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Bacteria exhibiting beneficial traits like increasing the bioavailability of essential nutrients 
and modulating hormone levels in plants are known as plant growth promoting (PGP) 
bacteria. The occurrence of this specific group of bacteria in the endophytic environment 
may reflect the decisive role they play in a particular condition. This study aimed to 
determine the taxonomical diversity of the culturable bacterial endophytes, isolated in the 
vegetative stage of passionflower (Passiflora incarnata), and assess its potential to promote 
plant growth by phenotypic and genotypic approaches. The sequencing and phylogenetic 
analysis of the 16S rRNA gene allowed us to classify 58 bacterial endophytes into nine 
genera. Bacillus (70.7%) was the most dominant genus, followed by Pseudomonas (8.6%) 
and Pantoea (6.9%). A few isolates belonged to Rhodococcus and Paenibacillus, whereas 
the genera Lysinibacillus, Microvirga, Xanthomonas, and Leclercia were represented by 
only one isolate. The strains were tested for nitrogen fixation, phosphate solubilization, 
indole-acetic-acid synthesis, and siderophore production. Moreover, PGP related genes 
(nifH, ipdC, asb, and AcPho) were detected by PCR-based screening. Most of the isolates 
(94.8%) displayed a potential for at least one of the PGP traits tested by biochemical 
assays or PCR-based screening. Nine strains were selected based on results from both 
approaches and were evaluated for boosting the Cape gooseberry (Physalis peruviana) 
germination and growth. All tested isolates improved germination in vitro, and the majority 
(78%) increased growth parameters in vivo. The results suggested that most of culturable 
bacteria inhabiting P. incarnata in the vegetative stage could be used as probiotics for 
agricultural systems. Besides, their occurrence may be  associated with specific 
physiological needs typical of this development stage.
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INTRODUCTION

Endophytes can be  defined as microorganisms living inside 
the plant tissues without causing any apparent disease (Compant 
et  al., 2010; Hardoim et  al., 2015). They are mainly located 
in the extracellular fluids and, in some cases, inside the cells 
(Compant et  al., 2010), where they may interact with each 
other and with the host to assemble a specific community in 
distinct compartments of the plant. The structure and composition 
of endophytic communities are determined by environment 
and plant-associated factors, such as the plant genotype, the 
developmental stage, phenology, and edaphic properties  
(Seghers et  al., 2004; Van Overbeek and Van Elsas et  al., 2008; 
de Silva et al., 2016; Goulart et  al., 2019).

Endophytes are widely known for maintaining and boosting 
the plant health and development (Santoyo et  al., 2016), while 
plants provide a complex niche constituted by specific abiotic 
and biotic factors supporting the endophytic colonization 
(McCully, 2001). However, due to different nutritional needs 
in different developmental stages, the physiology of plants varies 
across the life cycle. In the vegetative stage, the demand for 
essential nutrients, such as nitrogen, phosphorus, and iron, 
are often increased; however, these nutrients are poorly supplied 
or unavailable for plant uptake (López-Arredondo et al., 2013). 
Moreover, the role of indole-3-acetic acid (IAA) is so fundamental 
for vegetative growth that plants exhibit a higher capacity to 
synthesize this phytohormone during the vegetative stage (Ljung 
et  al., 2001). Endophytic bacteria have been widely associated 
to mobilization of essential nutrients and synthesis of plant 
growth regulators (Santoyo et  al., 2016). For example, various 
endophytic bacterial strains have shown beneficial traits, including 
nitrogen fixation, inorganic phosphorus solubilization, 
siderophores secretion, and IAA synthesis (Crowley, 2006; Gupta 
et  al., 2012; Sharma et  al., 2013; Glick, 2014). This specific 
group of bacteria is commonly known as plant growth promoting 
(PGP) bacteria. In general, it is thought that PGP bacteria 
can positively affect soil fertility and nutrient uptake in plants 
(Rashid et  al., 2016; Bargaz et  al., 2018; Kumar et  al., 2020). 
These characteristics include them into plant probiotics, which 
promote the biological process directly related to plant 
development and protection (Bharti et al., 2017). The beneficial 
effect of probiotics on plants is reflected in the improvement 
of production and nutritional quality and the recovery of natural 
equilibrium in agro-ecosystems (Woo and Pepe, 2018).

Passionflower (Passiflora incarnata) is a tropical plant widely 
used as traditional herbal medicine. The phytochemical 
composition of passionflower includes mainly alkaloids and 
flavonoids, which support their therapeutic use to treat anxiety, 
nervousness, constipation, dyspepsia, and insomnia (Dhawan 
et  al., 2001). These pharmacological properties allowed it to 
be  included in the national pharmacopeias of France, Germany, 
and Switzerland. In addition, several P. incarnata derivative 
preparations have been manufactured and delivered as medicinal 
products and food supplements around the world (Miroddi 
et  al., 2013). This plant has tendril-climbing stems and three-
lobed leaves in its vegetative stage from December to January, 
and it blooms with showy and fragrant flowers from April to 

November (Fuentes et  al., 2000). Passionflower occurs in sandy 
and well-drained soils, woods with low moisture and open areas 
(Miroddi et  al., 2013). It is considered a “heavy feeder” plant 
since it needs a balanced fertilizer that supplies the macronutrients 
and micronutrients, which are often present in unavailable forms 
in the soil and have a critical role in its vegetative growth. 
Nevertheless, the pharmaceutical industry restricts the use of 
chemical fertilizer and pesticides in its culture, since they can 
compromise human food security (Björnberg et al., 2015). These 
conditions create a challenger scenario for passionflower culture.

The present knowledge of plant microbiome suggests that, 
when a plant host faces unfavorable conditions, it alters its 
physiological structure and consequently the plant-microbe and 
microbe-microbe interactions (Uroz et al., 2019). These changes 
can stimulate the recruitment and increase of beneficial microbes 
to meet plant physiological needs (Liu et  al., 2020). Thus, the 
occurrence of microorganisms with traits related to essential 
nutrients acquisition and synthesis of growth regulators might 
suggest their role in the passionflower culture. We  hypothesize 
that because of the environmental constraints and physiological 
needs in which P. incarnata is found, its associated microbiota 
contributes with beneficial functions for plant development. 
This study aims at determining the diversity of culturable 
endophytic bacteria retrieved from P. incarnata in the vegetative 
stage and at assessing their plant growth promotion traits.

MATERIALS AND METHODS

Bacterial Isolates From Passiflora 
incarnata
Fifty-eight endophytic bacteria, provided by the Microbial 
Resources Division of the Research Center for Chemistry, 
Biology and Agriculture (CPQBA), University of Campinas, 
were characterized in this study. These bacteria were isolated 
from leaf tissues in the vegetative stage of P. incarnata by 
Goulart et  al. (2019). The passionflower leaves were collected 
in January 2015 from the Centroflora Group agricultural fields 
located at Botucatu, São Paulo, Brazil. The culture of P. incarnata 
in these fields is exempt from the application of any chemical 
fertilizers. Leaves were surface-sterilized and aseptically grounded 
in Phosphate Buffer Saline (PBS). Then, the suspensions were 
serially diluted to10−4. Aliquots (100 μl) of each 10-fold dilution 
were plated in seven culture media including M9 minimal 
medium, Gause’s synthetic agar, Tap Water Yeast Extract agar, 
Humic acid-Vitamin agar, Glycerol-asparagine agar, Chitin 
medium (Zhao et  al., 2012), and 869 medium (Eevers et  al., 
2015). For this study, all isolates were sub-cultured in Trypticase 
Soy Agar (TSA) at 28°C for 48–96  h.

16S rRNA Gene Sequencing and 
Phylogenetic Analysis
The genomic DNA of bacteria was extracted according to a 
modified protocol of Van Soolingen et  al. (1993). The 16S 
rRNA gene was partially amplified by PCR using the universal 
bacterial primers 10F (5'-AGAGTTTGATCCTGGCTCAG-3') 
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and 1501R (5'-AAGGAGGTGATCCAGCCGCA-3'; Lane, 1991). 
The PCR reaction was performed in 25 μl final volume containing 
dNTPs (0.2  mM each), 1X reaction buffer (20  mM Tris, pH 
8.4), 1.5  mM MgCl2, 0.5  μM each primer, 1  U of Taq DNA 
polymerase, and 10  ng of template DNA. The PCR cycling 
protocol consisted of an initial denaturation at 94°C for 4 min, 
followed by 32  cycles of 94°C for 1  min, 55°C for 1  min, 
and 72°C for 3  min, and a final extension at 72°C for 5  min. 
The PCR amplified products were run on a 1% (v/w) agarose 
gel stained with SYBR™ Safe (Thermo Fisher Scientific) and 
purified using the GFX™ PCR DNA Purification kit (GE 
Healthcare Life Sciences, Germany). Amplicons were sequenced 
by the Sanger method with BigDye Terminator v3.1  Cycle 
Sequencing Kit (Applied Biosystems Life Technologies) using 
the same primers of amplification and the internal primers 
765F (5'-ATTAGATACCCTGGTAG-3') and 785R (5'-ACCAGGG 
TATCTAATCCTGT-3'). The sequencing cycling protocol 
consisted of an initial denaturation at 96°C for 1 min, followed 
by 30  cycles of 96°C for 15  s, 50°C for 15  s, and 60°C for 
4 min. The reaction products were sequenced on an ABI3500XL 
Series (Applied Biosystems) sequencer. The sequences were 
assembled in contigs using BioEdit 7.2.6.1 software (Hall, 1999) 
and compared with the reference 16S rRNA gene sequences 
available in the EzBioCloud platform1 (Yoon et al., 2017). Newly 
generated sequences were deposited in GenBank under accession 
numbers MG778707 to MG778907. The phylogenetically closest 
sequences were selected and used for subsequent phylogenetic 
analyses. The 16S rDNA sequences of the isolates and reference 
bacterial sequences were aligned using CLUSTAL W (Thompson 
et  al., 1994), and the substitution model was determined with 
MODELTEST from MEGA X software (Tamura et  al., 2013). 
The clustering was performed using the Neighbor-Joining 
algorithm, and evolutionary distances were computed with the 
Kimura two-parameter model. The support of nodes was 
estimated by bootstrapping with 1,000 replications (Felsenstein, 
1985). The phylogenetic analysis resulting from MEGA X was 
exported in the Newick format to create a circular cladogram 
in iTOL2 (Letunic and Bork, 2016).

Biochemical Assays for PGP Traits
Growth on N-Free Medium
The endophytic isolates were tested for their ability to fix or 
scavenge N using a nitrogen-free medium. Bacterial cultures 
were grown overnight at 30°C in Trypticase Soy Broth (TSB) 
medium, washed twice, and resuspended in PBS (pH 7.4). The 
bacterial concentration was adjusted for OD600 0.5. A 30  μl 
aliquot of each bacterial suspension was inoculated into 10  ml 
vials containing 4  ml of semi-solid New Fabian broth (NFb) 
medium (Baldani et  al., 1986) and incubated at 28°C. The 
bacterial growth was confirmed from 72 h incubation by forming 
a sub-surface pellicle on the culture medium. The diazotrophic 
potential was demonstrated through successive re-inoculations 
in NFb medium. The experiments were conducted in triplicate.

1 https://www.ezbiocloud.net/
2 http://itol.embl.de

Phosphate Solubilization
The ability of endophytic bacteria to solubilize inorganic 
phosphorous was evaluated according to Mehta and Nautiyal 
(2001). All bacterial isolates were first grown overnight at 30°C 
in TSB medium to obtain OD600 0.5. A 10  μl aliquot of each 
bacterial culture was inoculated in Petri dishes containing the 
solid National Botanical Research Institute’s Phosphate (NBRIP) 
medium. The plates were incubated at 30°C for 15  days. The 
development of a transparent halo zone around the colony 
revealed the phosphate-solubilizing ability of the isolate. To 
estimate the phosphate-solubilizing ability quantitatively, the 
Solubilization Index (SI) was calculated as follows: SI  =  A/B, 
where A is the colony diameter  +  halo zone diameter, and B 
is the colony diameter (Edi-Premono, 1996).The isolates were 
grouped according to Silva Filho and Vidor (2000), in bacteria 
with low (SI  <  2), intermediate (2  <  SI  <  3), and high (SI  >  3) 
solubilization potential. The experiments were conducted 
in triplicate.

IAA-Like Compounds Production
Indole-3-acetic acid production was estimated by growing the 
isolates on a TSB medium containing 5  mM  L-tryptophan, at 
30°C in a rotary shaker at 150  rpm for 48  h in the dark. 
Bacterial cultures were centrifuged at 8,000  rpm for 15  min. 
An aliquot (1  ml) of supernatant was mixed with 2  ml of 
Salkowski reagent (0.5  M FeCl3.6H2O in 35% HClO4) and 
incubated in the dark for 30  min at room temperature (Tang 
and Bonner, 1948). The UV-Vis absorption spectra were measured 
spectrophotometrically at 530 nm. A standard curve with known 
concentrations (0.5–120  μg/ml) of IAA (Sigma-Aldrich) was 
used to determine the amount of IAA produced. The experiments 
were conducted in triplicate.

Siderophore Production
Siderophore production was determined qualitatively on Chrome 
Azurol S (CAS) supplemented Blue Agar plates (Schwyn and 
Neilands, 1987). The bacterial isolates were first grown overnight 
at 30°C in TSB medium to obtain OD600 0.5. A 10  μl aliquot 
of each bacterial culture was inoculated onto a diffusion disc 
placed on the CAS-Blue Agar (Hussein and Joo, 2014). The 
diffusion disc method was used to avoid the toxic effect of 
Hexadecyltrimethylammonium (HDTMA; Chimwamurombe 
et  al., 2016), responsible for the blue color of the medium. 
Plates were incubated for 72  h at 30°C and observed daily 
until a yellow orange halo was seen around the colony. The 
experiments were conducted in triplicate.

Detection of PGP Related Genes
A PCR based approach was applied to confirm and complement 
the information provided by biochemical assays or even to reveal 
new PGP potentials of bacteria. The ability to reduce atmospheric 
nitrogen was evaluated by amplifying the gene encoding for 
nitrogenase reductase nifH. For this purpose, a nested PCR protocol 
was performed using the primers nifH (forA) and nifH (reverse) 
for a first reaction and the primers nifH (forB) and nifH (reverse) 
in the second reaction (Table  1; Zehr and McReynolds, 1989). 
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The PCR conditions were as indicated by Burgmann et al. (2004). 
Briefly, the first amplification was performed in a final volume 
of 25  μl, containing 10  ng of genomic DNA, 2  μM of each 
primer, 0.2  mM of each dNTP, 2  mM MgCl2, 1  U of Taq 
Polymerase Recombinant (Invitrogen), and 1x of PCR buffer. The 
nested reaction was carried out with 1  μl of the PCR product 
added to a new mixture prepared as before. The annealing 
conditions were 30  s at 55° C and 30  s at 53° C for the first 
and second reactions, respectively. As a positive control, the gDNA 
of Gluconacetobacter diazotrophicus PAl 5, known for its nitrogen 
fixation activity, was used. The PCR products were separated by 
electrophoresis in a 1% (v/w) agarose gel stained with SYBR™ 
Safe (Thermo Fisher Scientific). The fragments with the expected 
size were sequenced and analyzed by BLASTX using 
“non-redundant” protein sequences database from NCBI. The 
matches with identity >80% were considered.

Indole-3-acetic acid production was screened by partial 
amplification of the ipdC, the gene encoding for indole-3-
pyruvate (IPA) decarboxylase, the most important enzyme 
in the indole-3-pyruvic acid (IPyA) pathway. The IPyA is 
the pathway used by most beneficial bacteria (Azospirillum, 
Bacillus, Bradyrhizobium, Enterobacter cloacae, Paenibacillus, 
Pseudomonas, and Rhizobium; Spaepen and Vanderleyden, 
2011). The ability to synthesize siderophores was assessed by 
partially amplifying the asb gene that encodes for petrobactin, 
a catechol-type siderophore commonly secreted by Bacillus 
spp. (Koppisch et  al., 2008). To evaluate the potential of 
solubilizing phosphates, we  amplified gene encoding for the 
acid phosphatase, an enzyme involved in the mineralization 
of most organic phosphorus compounds from soil (El-Sawah 
et  al., 1993). PCR amplifications of ipdC, asb, and AcPho 
were conducted in all isolates using gene specific primers 
(Table  1) as described by Raddadi et  al. (2008). The PCR 
reaction was performed in a final volume of 25 μl containing 
dNTPs (0.2  mM each), 1x reaction buffer (20  mM Tris, pH 
8.4), 2.5  mM MgCl2, 1.0  μM of each primer, 1  U of Taq 
DNA polymerase, and 50  ng of template DNA. The PCR 
cycling protocol consisted of an initial denaturation at 94°C 
for 2  min, followed by 30  cycles of 94°C for 1  min, 55°C 
(asb and AcPho) and 50°C (ipdC) for 45  s and 72°C for 
2  min, followed by a final extension at 72°C for 5  min. The 
PCR amplified products were analyzed by 1% (v/w) agarose 
gel electrophoresis. The fragments with the correct size were 
sequenced and analyzed by BLASTX. The isolates with one 

or more PGP traits (by phenotypic and genotypic approaches) 
were intersected in an UpSet graphic using the Intervene 
platform (Khan and Mathelier, 2017).

Evaluation of Plant Growth Promotion  
in vivo
Effect on the Cape Gooseberry (Physalis 
peruviana) Germination
Cape gooseberry is a plant of economic importance which 
has gained recognition in the international market due to 
its nutritional value and versatility to be  consumed. Seeds 
are the main propagation method in the Cape gooseberry 
culture, due to the high seed number per fruit (Puente et  al., 
2011). Based on the biochemical assays, nine bacterial isolates 
with multiple PGP traits (three or more) were selected and 
used to evaluate their effect on Cape gooseberry seedling 
vigor and germination. Seeds of Physalis peruviana were 
surface sterilized using a 3% sodium hypochlorite solution 
for 10 min, then washed five times with sterile distilled water 
for 3  min each. This plant genotype was obtained from the 
Collection of Medicinal Plants, at the Research Center for 
Chemistry, Biology and Agriculture (CPQBA), Brazil. The 
inocula were prepared by growing the selected isolates on 
TSB at 28°C for 20  h with shaking (150  rpm). Bacterial cells 
were harvested by centrifugation at 9,000  rpm for 10  min 
at 4°C, and each pellet was washed three times with the 
PBS solution. The pellets were suspended in the PBS solution 
and adjusted to 0.5 OD590. Surface-sterilized seeds were dipped 
into bacterial inocula for 60  min and dried in a laminar 
flow bench at room temperature. Fifty seeds inoculated with 
each endophytic isolate were spread on two layers of moistened 
filter paper on the Petri plates. For the control treatment, 
50 surface-sterilized seeds treated with sterilized PBS were 
also established. Inoculated and control plates were incubated 
in a light incubator (16  h in a day) at 28  ±  2°C for 10  days. 
To maintain sufficient moisture for germination, 1  ml of 
sterilized distilled water was added every 24  h. Germination 
was considered to occur once the radicles reached half of 
the seed length. The root and shoot length were measured 
after 10 days. The germination speed index (GSI) was calculated 
according to Maguire (1962) and sprouted seeds were counted 
6, 8, and 10  days after test initiation. The experiment was 
carried out with three replicates.

TABLE 1 | Primers used to amplify genes associated with plant growth promotion.

Gene Size of gene (pb) Primer sequence (5'→3') Amplicon (pb) Reference

  nifH 896
forA-GCIWTITAYGGNAARGGNGG

371 Zehr and Reynolds, 1989forB-GGITGTGAYCCNAAVGCNGA
rever-GCRTAIABNGCCATCATYTC

  ipdC 1,809
CAYTTGAAAACKCAMTATACTG

1,715 Raddadi et al. (2008)
AAGAATTTGYWKGCCGAATCT

  asb 1,685
GAGAATGGATTACAGAGGAT

1,685 Raddadi et al. (2008)
TTATGAACGAACAGCCACTT

  AcPho 828
AAGAGGGGCATTACCACTTTATTA

734 Raddadi et al. (2008)
CGCCTTCCCAATCRCCATACAT
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Germination (%)  =  number of seeds germinated/ total 
number of seeds  ×  100

Vigor index  =  % germination  ×  total plant length (mm)

Effect of Endophytic Bacteria on Cape 
Gooseberry Growth
The nine selected isolates were used to determine the growth 
promoting capability in Cape gooseberry plants. Surface-sterilized 
seeds were inoculated as described above with selected isolates. 
A set of seeds were treated with PBS (control treatment). Treated 
seeds were sown 1 cm deep in the commercial substrate (Tropstrato 
Hortaliças Mix, Brazil) contained in 108-plug trays. The substrate 
was autoclaved twice at 24  h intervals at 121°C and 15  psi for 
30  min. After 15  days, germinated embryos were subjected to 
two additional inoculations. Bacterial suspensions, prepared 
according to “Effect on the Cape Gooseberry (Physalis peruviana) 
Germination” section, were applied to the plant base at 2 and 
7  days after germination. Seedlings with similar growth status 
were selected from each treatment for further analysis. Plants 
were grown for 8  weeks in a net house, and seven plants 
(replicates) from each treatment were harvested for measuring 
the dry matter, root and shoot lengths, a and b chlorophyll, 
and macronutrients and micronutrients.

Statistical Analysis
A completely randomized design was used for pot experiments, 
with seven replications for each treatment. Arithmetic means 
and standard deviations were calculated. Significant differences 
were assessed by one-way analysis of variance (one-way ANOVA), 
post-hoc test Tukey HSD. ANOVA assumptions were revised 
by the equal variance test (Levene Median) and normality test 
(Kolmogorov-Smirnov and Lilliefors tests). All statistical analyses 
were performed in Sigma 12.0.

RESULTS

Phylogenetic Analysis of Bacterial 
Endophytic Isolates
The partial 16S rRNA gene sequencing from 58 bacteria provided 
sequences of sufficient length (mean length of 1,290  bp) to 
carry out the phylogenetic analysis. The sequences were submitted 
to the identify server of the EzBioCloud platform to recover 
the closest reference sequences. All sequences showed >99–100% 
similarity with reference sequences (Supplementary Table S1). 
The multiple sequence alignment in ClustalW generated 1,252 
positions and it was used for constructing the phylogenetic 
tree (Figure 1), which showed well-supported clades and allowed 
to us determine the taxonomic affiliations of all isolates. However, 
sequences of EP178 and EP223 isolates did not group with 
any reference sequence. In a further phylogenetic analysis 
(Supplementary Figure S1), these sequences also formed a 
separated taxon supported by a high bootstrap value (100).

The phylogenetic analysis from 58 isolates allowed us to 
classify them into three phyla: Firmicutes, Proteobacteria, 

and Actinobacteria. The majority of the isolates (41/58)  
belong to the Firmicutes phylum, represented by Bacillaceae 
and Paenibacillaceae families. Proteobacteria was the second 
largest phylum (15/58) dominated by Enterobacteriaceae, 
Pseudomonadaceae, and Xanthomonadaceae. Bacteria belonging 
to the Actinobacteria phylum (2/58) were uniquely related to 
the Nocardiaceae family. The taxonomic affiliations of isolates, 
at the genera level, revealed that Bacillus (70.7%) was the 
dominant bacterial genus. Based on the tree topology, Bacillus 
sequences (marked in red color in Figure 1) formed six clades, 
one of them included sequences from 19 isolates (closely related 
to Bacillus megaterium and Bacillus aryabhattai). The EP206 
isolate sequence clustered in the Lysinibacillus genus monophyletic 
group (marked in pink color). The Paenibacillus cluster (marked 
in green color) contained only two endophytic isolates (EP176 
and EP212), which were distributed in two different clades. 
The second most abundant genus was Pseudomonas (8.6%), 
which was comprised of two clades (marked in light green), 
and their isolates were taxonomically associated to the species, 
Pseudomonas cichorii (EP220) and Pseudomonas oryzihabitans 
(EP201 and EP215), while the sequences of EP178 and EP223 
grouped with Pseudomonas spp. Sequences from the Pantoea 
genus (marked in lilac color) formed three clades holding four 
endophytic isolates (EP200, EP204, EP205, and EP222). The 
others isolate belonging to Proteobacteria were distributed in 
the Microvirga, Xanthomonas, and Leclercia genera. The 
Actinobacteria strains (EP225 and EP208) were uniquely 
associated with the Rhodococcus genus and represented 3.4% 
of total bacterial endophytes.

Detection of PGP Traits
The ability of endophytic bacteria to improve plant growth 
was characterized by a phenotypic approach. The biochemical 
assays were addressed to reveal the potential of strains to 
favor essential nutrient acquisition (nitrogen, phosphates and 
iron) and to synthesize a plant growth regulator (indol acetic 
acid). The results obtained are presented in Figure  2 
(Supplementary Table S2). The assay on the semi-solid NFb 
medium allowed us to identify diazotrophic/N-scavenging strains. 
Twenty-six endophytic strains were able to grow in the N-free 
medium, forming a sub-surface pellicle, even after two successive 
inoculations. Most of the positive strains (92%) were related 
to the Bacillus genus, and only two (EP208 and EP225) belonged 
to Rhodococcus.

Thirty-three strains (56.9%) showed the ability to solubilize 
inorganic phosphates, Ca3(PO4)2, on the solid NBRIP medium. 
The bacteria that formed a halo around the colony were 
considered positive for phosphate solubilization. From the 
positive strains, 18 were affiliated to the Bacillus genus, while 
Pseudomonas and Pantoea were represented by five and four, 
respectively. The SI was calculated for the halo-forming isolates 
and is shown in Supplementary Table S2. Based on this 
index, the best strain in solubilizing phosphate was EP223, 
which was assigned as Pseudomonas spp. Furthermore, 
Pseudomonas was the genus with the highest number of strains 
with high solubilization potential. At the same time, most 
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of the positive strains were placed in the intermediate potential 
group and largely associated with the Bacillus genus 
(Supplementary Figure S2).

Regarding IAA production, 44 isolates (75.8%) were able 
to synthesize IAA-like molecules when grown in a liquid 

medium supplemented with tryptophan. The IAA concentrations 
detected varied from 1.01 to 6.04  μg/ml. The values calculated 
for all isolates are shown in Supplementary Table S2. All 
strains belonging to Pseudomonas, Pantoea and Paenibacillus 
produced IAA-like compounds, but Bacillus was the genus with 

FIGURE 1 | Neighbor-joining phylogenetic tree based on partial 16S rRNA sequences of endophytic bacteria isolated from Passiflora incarnata leaves and 
reference sequences from EzBioCloud. The branch colors indicate different bacterial genera. Only bootstrap values equal and greater than 60% are displayed as 
circles with increasing size up to 100%. Accession numbers from references sequences are in parentheses.
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the highest number of positive strains. Xanthomonas, Leclercia, 
and Rhodococcus had one each positive strain for this test. 
The two Paenibacillus strains produced a mean of 5.35  μg/ml, 
the highest value among all genera. Nevertheless, EP229 
(associated with Bacillus) was the strain that exhibited the 
highest IAA value (6.04  μg/ml).

Siderophore production was screened by using the CAS agar 
medium. Most of the endophytic strains (77.6%) formed orange 
halos around the bacterial colony, indicating that chelating agents 
capable of capturing the iron were secreted. Positive strains were 
mostly associated with Bacillus, followed by Pseudomonas (5) 
and Pantoea (4) strains. Members of Xanthomonas, Leclercia, 
Rhodococcus, and Microvirga were represented by only one 
positive strain.

Screening of PGP Traits by PCR
Endophytic bacteria were evaluated by harboring genes related 
to plant growth promotion using a genotypic approach. The 
results obtained from this approach are presented in Figure  2 
(Supplementary Table S2). The amplification of the nifH gene 
was performed to confirm the diazotrophic potential. A fragment 
(~371 bp) from the nifH gene was amplified only in the EP220 
strain, which was closely related to P. cichorii. The BLASTX 

analysis showed that the deduced sequence from this strain 
shared 86% identity with a nitrogenase iron protein from 
Insolitispirillum peregrinum. This result is the first report of 
the presence of the nifH gene from a P. cichorii strain.

The AcPho gene was detected in nine strains. Conserved 
domains related to acid phosphatase enzyme were detected 
from amplified sequences. Strains carrying AcPho sequences 
were exclusively associated with the Bacillus genus, likely because 
the primer design was addressed for Bacillus thuringiensis strains 
(Raddadi et  al., 2008).

Partial amplification of the ipdC gene was a success in 16 
endophytic strains. Conserved domains related to the IPA 
decarboxylase enzyme were detected by the BLASTX analysis. 
Most strains carrying ipdC sequences were associated with the 
Bacillus genus. The Rhodococcus and Paenibacillus genera had 
only one representative in the genotypic approach.

However, asb gene was partially amplified in four strains 
(EP185, EP202, EP214, and EP218), which were associated 
with Bacillus. The BLASTX analysis detected conserved 
domains related to siderophore synthesis proteins, such as 
Aerobactin. Interestingly, an unspecific fragment of 
approximately 1,000  bp (Supplementary Figure S3) was 
amplified in 15 strains: 13 belonging to Bacillus and the 

FIGURE 2 | Diversity of PGP traits among endophytic bacteria according to their taxonomic affiliations inferred from phylogenetic analysis of 16S rRNA gene 
sequences. Growth on a N-free media (⬛); detection of the nifH gene(⬛); formation of halo on a NBRIP medium (⬤);detection of the AcPho gene (⬤); IAA-like 
compound production (★); detection of the ipdC gene (★); formation of orange halo on a CAS Agar (▼); detection of the asb gene (▼); and unspecific amplification 
of a gene involved iron metabolism (tatA; ▽).
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other two to Paenibacillus and Pseudomonas. The sequencing 
and analysis of this unspecific fragment determined that it 
possessed conserved domains related to the TatA/TatE subunit 
of the translocase A protein, which transports proteins across 
bacterial cytoplasmatic membrane.

The Dominant Groups Exhibited PGP Traits
The strains belonging to the genera Bacillus, Pseudomonas, 
Pantoea, Rhodococcus, and Paenibacillus account to ~93% of 
the total endophytic bacteria retrieved from P. incarnata leaves 
in the vegetative stage. The plant growth-promoting trait 
abundance was evaluated on the five most abundant members 
(genera) mentioned before. Based on the biochemical tests 
(Figure  3A), the phosphates solubilizing ability varied from 
44% in Bacillus and 55% in Rhodococcus to 100% in 
Pseudomonas, Pantoea, and Paenibacillus strains, while IAA-like 
compounds were detected in 50% of Rhodococcus, 73.2% of 
Bacillus, and 100% of Pseudomonas, Pantoea, and Paenibacillus 
strains. Siderophore production was exhibited in 100% of 
Pseudomonas and Pantoea, 78% of Bacillus, and 50% of 
Rhodococcus strains, while only 50% of Rhodococcus and 60% 
of Bacillus strains have grown forming a sub-surface pellicle 
in the NFb medium. Regarding the PCR-based approach 
(Figure  3B), the nifH gene was only detected in one out of 
Pseudomonas strains (EP220). None of the other genera had 
representatives carrying this gene. Only in the Bacillus strains, 
the asb and AcPho sequences were amplified. Unlikely, the 
ipdC gene was more frequently encountered among tested 
strains since it was detected in 34.1% of Bacillus, 50% of 
Rhodococcus, and 50% of Paenibacillus strains.

Additionally, the frequency of strains with one or more 
PGP traits tested by both phenotypic and genotypic approaches 
was analyzed (Figure  4). The results showed that 11 strains 
constituted the largest functional group. They showed the 
phenotypic potential for phosphates solubilization, IAA synthesis 
and siderophore production, followed by six strains with 
phenotypic potential for nitrogen fixation, IAA, and siderophore 
production, and five isolates with phenotypic potential for all 
PGP traits and genotypic potential for IAA production. 
Interestingly, two isolates exhibited genotypic and phenotypic 
potential for tree PGP traits.

Improved Germination in Cape Gooseberry 
Seeds
Based on results from biochemical PGP tests, nine endophytic 
strains were selected for testing their effect on germination 
percentage and speed and vigor index in Cape gooseberry 
seeds. All isolates increased the germination percentage by 
6–29%, compared with the control. The EP222 (associated 
with Pantoea ananatis; 97.9%), EP184 (B. megaterium), and 
EP216 (Leclercia adecarboxylata; 93.8%) strains produced 
the highest germination percentages and were significantly 
different (p  <  0.05) from non-inoculated seeds (66.7%). 
These strains reached the mentioned above germination 
percentages in just 10  days, and they also exhibited the 
highest GSIs (Figure  5A). The vigor index was increased 

in 2.7–52.7% by the strains EP222, EP184, EP229, EP215, 
EP223, and EP216  in comparison with the control treatment 
(Figure 5B). The strains EP222, EP184, and EP216 significantly 
increased germination parameters compared with control, 
which suggested that it could be used as an effective inoculant 
in Cape gooseberry seeds.

Plant Growth Promotion in Cape 
Gooseberry Plants
The results showed that the treatment with selected strains 
boosted the Cape gooseberry growth (Figure  6). Inoculation 
with strain EP216 exhibited the best results about the shoot 
and root lengths, increasing it by 55.4 and 24.5% compared 
with the control. Concerning to shoot and root dry matter, 
treatment with strain EP216 significantly improved these 
parameters compared with the control treatment, followed 
by strains EP215 and EP178. The individuals treated with 
strain EP184 also increased the shoot and root dry matter 
by 52.7 and 24.5%, respectively. All treatments showed increased 
phenotypic parameters in comparison with control, except 
the strains EP229 and EP220. The a and b chlorophyll levels 
were significantly higher in plants inoculated with EP216 
than in control (Supplementary Table S3). The plants treated 
with strains EP184, EP223, and EP229 also showed higher 
chlorophyll levels than the control treatment. For the nutritional 
parameters measured in plant aboveground parts, the 
inoculation of isolates EP178, EP216, EP229, EP220, and 

A

B

FIGURE 3 | Relative abundance of PGP strains in the five most dominant 
genera: (A) PGP activities tested by biochemical assays and (B) PGP 
activities detected by PCR-based approach.
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EP201 showed nitrogen, phosphorus, potassium, calcium, 
copper, iron, manganese, and sodium levels higher than 
the control.

DISCUSSION

Plants can recruit beneficial microbes from the environment 
as response to a particular unfavorable condition (Liu et  al., 
2020). Nutritional stress that passionflowers face when growing 
in poor soils and/or without application of fertilizer can promote 
recruitment and accumulation of microorganisms with the 
capacity to cope with nutritional needs. Also, the occurrence 
of microorganisms with the potential to facilitate the acquisition 
of essential nutrients or modulate the level of hormones within 
plants might be  substantial in the early growth stages. This 
study revealed that most endophytic bacteria retrieved in the 
vegetative stage of passionflower possess multiple PGP traits. 
The phenotypic and genotypic approaches were carried out to 
access these functional traits (Raddadi et al., 2008). Combining 
these approaches allowed us to confirm the potential attributed 
by one, complement the result between both, or increase 
detection coverage when ones failed to reveal the PGP trait.

The phylogenetic analysis of 16S rRNA gene sequences 
allowed taxonomically categorize endophytic isolates and revealed 
bacterial diversity of genera. In the case of the EP178 and 
EP223 strains, a further phylogeny analysis suggested that they 
may belong to a new species of Pseudomonas. Phylogenetic 
affiliations for Bacillus isolates were difficult because the 16S 
rRNA gene has low phylogenetic resolution and weak 

discriminatory power for some taxonomic groups (Ash et al., 1991; 
Janda and Abbott, 2017), so the use of another taxonomic 
marker is recommended. Endophytic isolates were mainly 
associated with Bacillus and Pseudomonas. The dominance of 
these genera was already reported in other medicinal plants 
(Miller et al., 2012; Rhoden et al., 2015). Coincidentally, members 
of Bacillus and Pseudomonas have been extensively reported 
as plant growth enhancers (McSpadden Gardener, 2004; Mercado-
Blanco and Bakker, 2007; Govindasamy et  al., 2010; Ferreira 
et  al., 2019), suggesting what could be  the ecological role of 
these dominant groups in the vegetative stage of P. incarnata. 
The next more abundant genus was Pantoea, which has already 
been reported in medicinal plants such as Hypericum perforatum 
and Ziziphora capitate (Egamberdieva et  al., 2017); even this 
genus was the most found in six Eucallyptus species (Procópio 
et  al., 2009). Although usually known as a plant pathogen, 
some studies reported Pantoea strains with plant growth-
promoting capabilities (Andreolli et al., 2016; Chen et al., 2017). 
Likewise, several members of the less represented genera 
(Lysinibacillus, Microvirga, Xanthomonas, and Leclercia) in this 
study have been described previously as both endophytes, and 
plant growth promoters (Shahzad et  al., 2017; Walitang et  al., 
2017; Shabanamol et  al., 2018), reinforcing the hypothesis that 
bacterial endophytes naturally occurring in the vegetative stage 
of P. incarnata may have a crucial role in vegetative development 
of plant host.

Microbes often use two mechanisms to support the plant 
growth directly (Santoyo et  al., 2016): (1) facilitating  
the mobilization and uptake of soil deficient nutrients 
(Van der Heijden et  al., 2008) and (2) modulating the level of  

FIGURE 4 | UpSet plot of PGP traits detected by biochemical assays and by PCR. The bar chart on the left indicates the total number of isolates that exhibit each 
PGP trait. The upper bar chart indicates the intersection size between sets of isolates with one or more PGP traits. Dark connected dots indicate which PGP trait is 
considered for each intersection.
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hormones in plants (Verbon and Liberman, 2016). In this 
study, the potential of isolates to mobilize essential nutrients 
(N, P, and Fe) and synthesize phytohormones (auxins) was 
accessed. Most strains reported in this study exhibited PGP 

traits in biochemical and/or genetic assays. Nitrogen is present 
abundantly in the environment in its diatomic form (N2), 
limiting its absorption for plants. Many strains grown in the 
NFb medium, forming a sub-surface pellicle, and they were 

A

B

FIGURE 5 | Effect of bacterial strains isolated from P. incarnata on the Cape gooseberry germination: (A) Representative pictures on sprouted seeds at 10 days 
and (B) Bar chart of germination percentage (%G) and vigor index (VI) exhibited by each bacterial strain. The vigor index (VI) is graphed with black and white colored 
rhombuses. Values represent the arithmetic mean ± SD. Treatments with different letters, within each tested parameter, are significantly different according to the 
Tukey statistical test (p < 0.05).

FIGURE 6 | Effect of bacterial inoculants isolated from P. incarnata on the Cape gooseberry growth. Values represent the arithmetic mean ± SD. Treatments with 
different letters, within each tested parameter, are significantly different according to the Tukey statistical test (p < 0.05).
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mostly associated with the Bacillus genus. A previous study 
reported endophytic Bacillus strains isolated from the Lolium 
perenne rhizosphere, which showed their diazotrophic activity 
(Castellano-Hinojosa et  al., 2016). Although most studies 
described diazotrophic bacteria from rhizospheric environments, 
some investigations have reported phyllosphere bacteria associated 
with the nitrogen fixation (Pati and Chandra, 1993; Desgarennes 
et  al., 2014). Amplification of the nifH gene was performed 
to confirm diazotrophic potential. However, nifH sequences 
were detected in just one strain (EP220). The NFb medium 
not only allows the retrieval of diazotrophs but also favors 
the growth of bacteria able to scavenge traces of different 
nitrogen sources from the atmosphere (Zuluaga et  al., 2020).

Phosphorus is an essential nutrient for plant development 
and growth (Khan et  al., 2010). The isolates associated to 
Bacillus, Pseudomonas, and Pantoea were the most frequently 
encountered in the phosphate solubilization phenotypic tests. 
Some studies have shown that the main mechanism of Pantoea 
and Pseudomonas to solubilize inorganic phosphate is the 
secretion of the gluconic acid (Castagno et  al., 2011; Oteino 
et  al., 2015). In comparison, Bacillus species secrete other 
organic acids, such as lactic, acetic, succinic, and propionic 
(Saeid et  al., 2018). Taking into account that the solubilization 
of inorganic phosphate compounds occurs mainly through the 
secretion of organic acids, changes in the composition of the 
culture medium may alter the microbial metabolism and affect 
the rate of solubilization (Nautiyal, 1999), masking the ability 
of strains for phosphate solubilization. The gene encoding 
phosphatase enzyme was chosen as a genetic marker since it 
is involved in the solubilization of various organic phosphates. 
The AcPho gene was amplified using primers designed from 
B. thuringiensis sequences (Raddadi et al., 2008), which favored 
the detection in Bacillus strains and limited it for the less 
represented groups. AcPho sequences were not only detected 
in strains closely associated with B. thuringiensis but also in 
other taxa (B. aryabhattai, B. tequilensis, B. megaterium, 
B. anthracis, and B. cereus), showing its potential as phosphate 
solubilization functional marker for the Bacillus genus. Overall, 
the combination of the two approaches proved to be 
complementary, since the formation of solubilizing halo on 
the NBRIP medium indicated that the bacteria could solubilize 
inorganic phosphate (Nautiyal, 1999). Meanwhile, the detection 
of AcPho sequences showed the potential to solubilize organic 
phosphates (Sharma et  al., 2013). Various isolates confirmed 
their ability to solubilize organic and inorganic phosphate 
compounds, remarkably increasing their potential as plant 
beneficial inoculants.

The IAA is involved in several processes of plant vegetative 
development (Spaepen and Vanderleyden, 2011). The phenotypic 
assay to detect IAA-like compound production was carried 
out under the same culture conditions for all isolates, without 
taking into account their wide physiological and taxonomic 
diversity, which reduced the possibility of offering the specific 
conditions that each isolate requires to produce maximum IAA 
amounts (Frankenberger and Arshad, 1995). Bacillus was not 
only the genus with the most IAA-producing number of strains 
but also comprised the strain (EP229) with the highest value 

of IAA-like compounds. IAA values similar to this study were 
found in Bacillus isolates from plants at a multi-metal 
contaminated mine site (Shim et  al., 2015). The gene (ipdC) 
chosen for the genotypic approach encodes a key enzyme in 
the main IAA biosynthetic pathway (IPA) found in plant-
associated beneficial bacteria (Spaepen and Vanderleyden, 2011). 
The primers used to detect the ipdC gene were also designed 
on sequences belonging to B. thuringiensis, which favored its 
detection in Bacillus strains. Lyngwi et  al. (2016) have already 
reported ipdC gene sequences in Bacillus and Paenibacillus 
species recovered from soils of the sacred groves in India. 
The ipdC sequences were also amplified in isolates belonging 
to Rhodococcus. A study previously demonstrated the ability 
of some Rhodococcus strains to synthesize IAA (Vandeputte 
et  al., 2005). The isolates that produce IAA-like substances 
and harbor ipdC gene sequences could synthesize the IAA 
through the IPA pathway. However, the microbial IAA can 
be  produced by other metabolic pathways, such as AMI or 
IAOx/IAN, which can occur and be  expressed together with 
the IPA pathway (Duca et  al., 2014).

Iron is the fourth most abundant element in the earth’s 
crust, but in aerobic (oxidant) conditions and neutral pH, it 
is almost insoluble for plants (Schwab and Lindsay, 1983). 
Under conditions of iron stress, microorganisms can produce 
low-molecular-mass compounds with high affinity for ferric 
ion, termed siderophores. Most of the tested strains secreted 
Fe (III) chelating agents when sequestered in the complex 
HDTMA-Fe (III)-CAS on the medium Blue Agar. This PGP 
trait was the most common among all identified genera as 
the method developed by Schwyn and Neilands (1987) did 
no limit the detection of a single molecule. Only Lysinibacillus 
and Paenibacillus strains did not exhibit siderophores-producing 
ability. Various studies previously reported siderophore 
production in Bacillus, Pseudomonas, and Pantoea strains (Loaces 
et  al., 2011; Andreolli et  al., 2016; Tchakounté et  al., 2018). 
The asb gene was used as a genetic marker to characterize 
siderophore production because it commonly occurs in Bacillus 
species (Koppisch et  al., 2008). However, this was amplified 
in just four Bacillus strains, likely because there is a wide 
structural diversity of siderophores described (Hider and Kong, 
2010). On the other hand, a non-specific fragment related to 
the TatA/TatE subunit of the translocase A protein was amplified 
in several strains. Curiously, this protein is involved in the 
mechanism of the reception and translocation of an iron (III) 
reductase (Lechowicz and Krawczyk-Balska, 2015), so it is 
closely related to extracellular iron metabolism.

The treatment with the selected bacteria increased the 
germination rate of Cape gooseberry seeds, which often 
range 85–90% after 15  days of incubation (Fischer et  al., 
2005). The use of film-coating has already shown its potential 
to increase the germination rate of P. peruviana until 97% 
(Campos et al., 2015). However, this strategy must be carefully 
used as it may compromise the water and gas availability. 
In our study, the immersion of Cape gooseberry seeds in 
bacterial suspensions improved the germination rate and 
timing in 10  days. Some studies have reported PGP bacteria 
to positively influence seed germination synthesizing 
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phytohormones (Delshadi et  al., 2017). The bacteria used 
in the germination test showed potential for the synthesis 
of one of the main phytohormones (indole acetic acid) 
associated with vegetative development. The results from 
pot experiments supported the capability of the P. incarnata 
endophytic strains to promote plant growth. They have 
previously shown their potential to solubilize phosphates, 
synthesize IAA, and produce siderophores in genetic and 
biochemical assays. But, the detection of PGP traits by assays 
in vitro is not conclusive to determinate the effect of a 
candidate strain on the plant growth promotion, since that 
bacterial performance depends on environmental conditions 
and plant-microbe interactions (Smyth et al., 2011). However, 
selected strains were able to improve agronomic parameters 
in Cape gooseberry seedlings, suggesting that they might 
have used mechanisms exhibited in vitro to stimulate plant 
development and growth in vivo. The used endophytic strains 
as probiotic and protective agents for crops have gained 
relevance as they possess traits associated to improvement 
and supporting of plant development and health. In addition, 
they intrinsically have the capability of access to a restricted 
environment, the endosphere. The boosting effects of selected 
strains were exhibited in a plant species different than native, 
suggesting their versatility for colonizing other environments. 
These characteristics become them in promising candidates 
for agriculture systems (Farrar et  al., 2014).

The function and structure of plant-associated microbiomes 
are shaped by host and environmental factors (Trivedi et  al., 
2020). However, a theory denominated “Cry for Help” hypothesize 
that a plant can attract beneficial microbes from the environment 
to cope with particular stresses (Liu and Brettell, 2019). This 
recruitment might also be  associated to physiological needs 
that a plant exhibits during its development. The uptake of 
essential nutrients (such as N, P, K, and S) and the auxin 
synthesis are substantially higher in the early stages of plant 
development (Ramanathan and Krishnamoorthy, 1973; Ljung 
et  al., 2001; Arunachalam and Chavan, 2018). Thus, the 
recruitment of bacteria capable meet these physiological needs 
(Carvalhais et al., 2013) may be favored during the passionflower 
vegetative development. Vendan et  al. (2010) also found 
endophytic PGP bacteria mainly in the early stages of the 
ginseng life cycle. A study reported the dominance of 
IAA-producing rhizobacteria in the rosette (early) canola 
development stage (Farina et  al., 2012). On the other hand, 
various studies have described PGP activities in microorganisms 
isolated from medicinal plants (Ansary et  al., 2018; Li et  al., 
2018; Huang et  al., 2019; Aeron et  al., 2020). As in the food 
industry, pharmacological companies require that medicinal 
plant culture not includes chemical fertilization. This requirement 
reflects challenging conditions that plant medicinal culture deals 
and suggests a possible role of PGP microorganisms in these 
plants. The physiological needs that passionflower often exhibits 
in its vegetative stage added to the limited nutritional conditions 
that this plant faces in the agriculture systems of pharmacological 
interest which might explain the occurrence of PGP bacteria. 
However, a study of taxonomic and functional profile of 
endophytic microbiome could describe more precisely the 

bacterial group’s domaining endophytic environment and reveal 
roles they playing in the development and growth of plant host.

CONCLUSION

This study reveals the dominance of groups belonging to Bacillus, 
Pseudomonas, and Pantoea among the bacterial endophytes 
from passionflower leaves. The contribution of these genera 
to the promotion of plant-growth and germination is highlighted 
by their potential to produce IAA, solubilize phosphate, and 
synthesize siderophores as demonstrated by the present assays 
using Cape gooseberry as a model. It can be  also concluded 
that the combination of genotypic and phenotypic approaches 
is effective in revealing plant growth-promoting traits. The 
occurrence of several culturable PGP strains is probably associated 
with conditions of the passionflower culture. The strains of 
bacteria isolated in this study may be  used in future projects 
as beneficial inoculants for agricultural systems.
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