production and fruit quality parameters. This meta-
analysis seeks to confirm the collective hypotheses generated
from publications in this field in order to direct future research.

MATERIALS AND METHODS

Data Collection
A literature review was performed to identify works published
from January 1985 to May 2020 in peer-reviewed scientific
journals and conference proceedings that focused on the topic
of early leaf removal in grape. MS Thesis and Ph.D. Dissertations
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FIGURE 1 | Flowchart demonstrating the data collection, data curation, and data inclusion process utilized in this meta-analysis.

were not included. We used search terms of “defoliation grape”
and “leaf removal grape” in Google Scholar and Web of Science
to identify works for inclusion. A total of 175 publications were
identified that involved the removal of leaves in grape.

Data Curation
Publications were maintained for further statistical analysis
according to Figure 1.

The exclusion of publications to fit these seven criteria resulted
in 59 studies (Supplementary Figure 1). In some cases, data from
the same experiment (observation/s) were presented in multiple
publications, and when this occurred, the duplicate/s of these
data were eliminated from analysis. In cases where all desirable
data from a study was present in a previous publication, the

more recent study was excluded. “Training system” and “Species”
were originally considered as categorical variables; however, only
two publications in our curated set included vines not trained
to a vertical shoot positioning trellis system and two with vines
that were not vinifera species, so they were maintained without
further categorization. For each publication, in case that desired
data were only present in figures, ImageJ software (Version 1.51e)
was utilized to extract data points when the treatments from the
respective publication were distinguishable. In the case of “yield,”
“cluster compactness index,” “bunch rot incidence,” “bunch
rot severity,” “total anthocyanins,” and “total phenolics,” unit
representation of some parameters was heterogeneous between
studies. When possible, data were converted to a common unit.
For “yield,” “shoot number per vine” data were used to convert
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“yield/shoot” to “yield/vine,” and “vine density” data were used
to convert “yield/meter (row length)” to “yield/vine.” In the case
of “total anthocyanins” and “total phenolics,” data were converted
to “mg/100 g (fresh weight).” In the case that multiple acceptable
units were presented in a publication, all were included. Such
was the case only for “cluster compactness index” and “bunch rot
incidence/severity.” In two instances, severe outliers that could
be attributed to a miscalculation in the publication were deleted
prior to analysis. This was the case for “total phenolics (mg/100 g)
FW berry” (VanderWeide et al., 2018) and “total phenolics (AU)”
(Frioni et al., 2018).

Climate Data
Thirty years climatological normals data were obtained from
several meteorological agencies with long-term, monthly
climate normals for temperature and precipitation (NCDC
2020, MeteoSwiss 2020, DataMeteo 2020, Agencia Estatal de
Meteorologia 2020, Hydrological and Meteorological Service of
Montenegro 2020) for each location included in this study. In
most cases, weather data were available for the study location.
However, there were a few locations that did not have data, as the
location was not located in a specific “town.” As such, the nearest
station with similar conditions (elevation, windward/leeward
dynamics) was used. The alternative stations were never more
than 15 km away from the research location.

The climate data obtained allowed us to separate observations
into four types: Climate 1 (hot), Climate 2 (warm/dry), Climate
3 (warm/wet), and Climate 4 (cool). The delineations between
each cluster were based on average growing season temperature
(GST) and average total precipitation. Climate 1 points included
all study locations with average GSTs above 20◦C. Climate 4
points included all study locations with average GSTs below 16◦C.
Climates 2 and 3 have temperatures between 16 and 20◦C and
are delineated by having more or <500mm precipitation (the
median for all location precipitations was 462mm). It should be
noted that these delineations serve as cutoffs for the data points
we have acquired for this study. Temperature is based roughly on
the breakdown of climatic classes by Jones (2007). The 500-mm
precipitation cutoff for Climates 2 and 3 exists to differentiate
between the largest pool of climates (38). This cutoff was deemed
necessary because, if it did not exist, this study would consider
Oslavia, Italy (17.9◦C, 851mm) the same climate classification as
Erzcinan, Turkey (17◦C, 187 mm).

Statistical Analysis
Among the 59 publications used for analysis, few reported the
standard error for all the parameters included in this study.
Given this, the variable errors within each experiment were not
accounted for. For all dependent variables, power was calculated
using the G∗Power Software (version 3.1.9.7). For dependent
variables (Supplementary Table 2, Figures 4–6), an independent
samples t-test (p = 0.05) was used to compare pre-bloom leaf
removal treatments against the untreated control using IBM
SPSS software (IBM, Armonk, NY, USA). When parameters were
expressed as a percentage, the multiple acceptable units for each
parameter were combined. In the case that multiple forms of a
parameter existed in a publication (“cluster compactness index,”

“bunch rot incidence/severity”), both were included, and the
data from the remaining parameters doubled. Factor analysis of
mixed data (FAMD) was conducted using R version 3.6.2 (R Core
Team, 2016). For FAMD, our data set contained multiple missing
data points. To account for this, we utilized the missMDA R
package by Josse and Husson (2016) that analyzes incomplete
data sets for underlying data structures. We also performed an
imputation of the missing data values and reanalyzed the data set
usingmissMDA to confirm the data structure. Figures 2A,Bwere
generated using Sigma Plot ver. 11.0 (Systat Software, Inc.) and R.

RESULTS AND DISCUSSION

Study Location and Number
Leaf removal (early and late) has been studied as an approach for
mitigating major wine grape production issues for ∼2 decades
(Figure 2). The first studies on this topic were conducted in
the late 1980s and early 1990s and focused on application at
the fruit-set stage (E-L 27) (Coombe, 1995) when fruit are
∼4–6mm in diameter. In 1988, Bledsoe et al. were the first
to show that leaf removal at fruit set could increase sugar
concentrations (total soluble solids, TSS) in fruit while decreasing
acidity in California’s dry climate (Bledsoe et al., 1988). Soon after,
additional publications reported that this practice performed
at the same timing greatly decreased the incidence of Botrytis
cinerea (English et al., 1989; Gubler et al., 1991). Given that
disease pressure is higher in more humid climates, researchers
in these regions sought to understand whether performing
this practice earlier (pre-bloom) to alter cluster architecture
could further reduce bunch rot disease. This is reflected by the
number of studies focusing on the pre-bloom timing occurring
more recently in the last 10–15 years (Figure 2). With our
data curation steps considered, Poni et al. were the first to
characterize the response of pre-bloom leaf removal using the
“Trebbiano” cultivar in a peer-reviewed journal (Poni et al.,
2006). They revealed that this practice significantly reduced
bunch rot incidence and increased total soluble solids (TSS)
concentrations in the fruit at harvest.

Leaf removal implemented prior to (or during) bloom
has now been tested in many growing regions throughout
the world (Figure 3A), with the majority of studies being
conducted in the United States, Italy, and Spain (Figures 3B,C).
Since the mid-2000s, multiple researchers have thoroughly
tested this approach in growing regions, which are represented
in Figure 3. These include the following: Ollauri (La Rioja)
and Badajoz (Extremadura), Spain; Bologna, Perugia and
Ragusa, Italy; Benton Harbor, Michigan; Northwest Oregon
(Willamette Valley); and Shenandoah Valley, Virginia. With the
exception of Badajoz (Climate 1) and Perugia (Climate 2),
these growing regions share a similarity of producing wine
grapes in an environment receiving low accumulation of heat
units (GDD) and/or environments receiving high volumes
of precipitation (Climates 1 and 3) (Supplementary Table 1,
Supplementary Figure 1). This is reflective of two major
objectives for performing pre-bloom leaf removal: reducing
bunch rot disease and enhancing fruit ripening.
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FIGURE 2 | (A) Publication number per year and (B) total publication number obtained from database searches between January 1985 and May 2019. No

publications were identified prior to 1988. Data from 2020 (hollow circle) does not encompass the entire year (January–May) and is not included in regression analysis.
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FIGURE 3 | Dot plot heatmap depicting the location of studies meeting meta-analysis criteria (Table 1) in the (A) world, (B) United States of America, and (C) Europe.

Heatmaps represent the number of experimental observations included from each location.

Effect of PB Leaf Removal on Production
Parameters
The leaf area removed from plants with the PB treatment
ranged from 30.7 to 96.0%, with an average of 61.6% (data not
reported). Although there is a large variation in floret sensitivity
to abscission among grape cultivars (Lebon et al., 2004), PB
led to a significant reduction in yield per vine (Figures 4, 6,
Supplementary Table 2). This is due to the decrease in fruit set
that occurs when a large percentage of the carbohydrate source
(leaves) is removed from the plant during the period of strong
vegetative growth, drastically reducing the carbon portioning to
the reproductive organs (Frioni et al., 2018). The decrease in
fruit set corresponded to a significant reduction in yield (26%)
in response to the PB treatment (Figure 4). In Table 1, yield is
highlighted as a production parameter having one of the most
consistent alterations by PB, at 80%. The similarity in yield
reduction from a wide range of percentage of leaf area removed
is due to translocation of carbohydrates from shoots having a
surplus of carbohydrates to those with a deficit to support fruit set

(Frioni et al., 2019). This suggests that the leaf area of the whole
vine is important for dictating fruit set and yield reduction and
not just the leaf area of individual shoots.

Also relating to the reduction in fruit set, Cluster Compactness

indices (CCI2, CCI3) were significantly decreased at a high rate
of 68 and 82%, respectively (Table 1). Meanwhile, CCI1 reported

only 50% of observations as significantly altered (Table 1).

The differences observed in CCI parameters suggest varying
sensitivities of the indices for detecting fruit-set alteration and,
consequently, modifications of morphological characteristics of
the clusters. Although CCI3 was the most sensitive among the
indices at detecting modifications to cluster morphology, this
method is highly subjective; fruit compactness is visuallymatched
to a 6-point scale. Therefore, we suggest that CCI2 should be
utilized in future studies that measure this parameter, as it is both
a more sensitive metric than CCI1 and a more rapid approach.
CCI describes the “openness” of the cluster, which is greatly
enhanced as a result of floret abscission (Tello and Ibáñez, 2018).
This decrease in compactness positively impacts the quality of
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FIGURE 4 | Violin plot displaying the impacts of pre-bloom leaf removal on yield, vine balance (LAY), cluster compactness, and bunch rot parameters. Red circles

represent significant outliers in data sets. C, non-defoliated control; PB, pre-bloom leaf removal treatment; CCI, cluster compactness index; LA, leaf area. *p < 0.05;

***p < 0.001.

fruit, as an “open” cluster is more resistant to bunch rot disease
(Table 1 and Figure 4) (Hed et al., 2009).Wind speed through the
fruit zone is increased by three to four times after PB leaf removal
(English et al., 1989). As a result, the evaporative potential of
water from the fruit surface is higher, preventing water from
collecting on the fruit surface (Acimovic et al., 2016). This is
the reason for the consistent reduction (62 and 60%) in bunch
rot incidence (BRI) and bunch rot severity (BRS), respectively.
The identical rate of significant observations for both BRI and
BRS highlight the viability of either parameter as a suitable index
for estimating changes in bunch rot disease infection (Table 1
and Figures 4, 6). In addition to significantly decreasing BRI
and BRS, PB leaf removal greatly narrowed the distribution of
the data when compared to the non-defoliated control (C), the
undefoliated treatment (Figure 4). This suggests that a threshold
exists whereby continuing to decrease fruit set has no additional
impact on lowering disease pressure.

Effect of PB Leaf Removal on Fruit Quality
Parameters
Most studies focusing on pre-bloom leaf removal (PB) prioritize
basic fruit quality components (TSS, pH, TA) over that of
secondary metabolite parameters (ANT, PHE) (Table 1). TSS was

the only quality parameter that reported a significant change in
response to PB treatments (Figure 5, Supplementary Table 2).
This could be attributed to the significant decrease in yield
or bunch rot disease (Figures 4, 6, Supplementary Table 2).
However, the combination of multiple factors is likely to drive the
increase in fruit sugar concentration at harvest reported by the

studies. In this meta-analysis, TSS increase was not shown to be

explicitly related to the yield reduction (Figure 7A), as has been
suggested in some studies (Xi et al., 2018). Instead, decreased
yield promotes a greater ratio between leaf area and yield (LAY),
which has been used an index of vine balance, shown to be
more related to fruit quality parameters than vine crop level in
several previous studies (Kliewer and Dokoozlian, 2005; Pastore
et al., 2011; Sivilotti et al., 2020). This is also the case here in
our elaboration of data from the available literature (Figure 7A).
It is worth noting that the increase in LAY is not solely due
to the decrease in yield. Numerous studies show that removing
leaves prior to bloom in the fruit zone leads to a stimulation
of lateral leaf growth, leading the significantly larger leaf area
in PB vines at harvest (Poni et al., 2006, 2009). Although LAY
was increased by 12.7%, it was not significantly altered from C
(Figures 4, 7A, Supplementary Table 2). This is likely related to
the variability and inconsistency among the methods used to
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TABLE 1 | Listing of parameters, variable type, and number of observations (comparing C and PB).

Acronym Parameter Variable Total observationsa Significant observationsb

DEPENDENT VARIABLES

Yield Yield (kg/vine) Production 103 82 (80%)

LAY Leaf area/Yield (cm2/g) Production 62 19 (31%)

BW Berry weight (g) Production 97 39 (40%)

CCI1 Cluster Compactness Index (berry number/cm2 ) Production 20 10 (50%)

CCI2 Cluster Compactness Index [berry weight (g/cm2)] Production 19 13 (68%)

CCI3 Cluster Compactness Index (OIV visual rating) Production 33 27 (82%)

BRI Bunch rot incidence (%) Production 26 16 (62%)

BRS Bunch rot severity (%) Production 20 12 (60%)

TSS Total soluble solids (◦Brix) Fruit quality 108 56 (52%)

pH pH Fruit quality 102 25 (25%)

TA Titratable acidity (g/L) Fruit quality 105 34 (32%)

ANT1 Total anthocyanins (mg/100 g) FW skins Fruit quality 14 7 (50%)

ANT2 Total anthocyanins (mg/100 g) FW berry Fruit quality 73 44 (60%)

PHE1 Total phenolics (mg/100 g) FW skins Fruit quality 15 8 (53%)

PHE2 Total phenolics (mg/100 g) FW berry Fruit quality 53 34 (64%)

PHE3 Total phenolics (Absorbance Units) Fruit quality 12 4 (33%)

CATEGORICAL VARIABLES

BC Berry color – 136 –

CL Climate – 136 –

CUL Cultivar – 136 –

RS Rootstock – 123 –

VA Vine age (years) – 121 –

aNumber of observations comparing between C and PB.
bNumber of observations where PB was significantly larger or smaller (p < 0.05) than C.

calculate the leaf area partitioning of this metric. Additionally,
the contribution of decreased BRI and BRS to increasing TSS is
realized in this study (Figure 7A). However, it is challenging to
explicitly link these parameters, as one form (sour rot) decreases
sugar concentrations, while the other (gray mold) increases it
(VanderWeide et al., 2020), and it was not possible to distinguish
between both forms of bunch rot in this analysis.

Interestingly, PB leaf removal altered secondary metabolites,
namely, anthocyanins (ANT) and phenolics (PHE), to a
greater percent than TSS (Figure 6) but were not significantly
modulated from the C (Figures 5, 6, Supplementary Table 2).
This is likely due to the large variability that exists in total
anthocyanin and phenolic concentrations between cultivars
(Mattivi et al., 2006), as well as the many different extraction
protocols and chromatography/spectroscopy methods used for
the quantification of the metabolites (De Beer et al., 2004).
Specifically, ANT1, ANT2, PHE1, PHE2, and PHE3 had 9-, 41-,
4-, 72-, and 10-fold differences in concentrations between the
smallest and largest data points, respectively.

In many studies, ANT and PHE concentrations were
expressed in both mg/tissue and mg/berry. In the case of ANT
and PHE, calculation on amg/berry basis (ANT2, PHE2) resulted
in a more consistent alteration following the PB treatment than
measurement on a per-tissue basis (ANT1, PHE1) (Table 1).
Grape phenolics are thought to be impacted by berry size;

however, this has not been firmly established (Walker et al.,
2005; Ariani et al., 2016). Most phenolic compounds are located
in the skin or seed tissues, and smaller berries have a greater
ratio of skin and seeds to pulp and therefore will contribute
more anthocyanins and phenolics per volume of fruit (Roby
et al., 2004). However, berry weight (BW) was not decreased
significantly in this experiment, suggesting that this slight
increase in ANT and PHE in response to PB is due to an increased
biosynthesis (Pastore et al., 2013) or, in the case of anthocyanins,
increased skin thickness (Poni et al., 2009; Verdenal et al., 2019).

RELATIONSHIP BETWEEN CATEGORICAL
AND DEPENDENT PARAMETERS

In Figure 7A, the principal component analysis (PCA) displays
relationships among dependent variables analyzed in this work.
Three distinct groups of variables are visible; two exhibit an
inverse relationship to one another on dimension 1, while the
third is along the positive axis of dimension 2. In group 1, bunch
rot parameters (BRI, BRS) are closely aligned with TA. This
could be due to cluster sour rot infection increasing acetic acid
concentrations (Zoecklein et al., 1995), which would influence
TA by increasing it. However, multiple studies included in this
analysis did not distinguish between either form of bunch rot
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FIGURE 5 | Violin plot displaying the impacts of pre-bloom leaf removal on basic fruit quality parameters, total anthocyanins, and total phenolics. Red circles

represent significant outliers in data sets. C, non-defoliated control; PB, pre-bloom leaf removal treatment; TSS, total soluble solids; TA, titratable acidity. ***p < 0.001.

FIGURE 6 | Lollipop plot visualizing the percent change in dependent variables in PB compared to C. a, CCI, two of three parameters representing this value are

significant. *p < 0.05; **p < 0.01; ***p < 0.001.

disease (sour rot, gray mold), making this difficult to confirm.
An additional explanation is that a higher TA, indicative of
under-ripe fruit, is an artifact of fruit being harvested early

due to high presence of either sour rot of gray mold in fruit.
This is backed up by the near-opposite relationship between
groups 1 and 2.
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FIGURE 7 | (A) Principal component analysis (PCA) displaying the relationship between the percent change of the dependent variables in response to PB and (B)

PCA variables visualizing the relationships between categorical and the % change of the dependent variables in response to PB. Full names for parameter acronyms

are available in Supplementary Table 2.

Group 2 includes TSS and pH, which increase in ripening
grapes, opposite to TA, which decreases. In addition to TSS and
pH, group 2 also includes the other quality parameters: ANT and
PHE. During the ripening process, sugars are understood to be a
physiological “trigger” for the accumulation of ANT (Larronde
et al., 1998; Lecourieux et al., 2014), which likely explains the
grouping of these two parameters. This is not the case for most
phenolics (PHE); however, anthocyanins comprise the majority
of this group post-veraison, suggesting that PHE is reflective
of ANT. Group 2 also indicates a relationship between fruit
quality parameters and LAY. It is well-known that this ratio,
often referred in viticulture as “vine balance” index, rather than
the simple reduction of yield, influences fruit quality parameters
(Kliewer and Dokoozlian, 2005; Parker et al., 2015). This is
supported by yield in group 3, which, along with BW and CCI,
were not advertently related with parameters from either group
1 or 2.

Regarding group 3, the positive relationship between BW
(berry weight) and CCI (number of berries per cluster) on
yield is unsurprising, as the number and size of individual
berries directly influence yield. However, the lack of a strong
relationship between CCI and BW with the other groups in
Figure 7A is worth noting. Our previous research identified a
significant negative relationship between cluster compactness
and ANT concentration in “Merlot” berries (VanderWeide et al.,
2018), while others have confirmed this with additional quality
metabolites (Ziegler et al., 2020). Likewise, cluster compactness
has been shown to correlate negatively with bunch rot parameters
(Marois et al., 1986; Hed et al., 2009). This lack of a relationship

between CCI and either bunch rot or fruit quality parameters
may be due to two reasons. First, and only regarding CCI and
bunch rot disease, the presence of many observations deriving
from warm and hot regions that display low bunch rot disease
pressure may be skewing the data sets for BRI and BRS. Second,
for both relationships, it may be that other factors have a greater
influence on these parameters, such as the aforementioned one
between LAY, TSS, and ANT, or an open cluster zone for bunch
rot parameters, as is mentioned in the literature (English et al.,
1989; VanderWeide et al., 2020). The underlying genetic and
physiological mechanisms governing BW are complex (Dai et al.,
2011), and PB did not cause a consistent modulation to them,
different from other grapevine cultural practices (Gambetta et al.,
2020). A reduction in BW by PB was reported only following
the removal of 10 leaves from vines (Acimovic et al., 2016).
At this threshold, the limitation of source availability was likely
extended through the more active phase of cell division. Our
analysis restricts studies to those that removed five to eight leaves.
Additionally, BW was significantly increased and decreased from
the control in different observations within this analysis, which
likely explains why BW was not correlated to either bunch rot
disease or fruit quality parameters.

The second component of Figure 7 reveals the relationships
among the categorical and dependent variables from each
study. All categorical variables were similarly affected by both
dimensions with the exceptions of berry color and rootstock,
which were more closely aligned on dimension 2. Yield and BW
were also oriented along dimension 2. With regards to yield and
berry color, this is likely due to the different cropping (yield
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adjustment) standards for white vs. red grapes, as red cultivars
require greater GDD to reach harvest maturity and therefore
require a more aggressive reduction in yield when compared
to white cultivars, especially in cooler climates. Berry weight is
also related to berry color, as red cultivars tend to have smaller
berries than white cultivars. The primary roles of rootstock
selection are to control water uptake and vine growth (Poni et al.,
2017). The relationship between rootstock and these production
parameters is intriguing, as there is no subsequent impact on
quality parameters.

Surprisingly, Climate had the smallest effect among
categorical variables on dependent variables. Meanwhile,
Cultivar and Rootstock had the greatest influences on these
variables. This is, in part, due to the fact that most cultivars
and rootstocks are selected on a climate-specific basis (Keller,
2015), therefore mitigating differences in climate among growing
regions. Additionally, red cultivars are known to possesses
higher concentrations of total phenolics than white cultivars, and
white cultivars almost exclusively lack anthocyanin production
(Mattivi et al., 2006). The lesser influence from climate may
also come from scales of data between the climatological data
and the leaf removal experiments. The climatology data were
taken as 30-year climate norms for each site, while the studies
were taken from certain years’ worth of data. Higher resolution
climate data—weather data taken for each year of study for all
59 studies—would likely increase the connection with climate.
However, because of a lack of quality weather data in certain
study areas, this was not possible. Future work with higher
resolution data may yet reveal a stronger connection. This
suggests the need for further investigation into our data set
to more explicitly uncover the influence of climate and other
categorical variables on the “success” of PB.

CONCLUSION

This meta-analysis was conducted using 59 publications that
describe the response of grapevines to pre-bloom leaf removal:
an important grapevine canopy management technique. The
results of this work provide a clear physiological picture into the
response of PB on both production and fruit quality parameters.
Pre-bloom leaf removal applied early in the vine growth
and developmental stages restricts carbohydrate availability to

inflorescence, which accelerates inflorescence abscission and
causes a reduction in fruit set. This significantly decreases yield
by 26%. Additionally, lowered fruit set significantly reduced
CCI, which, in turn, led to a reduction in bunch rot incidence
(BRI) and severity (BRS) by ∼55–60%. Among fruit quality
parameters, only ◦Brix was significantly increased by PB, likely
influenced by both the decrease in yield and bunch rot disease.
PCA indicated a strong relationship between the percent increase
in vine balance (leaf-to-fruit ratio) and TSS in response to PB.
This analysis also revealed a strong correlation between the
percent increase in multiple fruit quality parameters, including
TSS, pH, anthocyanins, and phenolics; the latter two are likely
influenced by the higher TSS. Together, this study provides grape
producers with a clear outline of the benefits of performing pre-
bloom leaf removal to achieve high fruit quality in challenging
growing climates.
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