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Plant height (PH) is an essential trait in the screening of most crops. While in crops such
as wheat, medium stature helps reduce lodging, tall plants are preferred to increase
total above-ground biomass. PH is an easy trait to measure manually, although it can
be labor-intense depending on the number of plots. There is an increasing demand
for alternative approaches to estimate PH in a higher throughput mode. Crop surface
models (CSMs) derived from dense point clouds generated via aerial imagery could be
used to estimate PH. This study evaluates PH estimation at different phenological stages
using plot-level information from aerial imaging-derived 3D CSM in wheat inbred lines
during two consecutive years. Multi-temporal and high spatial resolution images were
collected by fixed-wing (PlatFW ) and multi-rotor (PlatMR) unmanned aerial vehicle (UAV)
platforms over two wheat populations (50 and 150 lines). The PH was measured and
compared at four growth stages (GS) using ground-truth measurements (PHground)
and UAV-based estimates (PHaerial). The CSMs generated from the aerial imagery were
validated using ground control points (GCPs) as fixed reference targets at different
heights. The results show that PH estimations using PlatFW were consistent with
those obtained from PlatMR, showing some slight differences due to image processing
settings. The GCPs heights derived from CSM showed a high correlation and low
error compared to their actual heights (R2

≥ 0.90, RMSE ≤ 4 cm). The coefficient
of determination (R2) between PHground and PHaerial at different GS ranged from
0.35 to 0.88, and the root mean square error (RMSE) from 0.39 to 4.02 cm for
both platforms. In general, similar and higher heritability was obtained using PHaerial
across different GS and years and ranged according to the variability, and environmental
error of the PHground observed (0.06–0.97). Finally, we also observed high Spearman
rank correlations (0.47–0.91) and R2 (0.63–0.95) of PHaerial adjusted and predicted
values against PHground values. This study provides an example of the use of UAV-
based high-resolution RGB imagery to obtain time-series estimates of PH, scalable to
tens-of-thousands of plots, and thus suitable to be applied in plant wheat breeding trials.

Keywords: multi-temporal crop surface model, structure from motion, RGB camera, dense point cloud, drones,
post-processed kinematic, wheat breeding, adjusted and predicted genotypic values
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INTRODUCTION

Wheat (Triticum sp.) is among the leading food crops, and it
is grown in a range of environments and geographical areas. It
is highly relevant to the human diet, given its protein quantity,
quality, and variety of derived products (Shewry et al., 2016).
Lately, wheat has become the most important source of dietary
protein and the second most important source of calories
(carbohydrates) for humans (Shewry et al., 2016). During the
2017/2018 season, wheat was sown in 11.7% of the world’s
arable land, corresponding to around 30% of world grain
production (USDA, 2018). Wheat is vital for food security,
supplying an affordable source of nutrition to a large portion of
the global population, particularly millions of people with low-
middle incomes, and is an essential crop for the composition of
sustainable agricultural production systems (Walters et al., 2016;
Hickey et al., 2019).

Wheat breeding for plant height (PH) has been historically
used to reduce lodging and improve grain yield and quality
(Reynolds et al., 2020). The identification and introduction
of major dwarfing or semi-dwarfing genes were significant
advancements in the wheat breeding work led by Norman
Borlaug that enabled grain yield increase in most environments
and contributed to the “Green Revolution” (Reynolds and
Borlaug, 2006; Würschum et al., 2015). To date, PH continues
to be one of the most critical and heritable traits in wheat
breeding, also used to select suitable parental lines for hybrid
breeding (Würschum et al., 2015; Barmeier et al., 2016).
In addition, PH contributes to biomass production, as it is
associated with increased photosynthesis due to a better light
interception and distribution through the canopy in taller plants
(Song et al., 2013).

PH is commonly calculated by measuring the distance
between the upper boundary of the main photosynthetic tissues
(excluding the awns) and the ground level using a simple
metric ruler or a graduated stick (Torres and Pietragalla, 2012).
Although simple, such assessment is costly, laborious, and prone
to subjectivity, especially in extensive field trials (Holman et al.,
2016; Hu et al., 2018). Manual ground measurements in the field
are only feasible on a few plants per plot and can be biased
by the lack of standardized criteria (Wilke et al., 2019). The
temporal characterization of PH, that is, PH estimations at the
various plant growth stages, could provide a better understanding
of the mechanism of plant growth and its underlying genetic
effects by providing insight into the environmental variables
of this trait (Torres-Sánchez et al., 2013; Hassan et al., 2019a).
Phenotyping under environmental field conditions is often
considered a bottleneck in plant breeding programs (Yang et al.,
2017; Rebetzke et al., 2019). Consequently, there is a need for
faster, more accurate, and continuous measurements of PH.

HTP (high-throughput phenotyping) could be applied to
accurately and efficiently conduct temporal PH characterization.
The introduction of HTP approaches into breeding schemes can
significantly improve the phenotyping standards for agronomic
traits, contributing to better understanding of their genetic
basis and diversity, as well as the environmental influences
throughout the crop’s development cycle (Reynolds et al., 2020).

Non-destructive data collected via ground-based and aerial
HTP techniques are highly desirable for application in plant
breeding since they can be used to assess different traits in
large-scale field trials (Rodrigues et al., 2018; Loladze et al.,
2019). In particular, aerial HTP platforms have become favored
overground platforms, as they are suitable for use in large
breeding trials and show a good trade-off between time, data
accuracy, and resolution (Yang et al., 2017; Gracia-Romero
et al., 2019; Zhao et al., 2019). The rapid development of
sensors and unmanned aerial vehicles (UAVs), as well as that
of image and data analyses algorithms and improved computer
capacities observed in recent years, have enabled a broad range of
possibilities for aerial HTP to measure plant traits such as PH,
stand count, and vegetation indices, among others (Maes and
Steppe, 2019; Matias et al., 2020; Morales et al., 2020). These aerial
images are used as a proxy for the characterization of quantitative
plant traits. Recent advances in remote sensing using UAV with
sensors measuring the visible (RGB—red, green, and blue bands)
and/or near-infrared (NIR) wavelengths have made it possible to
create high-throughput, cost-effective, and accurate quantitative
phenotyping datasets in wheat breeding programs (Singh et al.,
2019; Reynolds et al., 2020).

Digital color images (i.e., RGB) collected from UAVs have
been used for estimating PH in wheat through different settings
and capabilities (Table 1). Feature matching and structure from
motion (SfM) techniques applied to such imagery enable the
generation of three-dimensional (3D) point clouds that can be
used to reconstruct multi-temporal crop surface models (CSMs)
from which PH can be estimated plot-wise (Singh et al., 2016;
Hassan et al., 2019b). SfM photogrammetry is a method that
uses a set of overlapped images to generate high-resolution
topographic 3D-reconstructions. Through automatic extraction
of corresponding feature points, this method optimizes the 3D
location based on images taken from multiple perspectives,
enabling a simple workflow (James and Robson, 2014; Nex and
Remondino, 2014).

Despite the advances of this method for estimating PH
using UAV imagery (PHaerial), there are several factors that
should be taken into account, such as image ground sampling
distance (GSD) or weather conditions, that can potentially affect
its performance and accuracy (Han et al., 2018; Lu et al.,
2019). Willkomm et al. (2016) also found that plant movement
during image acquisition and the lack of protocol for field
hand measurements can lead to PH underestimations. In view
of these limitations, an effective and low-cost workflow using
RGB camera can be deployed considering an adequate GSD and
statistical aerial analysis under field conditions.

To the best of our knowledge, the image and data quality
of ground-truth measurements (PHground) have not been
adequately evaluated to assess their impact on PHaerial at
individual plot growth stages (GS) in wheat breeding programs.
Therefore, this study aims to validate PH derived from RGB
imagery data and to understand the effect of data quality from
different UAV platforms and PHground. The study’s specific
objectives are: (i) to develop a semi-automated low-cost workflow
for extraction, analysis, and evaluation of PHaerial at multiple GS;
(ii) to compare different UAV platforms used for PH estimations,
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TABLE 1 | Summary of published studies on the estimation of plant height (PH) for wheat from RGB imagery acquired using unmanned aerial vehicles (UAVs).

References GS Platform—
UAV

Camera/sensor GSD cm/p Total number
of plots

Plot size (m) Pixel
extraction

method

R2 for
PHground vs.

PHaerial‡

RMSE for
PHground vs.
PHaerial (cm)¶

Holman et al. (2016) GS30 to GS61 Cinestar
octocopter

Sony NEX 7
24.4 mgpx

1 300 9 × 3 99th percentile 0.52–0.99 1.5–9.9

Madec et al. (2017) GS20 to GS69 Hexacopter Sony
ILCE-6,000

digital$

1 1,173 10 × 1.9 99.5th
percentile

0.95–0.99 2.9–9.8

Hassan et al. (2019a) GS41 and
GS85

DJI inspires 1
model T600

Sequoia 4.0 16
mgpx

2.5 600 1.3 × 1.3 90th and 99th
percentile

0.8–0.96 5.75

Li et al. (2019) GS21 to GS87 DJI matrice 600
Pro

Zenmuse X5R
RGB camera

0.5 170 3 × 0.23 Mean, median,
95th percentile,
and standard

deviation

– –

Lu et al. (2019) GS30 to GS69 DJI phantom
series

High-resolution
digital RGB

camera

1.66 36 6 × 5 Mean, median,
standard
deviation,

coefficient of
variation, and
25th, 50th,

75th, and 95th
percentiles

0.89 6

Schirrmann et al. (2016) GS41 to GS83 P-Y6,
hexapilots,
dresden

(hexacopter)

Sony NEX 7 24
mgpx

1.2 20 1 x 1 90th percentile 0.76–0.92 6.0–15.0

Song and Wang (2019) GS31, GS65
and GS83

DJI phantom 3 High-resolution
digital RGB

camera

1.5 15 2 × 2 Cuboid filter 3D
classification

– 4.5–7.7

Yuan et al. (2018) GS30 to GS87 Matrice 600 pro
(M600) and DJI
phantom 3 Pro

High-resolution
digital RGB

camera

0.47–0.67 100 1.5 x 1.524 89th and 100th
percentiles

0.91 9

Yue et al. (2017) GS30 and
GS65

DJI S1000 UHD 185
firefly—

hyperspectral
sensor#

1 48 6 × 8 Average of pixel
values

0.69 19

GS, Growth stage; UAV, unmanned aerial vehicles; GSD, ground sampling distances (cm/pixel). #Adapted sensor capturing 450–950 nm wavelengths. $30 and 19 mm focal length was used to equip the camera.
‡Coefficient of determination (R2). ¶Root mean square error (RMSE) between PHground and PHaerial, where the single numbers are the joining values obtained across GS by the respective authors.
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and; (iii) to assess the potential environmental issues associated
between PHground and PHaerial. Finally, we investigate PHaerial
and PHground predictions using the genotypic values.

MATERIALS AND METHODS

Plant Material, Site Description, and
Data Collection
The experiments were conducted over two spring wheat
(Triticum aestivum L.) growing breeding cycles: 2016–
2017 and 2017–2018 at the CIMMYT experimental station
Campo Experimental Norman E. Borlaug in Ciudad Obregon,
northwestern Mexico (27◦20’N; 109◦54’W; and 38 masl).
Environmental and management details of this site are given
in Sayre et al. (1997). Two spring wheat panels were studied
under potential yield conditions: the high biomass association
panel (HiBAP)-I and the HiBAP-II. Fifty inbred lines were used
for the validation in HiBAP-I during the 2016–2017 (Y17) and
2017–2018 (Y18) crop cycle, while the whole population of 150
lines was measured in HiBAP-II during the 2017–2018 (Y18).
Both panels include representative lines derived from breeding
and pre-breeding programs with a restricted range of maturity
and height (Molero et al., 2019). The experimental design in
both HiBAP panels consisted of an alpha-lattice design with
two replicates and 30 incomplete blocks per replicate. The plots
consisted of two beds in HiBAP-I Y17 and one bed in HiBAP I
Y18 with two plant rows on the top of the beds for both trials. In
HiBAP-II Y18, three replicates were evaluated in two beds plots.
The beds in all three trials were 0.8 m wide, while the inter-row
spacing within the bed and the space between beds were 0.24 and
0.36 m, respectively. Plot length was 4 m for HiBAP I Y17 and
HiBAP II Y18 and 2 m for HiBAP I Y18.

Aerial (PHaerial, using UAV platforms) and ground-truth
(PHground) plant height (PH) phenotyping were performed
in the experiments during the following GSs: 40 days after
emergence (E+40), at booting (B), 7 days after anthesis (A+7)
and at physiological maturity (M). PHground was measured
using a ruler when 50% of the plot reached a particular GS, as
described by Torres and Pietragalla (2012). Similarly, the two
UAVs were flown on the same day or 1 day apart, depending
on the logistics in the field and the weather conditions. The
optimal time and weather conditions for UAV data collection
were defined as: around solar noon, under clear sky, and a
low wind speed. A summary of solar radiation and wind speed
conditions during the entire flight campaigns for each platform
used is given in Supplementary Table S1. The average height
was obtained from four random individual culms inside each plot
(two in each bed), measuring the distance from the soil surface to
the tip of the spike, excluding the awns, and avoiding any mounds
or cracks in the soil.

Flight Campaign and Imagery Quality
Parameters
The flight campaigns were performed with a high-resolution
digital RGB camera mounted in two different types of UAVs

across the growing cycles: the fixed-wing (PlatFW) eBee (SenseFly
Ltd., Cheseaux-Lausanne, Switzerland) employed in Y17 and
Y18, the multi-rotor (PlatMR) AscTec Falcon 8 (Ascending
Technologies, Krailling, Germany) in Y17 and the Matrice 100
(DJI, Nanshan, Shenzhen, China) in Y18.

The flights were planned at the time of PHground
phenotyping for assessing trials according to the predominant
GS of interest in this study (E+40, B, A+7, and M). Table 2
summarizes the number of flights and main specifications for
each GS assessment at the time of PHaerial estimation, including
the number of flights. The ground control points (GCPs) or
post-processed kinematic (PPK; see below for details) were used
for georeferencing corrections. A set of black and white squared
GCPs were uniformly distributed over the entire field area in
all trials. These GCPs, distributed for each panel according
to Table 2, were surveyed with a Global Navigation Satellite
System (GNSS) receiver using a real-time kinematic (RTK)
correction (Trimble R4 GNSS system, Trimble, Sunnyvale, CA,
United States). Additionally, 11 checkpoints (CP), surveyed using
RTK correction, were placed across the site during the crop cycle
Y18 for georeferenced accuracy assessment of the orthomosaics.

The flights of the PlatFW followed the technical
recommendations in Loladze et al. (2019) and are described
in Table 3. The flight plan was designed for north/south and
east/west flights to achieve both a lateral and longitudinal overlap
of 80%. The flights covered an area larger than the experiment
to cover the entire experimental field and obtain accurate
orthomosaics. High-accuracy corrections of the geolocation
data measured with the PlatFW global navigation satellite
system (GNSS) were calculated in the post-processing stage
using the position of a fixed base station as a reference and the
PPK correction while imagery geotagging (Benassi et al., 2017;
Forlani et al., 2018).

The flight plans for both multi-rotor platforms were designed
to achieve lateral and longitudinal overlaps of 80%, flying
north/south. The flight operations of these multi-rotor UAVs
are shown in Table 3, and further details can be checked in
Tattaris et al. (2016) for the AscTec Falcon 8, and in Horton
and Ranganathan (2018) for the Matrice 100. The flight plans
of both types of platforms, PlatFW and PlatMR, were designed to
acquire images with different ground sampling distances (GSD
in Table 3).

Three-Dimensional Crop Reconstruction
and Plant Height Accuracy Assessment
The aerial data collected by both types of platforms were
geotagged for orthomosaic processing using Pix4D Mapper
software (v4.4.10; Pix4D, Lausanne, Switzerland). Images were
imported into Pix4D software. GCPs were manually located
to improve the accuracy of the three-dimensional (3D) point
cloud georeferencing for PlatFW flights that did not use PPK
corrections, as well as for the flight campaign using PlatMR
(Figure 1A). The georeference accuracy was checked by rather
than in the bundle adjustment of the orthomosaic product. The
digital terrain model (DTM, i.e., the topography of the site
without any plant) was generated for each trial from images
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TABLE 2 | Crop phenology information across the measurements presented as days after emergence (DAE), the predominant development crop stage expressed by
Zadoks growth scale, corresponding phenological stage and identification nomenclature in this investigation, as well as the number of flights for each platform using
ground control points (GCPs) or post-processed kinematic (PPK) corrections for fixed-wing (PlatFW ) and multi-rotor (PlatMR) platforms.

Trial Pred. phenological stage Ident. stagea Zadoks scaleb DAEc Number of flights
(PlatFW)

Number of flights
(PlatMR)

PPK GCP Only GCP

HiBAP-I Y17 (30/Nov/2016d) Stem elongation E+40 37–39 40 1 0 1

Flowering A+7 61–65 73–87 5 0 5

Maturity M 91–92 100 1 0 1

HiBAP-II Y18 (03/Dec/2017) Stem elongation E+40 37–39 40 1 0 0

Booting B 41–47 55–72 6 0 7

Flowering A+7 61–69 76–98 6 2 8

Maturity M 91–92 105–118 2 0 3

HiBAP-I Y18 (18/Dec/2017) Stem elongation E+40 37–39 40 1 0 1

Booting B 41–45 55–69 2 1 3

Flowering A+7 61–69 74–91 1 1 2

Maturity M 91–92 106–111 1 0 1

aSpecific identification of the GS estimated/predominant: at 40 days after emergence (E+40), booting (B), 7 days after anthesis (A+7) and at physiological maturity (M).
bThe decimal (or Zadoks Scale according to Zadoks et al., 1974) growth stage code estimated according to the genetic variability. cDays after emergence represented
by 50% of the plants with the first leaf through coleoptile (GS10). dEmergence date in each crop season.

TABLE 3 | Parameters of flight specifications details for fixed-wind (PlatFW ) and multi-rotor (PlatMR) platforms.

HiBAP-I Y17 HiBAP-II Y18 HiBAP-I Y18

PlatFW PlatMR PlatFW PlatMR PlatFW PlatMR

Sensor Canon PowerShot 110
camera of 16.2

MegaPixels

Sony NEX 5 SODA ZenMuse X5 SODA ZenMuse X5

Resolution (image pixels) 4,608 × 3,456 4,592 × 3,056 5,472 × 3,648 4,608 × 3,456 5,472 × 3,648 4,608 × 3,456

GSDa resolution (cm/Pixel) 1.7 0.7 1.7 0.7 1.7 0.7

GCPsb numbers for internal processing 7 7 9 9 7 7

Flight altitude 65 30 85 30 85 30

aGSD, ground sampling distance.
bGCPs: ground control points used for internal processing forPlatMR andPlatFW without PPK corrections.

collected by a single flight of each UAV platform prior to the
vegetation emergence. The digital surface model (DSM; i.e., the
topography of the site accounting for the plants) was obtained
along with vegetation development at each GS.

The DSM and DTM rasters were computed following the
workflow recommended by Pix4D for high-resolution RGB
imagery (Pix4D, 2019b). This workflow uses a structure from
motion (SfM) algorithm (Ullman, 1979; Snavely et al., 2008)
to obtain a 3D point cloud. The point cloud was later meshed
via an algorithm based on Delauney triangulation (Matthew
et al., 2009; Susanto et al., 2016) computed on multiple image
scales with noise filtering and a “sharp” surface smoothing filter.
Afterward, the DTM was subtracted from the DSM to estimate
the crop surface model (CSM, i.e., the height of individual
plot surfaces) using R software version 3.6.1 (R Core Team,
2018). The PHaerial scripts used to perform the image analyses
and trait extract are available at https://github.com/volpatoo/
HTP-via-drone-imagery/tree/master/UAV-HTP_PlantHeight.
Figure 1 represents the major steps of the data acquisition and

processing, as well as the software, packages, and tools used
in this workflow.

Before computing the CSM for all flight campaigns, we
conducted a preliminary test to define the best parametrization of
the Pix4D workflow. Different settings in Pix4D were combined
and tested to obtain the best high-density point clouds and
DSM (for details, see Supplementary Table S1). The test results
(not shown) were compared based on the accuracy of PHaerial
against the PHground for each platform. This exercise used
the data from the Y17 growing cycle at E+40, A+7, and M
GS and the best performing processing scheme parameters
to generate the 3D point clouds of all the flight campaigns
(Supplementary Table S1).

The PH from the CSM raster was assessed using ArcGIS
(version 10.6, Esri Inc., Redlands, United States). The buffer tool
was used to create regions of interest (ROIPH) to extract PH
values from each plot (Figure 1C). Plant breeding trials usually
consist of small plots within 0.5–1 m of each other in the interests
of trial uniformity. Under these conditions, the canopies of
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FIGURE 1 | Phenotyping workflow for estimation of plant height (PH) using PlatFW and PlatMR (UAVs) platforms (PHaerial) used in north-west Mexico during the
2017 and 2018 growing cycles. PHground, ground-truth measurements; DTM, digital terrain model; DSM, digital surface model; CSM, crop surface model. (A–C)
are GCPs design, locality of the profile selected, and cropped area with the mask of CSM as the top 25th percentile pixels value, respectively.

adjacent plots can interfere with one another by shading, lodging,
or wind load. The small plots can easily cause noise in the PH
estimation, especially after flowering. To ensure the extraction of

pure pixel values (i.e., pixels containing only information from
the plot of interest), we built the regions of interest with a buffer
zone of 0.1 m from the plot edges aligned at the center of the
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two-bed rows. ROIPH were exported as polygons into a shapefile
for the data extraction.

We extracted data from the regions of interest by overlapping
the CSM and the shapefile containing the ROIPH using the R
packages “raster” and “rgdal.” Average PHaerial was calculated
for each plot using pixel values greater than the 75th percentile for
that plot. We tested different criteria for selecting pixels within
the ROIPH but this proved to be the optimum indicator for
PHaerial based on comparison with the PHground values.

Accuracy Assessment of Orthomosaics
Georeferencing
The automation of data extraction per plot requires a high
accuracy in the orthomosaics and DTM georeferencing. To
ensure this, we performed a preliminary study using two
techniques: GCPs and PPK correction. PPK correction was used
to obtain accurately geotagged PlatFW imagery. The table in
Figure 2 shows the comparison between the absolute accuracy of
longitude and latitude coordinates estimated by the two methods.
The accuracy is expressed as the difference between the XY
geocoordinates from the CPs (which were not used in the bundle
adjustment process) by comparing the coordinates of the CPs
obtained at the CSM with the in-site geocoordinates obtained by
an RTK GNSS system (i.e., delta-X and delta-Y, being X latitude
and Y longitude). The delta-X and delta-Y were calculated for
both platforms using the set of 11 CPs placed in the field during
the crop cycle Y18. Additionally, the root mean square error
(RMSE) of the differences between X and Y coordinates, the mean
values and the standard deviations (SD) were computed. These
parameters showed that the PPK achieved similar results than
those obtained with GCPs for horizontal XY coordinates (RMSE
∼ 1 cm and SD < 3.62 cm; Figure 2). The average accuracy
measured as SD on the CPs coordinates was in agreement with
the accepted limits mentioned by Vautherin et al. (2016): one
to two times the GSD in X and Y directions either to GCP or
PPK corrections.

We also evaluated the accuracy for altitude estimations (i.e.,
Z-axis) by contrasting calculated and ground-truth GCP height
values using one flight in each breeding cycle for PlatFW and
PlatMR (Figure 3). The height accuracy measured on the GCPs
was acceptable in all flight dates, with the PlatMR showing slightly
better results (RMSE = 1.77–1.85; and SD = 1.63–1.76) than
PlatFW (RMSE = 2.81–3.84; and SD = 1.62–2.88). The R2 was
greater than 0.95 for all cases. The accuracy measured as SD also
followed the criterion adopted by Vautherin et al. (2016): two
to three times the GSD in the Z direction for both platforms.
Overall, the accuracy obtained in the CSMs using PPK and GCP
approaches reached similar results.

Statistical Models and Genetic Selection
Evaluation
Since we conducted few flights at each GS, we first built a linear
model to fit a single PH value per plot. In this model, the PHaerial
from each platform at each GS was used as a dependent variable
against plot and number of flights as explanatory variables. The
adjusted means per plot for PHaerial and PHground values were

then used to calculate best linear unbiased estimates (BLUEs)
within each crop cycle, using the following model:

yijk = µ + gi + rj + bk(j) + εijk

where yijk is the trait value for genotype i, replicate j, and block
k; µ is the overall mean; gi is the fixed effect for genotype
i; rj is the random effect for replicate j, which are assumed
to be independently and identically distributed according to a
normal distribution with mean zero and variance σ2

r ; that is, rj ∼

iid N(0, σ2
r ); bk(j) ∼ iid N(0, σ2

b) is the random effect for block k
within replicated j; and εijk ∼ iid N(0, σ2

ε ) is the residual effect.
For each growing cycle, Pearson’s correlations, R2, and RMSE

for PHs between PHground and PHaerial were calculated using
the BLUEs derived from the above model at each GS after
removing the outliers. Outliers were flagged using studentized
residual from PHground values, and the significance of their
correlation with PHaerial was determined by the Bonferroni test
at P < 0.01 (Fox and Weisberg, 2019). The identified outliers
were removed from both PHground and PHaerial to perform
the analysis. Finally, the RMSEdev was computed to measure
the deviation between the estimated values (PHaerial) and the
measured values (PHground) across GS in each trial, according
to Zhou et al. (2020).

The validation of the prediction model used best linear
unbiased predictions (BLUPs) and heritability for PHground
and PHaerial. The genotypic variance components (σ2

g and σ2
ε )

were derived by the fitted model described above for both
PHground and PHaerial to calculate the broad-sense heritability
(H2

g , sometimes termed "repeatability") with the genotype gi

treated as a random effect in which gi ∼ iid N(0, σ2
g). Thus, H2

g
quantifying the repeatability of the plant height trait estimation
was computed as the ratio between the genotypic to the total
variances (Holland et al., 2002). The significance (Ripley, 2019) of
the Spearman rank correlation coefficient (ρ) (Spearman, 1904)
was calculated using the BLUPs from both UAV-platforms against
PHground for assessing the accuracy of genotypic rank selection.

Additionally, we measured 50 coincident genotypes in Y17
and Y18 (HiBAP-I) crop cycles (considering gi ∼ iid N(0,Aσ2

g)
where A is the associated additive relationship matrix) to obtain
the narrow-sense heritability

(
h2

a
)

for both UAV-platforms and
to assess the accuracy under a G × E interaction model design,
including the genotype × year interaction effect (tge) also as
random with tge ∼ N(0, σ2

ge). The data collected during booting
in HiBAP-I Y18 was removed from the statistic-genetic model
for G × E interaction in order to match better the GSs and
calculate the BLUPs. For this analysis, R2 represents the accuracy
of predicted values from the correlations between the PHground
and PHaerial. The standard errors (SE) of the heritability
parameters in both validation models were obtained through
mixed model output (Wolak, 2018).

We used the R software to run the statistical analyses,
including linear models (Gilmour et al., 2015), multiple
comparison procedures (Lenth, 2016), mixed and prediction
models (Brien, 2018), and testing of model terms (Fox et al.,
2019). The coefficients of parentage for the pedigree relationship
matrices (A) were estimated as twice the coefficient of parentage
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FIGURE 2 | The mean delta-X and delta-Y from all geocoordinates obtained from 11 checkpoints (CP) vs. the geocoordinates obtained from the orthomosaic (CSM)
resulted from 14 GCP and PPK corrections. Standard deviation (SD) and Root Mean Square Error (RMSE) for X and Y coordinates. The base image corresponds to
the bare soil flight using PlatFW in the HiBAP-II trial during November 2018. 1Mean difference between measured coordinates to GCP and PPK.

using the "Browse" application within the International Crop
Information System software package (McLaren et al., 2000).

RESULTS

Descriptive Statistics Across Growth
Stages
PHground values were similar across crop cycles at the same
evaluated GS (Figure 4). The heterogeneity within each trial
remained relatively stable at B, A+7, and M (SD = 4.13–4.97 in

HiBAP-I Y17, SD = 6.02–7.04 in HiBAP-I Y18, and SD = 4.62–
5.65 in HiBAP-II Y18). The median value and SD for ground-
truth PH measured at E+40 showed some discrepancies across
cycles and trials, possibly attributable to the different genotypes
used in each HiBAP panel, the year effect and differences in
emergence dates.

UAV Plant Height Assessment and
Validation
The PHaerial estimates were, in general, similar to PHground
values. This matching can be visualized in Figure 5, where
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FIGURE 3 | Coefficient of determination (R2), root mean square deviation (RMSE), and standard deviation (SD) of the errors, between ground control points (GCPs)
height estimate from the digital surface model (DSM), and ground-truth measurements for three different dates of flights using PPK for fixed-wind platform (PlatFW )

and only GCP corrections for PlatFW and multi-rotor (PlatMR). The dark black dashed diagonals represent the 1:1 line, and the colored solid (GCP) and dashed (PPK)
lines represent the regression lines.

transects of PHground and PHaerial data from HiBAP-II are
compared (refer to Figure 1B for the location of this transect
within the HiBAP-II trial). Considerable mismatching between
PHground and PHaerial values was detected at booting (B),
whereas the best agreement was observed during maturity (M).

The agreement between PHground and PHaerial data was
further confirmed by the strong correlations observed during
most of the growing cycle for both platforms (Figure 6). The
coefficient of determination at the different GS ranged from non-
significant to R2 = 0.88, and from non-significant to R2 = 0.81, for
PlatFW and PlatMR, respectively. The measurements at maturity
showed the highest and most consistent correlations across the
different trials and platforms, with R2 values ranging between
0.7 and 0.88. The lowest correlations were obtained at booting,
observing even non-significance in HiBAP-II Y18 for both
PlatFW and PlatMR (p ≥ 0.78). The PlatFW platform performed
better than PlatMR in HiBAP-I, except at E+40 during Y17, where
PlatMR showed a coefficient of determination of 0.66 against 0.41
in PlatFW . Conversely, PlatMR performed slightly better than

PlatFW in HiBAP-II (Figure 6), particularly at A+7 (R2 = 0.47
in PlatMR vs. R2 = 0.37 in PlatFW) and M (R2 = 0.74 in PlatMR
vs. R2 = 0.7 in PlatFW). Overall, the RMSE of the predicted
model for individual GS did not exceeded 4.02 cm. However,
the RMSEdev obtained across GS for each platform in HiBAP-
I Y17 and HiBAP-I Y18 were around 15 cm (RMSEdev = 15.06
and 14.95 cm in HiBAP-I Y17; RMSEdev = 14.44 and 15.42
in HiBAP-I Y 18). The best performance for RMSEdev was
in HiBAP-II Y18 in both platforms. Nevertheless, the PlatFW
provided better results than PlatMR (RMSEdev = 8.19 for PlatFW
vs. 12.14 = PlatMR).

HTP for Genotypic Prediction of Plant
Height From Wheat Breeding Trials
The evaluation strategy using H2

g shows strong potential for
PHaerial implementation in a wheat breeding program, as
PHaerial reached similar or higher values H2

g than those from
PHground for each GS and across locations (Figure 7).
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FIGURE 4 | Boxplot of BLUEs for wheat plant height (PH, cm) in each of the observed crop cycles at the following growth stages (GS): 40 days after emergence
(E+40), booting (B), 7 days after flowering (A+7) and at physiological maturity (M).

The PlatMR provided better H2
g estimations than PlatFW and

PHground for all GS at HiBAP-I Y17, except for maturity
from PHground, ranging from 0.71 to 0.97 for PlatMR vs.
0.46–0.93 for PlatFW , and vs. 0.62–0.96 for PHground. On
the other hand, the PlatFW obtained greater H2

g values than
PlatMR and PHground at HiBAP-I Y18 in all GS analyzed,
except for A+7 from PHground (H2

g = 0.80, 0.96, 0.95,
and 0.90 for PlatFW vs. H2

g = 0.37, 0.56, 0.90, and 0.85
for PlatMR, and vs. H2

g = 0.71, 0.96, 0.97, and 0.92 for
PHground, for E+40, B, A+7 and M, respectively). On HiBAP-
II Y18, both platforms obtained similar results, but H2

g PHaerial
estimations were significantly better than PHground at booting
and PlatFW at A+7 was better estimations than PlatMR and
PHground. Furthermore, PlatFW and PHground in HiBAP-I Y18
provided more accurate estimations of H2

g in comparison with
PlatMR at booting.

Overall, the H2
g responses were in agreement with the results

from the correlations (R2) between PHground and PHaerial
data. For HiBAP-I trials the H2

g degraded at E+40, and increased
at later GS. Additionally, the UAV platforms showed better

H2
g estimations than PHground across GS for each crop cycle

(H2
g 0.78, 0.92 and 0.94 for PlatFW , and H2

g 0.88, 0.67 and 0.93
for PlatMR vs. H2

g 0.82, 0.89 and 0.78 for PHground, within
HiBAP-I Y17, HiBAP-I Y18, and HiBAP-II Y18
trials, respectively).

The Spearman rank correlations (ρ) between predicted values
for PHaerial and PHground were significant (P< 0.001) at all GS
in all trials except at booting in HiBAP-II Y18. The highest ρ for
HiBAP-I Y17 was observed at maturity for both platforms, and
at HiBAP-I Y18, except at booting using the PlatFW (ρ = 0.91).
Moreover, the greatest ρ in HiBAP-II Y18 was achieved at E+40
via PlatFW (ρ = 0.83). Lower, but still significant correlations
using both platforms were observed at A+7 in HiBAP-II Y18
(ρ = 0.45 for PlatFW , and ρ = 0.46 for PlatFW) (Figure 7).

When genotype-environment interaction (G× E) effects were
considered in the prediction of the genotypic PH values, the
narrow-sense heritability (h2

a) for PlatFW was greater than for
PlatMR for all GS analyzed (h2

a 0.29, 0.65, and 0.62 in PlatFW , vs.
h2

a 0.06, 0.42, and 0.41 in PlatMR, for E+40, A+7, and maturity
growth stages, respectively). However, the h2

a from PHground was
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FIGURE 5 | Profile of 70 plots from HiBAP-II for PlatFW and PlatMR at the following growth stages (GS): 40 days after emergence (E+40), booting (B), 7 days after
flowering (A+7), and at physiological maturity (M). Plant height (PH, cm) via ground-truth (ground) and unmanned aerial vehicle (UAV) data (aerial) are represented in
the solid and dotted lines, respectively, matching with low (blueish) and high (reddish) color scale to PH. The 2D plots profiles image were generated using the
textured mesh feature via the densified point cloud of Pix4D processing.
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FIGURE 6 | Linear relationship between plant height (PH, cm) estimated from the unmanned aerial vehicle (UAV-based) data (PHaerial) and that ground-truth
measured manually (PHground), as well as RMSE, and the number (n) of genotypes considered at four growth stages (GS): 40 days after emergence (E+40),
booting (B), 7 days after flowering (A+7), and at physiological maturity (M) for PlatFW and PlatMR considering all locations in this study. Black solid line shows the 1:1
lines; light shadow color represents a 99% confidence interval. The RMSEdev in the bottom right represents the deviation between the PHaerial and the PHground
across GS. ∗∗∗ indicate p-value of the coefficient of determination (R2), with ∗∗∗P < 0.001; NS, non-significative value.

higher than PHaerial at A+7 (h2
a 0.71) and M (h2

a 0.71). The
accuracy (or R2) remains constant across GS ranging from 0.75
to 0.96 in PlatFW vs. 0.64–0.92 in PlatMR, but with lower values at
E+40 for both UAV platforms (Figure 8).

DISCUSSION

The present study aimed to prove the applicability of aerial
photogrammetry (i.e., using UAVs) to estimate PH in the
wheat breeding context. Throughout the growing season, aerial
HTP approaches were conducted on two different wheat panels

(HiBAP-I and II) with two UAV platform classes (multi-rotor
and fixed-wing) equipped with RGB cameras using PPK or
GCP corrections. Our findings showed that for most of the
growing stages, the UAV-based data (PHaerial) could be used
for reliable estimations of PH and that genotype selection based
on this data was equivalent to that obtained by manual ground
measurements (PHground) (R2 = 0.35–0.88). We attribute the
good results obtained for a large number of experimental wheat
plots (100 for HiBAP-I and 450 for HiBAP-II) partly to the
strategy used in the pixel PH values extraction within each plot.
The selection of pixels from the top 25th percentile within each
plot region of interest of the imagery was intended to increase
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FIGURE 7 | The solid color lines represent the broad-sense heritability (H2
g ) across crop cycles (2016–2017 and 2017–2018) for PlatFW , PlatMR and PHground in the

growth stages: 40 days after emergence (E+40), booting (B), 7 days after flowering (A+7), and at physiological maturity (M) and its 95% confidence interval based on
standard errors. The color bars show the Spearman Rank Correlation (ρ) from the predicted values between PHground and PHaerial. All ρ significant at P < 0.0001
except to B (non-significant) in HiBAP-II Y18.

FIGURE 8 | Narrow-sense heritability (h2
a) and coefficient of determination (R2) from genotype-by-environment interaction (G × E) model using HiBAP-I genotypes

measured in 2016–2017 and 2017–2018 growing cycles via PlatFW and PlatMR, and across growth stages (GS): 40 days after emergence (E+40), 7 days after
flowering (A+7), and at physiological maturity (M). The solid color lines represent the accuracy (R2) for predict values between PHground and PHaerial, plus the
confidence interval (CI) by the error bar. The colored squared represents the h2

a and the error bars indicate standard error. All growth stages (All_GS) were also
considered to confirm the accuracy of genetic correlations. The cross lines give the upper and lower bounds of the 95% CI of the correlations computed using
ρ̂ = 1.96

√
(1− ρ̂)/(n− 2), where ρ̂ is the estimated correlation, and n is the number of records used to compute the correlation.

the proportion of observations from the upper canopy in further
analyses (Figure 1C). This strategy showed the best results in our
study, differing from other studies, as shown in Table 1, which

used either the average or very restricted statistical methods such
as the 99th or 99.5th percentiles. These restricted models may be
“too selective”—going against field hand measurement protocols
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where randomization within the plot and a minimum number of
measurements should be respected.

Assessing the Data Quality of
UAV-Based Plant Height Estimations
A number of factors can have an impact on PHaerial
estimations. In this section, we outline major potential sources
of error discussed in previous studies, including UAV imagery
parameters, choice of platform, and environmental factors, and
their potential relevance to our study.

Ground sampling distance (GSD) is important in creating
high-quality orthomosaics via orthorectification to obtain the
DSM from the dense image matching as an additional source
of data to enhance the PH model accuracy (Madec et al.,
2017; Lu et al., 2019; Wilke et al., 2019). This orthomosaic
generation method confers more accurate 3D points due to
the extraction of common characteristic points (keypoints) in
different images and by removing perspective distortion from
the images using the DSM (Pix4D, 2019a). In our study, the
differences observed in the performance of the two aerial
platforms suggest that UAV imagery parameters such as GSD,
altitude, and point cloud density may have influenced the
PHaerial estimation accuracy. Our results indicate the PlatFW
produced slightly more accurate PH estimations using a higher
GSD (GSD = 2 cm/pixel) and a lower point cloud density
(see Supplementary Table S1) compared to PlatMR. Therefore,
our results suggest there is no need to work with sub-
centimeter resolution for DSM reconstruction when targeting
PH estimation. This is in alignment with results obtained by
Lu et al. (2019).

Even though in the case of our study PlatFW produced the
best correlations and RMSE results overall, the choice between
the two classes of platforms that have been evaluated in this
study depends on the processing pipeline used, plant breeding
target, and several other technical factors such as area extension,
pilot expertise, total flight time, and intended GSD (Puri et al.,
2017; Park et al., 2019). Each of these decisions can affect the
quality of the PH data.

Other authors have noted several sources of error in aerial
estimation of PH in wheat crops, including inefficient image pre-
and post-processing due to suboptimal flying altitude, inaccurate
DTM construction and errors in height extraction strategy from
images (Hassan et al., 2019a). Chu et al. (2017) demonstrated
that under unfavorable weather conditions, the quality of a dense
point could affect the 3D-pixel constructions. For example, wheat
PH data bias can occur due to wind conditions when using
high spatial resolution images similar to those recorded from
PlatMR (GSD = 0.7 cm/pixel). In our study, the high-resolution
images recorded from the PlatMR captured a higher variability
within the vegetation, probably making the CSM reconstruction
more susceptible to slight plant movements and changes in
illumination conditions within the canopy. Future studies or
applications should consider these factors when planning to
use high resolution imagery for 3D surface reconstruction.
Otherwise, our study shows that a GSD of (GSD = 2 cm/pixel)
may be sufficient for an efficient plant height estimation.

Environmental conditions during data acquisition can also
lead to noisy point clouds that hinder PH estimations. These
factors could result in lower 3D point accuracy during
the orthorectification processing, affecting the point cloud
densification step (Tirado et al., 2019). Indeed, our results
for HiBAP-I Y17 show evidence that the PHaerial accuracy
increased as the wind speed decreased, in contrast with the
solar radiation that only slightly influenced the correlations
(with no significant differences across GS) in HiBAP-I Y18
(Supplementary Figure S1). Other environmental factors that
can potentially have an impact on the PHaerial are shadows (Jin
et al., 2017; Brocks and Bareth, 2018), radiometric calibration
(Mafanya et al., 2018), brightness levels (López-Granados et al.,
2019), and cloudy weather (Niedzielski and Jurecka, 2018).

The UAV/PPK results in our study showed a high agreement
with those obtained from CPs and GCPs. This demonstrates that
PHaerial using PPK corrections could be an affordable method
to increase image georeference accuracy by reducing human
interference such as surveying GCPs, importing and manually
marking them into the software (Figures 2, 3). As we elaborated
in our study, correct calibration of the camera also depends
on proper image georeferencing based on the distribution of
a sufficient number of GCPs across the field and extensive
overlapping between images (Madec et al., 2017; Sanz-Ablanedo
et al., 2018). In other studies, RTK/PPK has been used to correct
the location of drone mapping imagery and improve the accuracy
of GNSS data or geotags as they are captured either during
flights (RTK) or after flight (PPK) (Forlani et al., 2018; Padró
et al., 2019). However, these previous studies haven’t concluded
whether direct georeferencing using RTK/PPK will supersede
GCPs to become the standard referencing technique for UAV
imagery. The challenges of surveying the GCPs and keeping them
in place throughout the life of the crop makes the PPK method
cost-effective. It is also time-consuming to check all GCPs on
the photogrammetry software to compute the keypoints on the
images. To avoid this issue in a practical field situation, we
recommend the use of a UAV/PPK system as implemented for
PlatFW , since the results were comparable to those orthomosaics
georeferenced with GCPs.

Finally, the settings used in the software for orthomosaics
and the DSM generation could also impact the accuracy of
PH estimation using UAVs. As discussed by Holman et al.
(2016), the software settings should be carefully selected and
accurately reported for future improvements in UAV-based
SfM methods. Our study achieved reliable outputs after testing
different combinations of the settings in Pix4D. The optimal
settings can be replicated according to Supplementary Table S1.
Additionally, we provide a user-friendly script to perform
the pixel values extractions using an open-source software (R
software) to support future user.

Accuracy and Phenotypic Variations in
UAV-Based Plant Height
The strong correlations and CI observed between PHground,
and PHaerial values indicate that this approach can be used for
growth rate analysis and wheat selection in a breeding pipeline.
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The UAV data processing chain used in this study demonstrated
itself to be quick, cost-effective, and accurate for the target trait.
Moreover, our results showed accuracy levels similar to previous
studies (Table 1) for PH estimation at individual GS, with higher
correlations at late GS, matching findings of other studies (Hassan
et al., 2019a). Nevertheless, it is essential to note that in some
studies, the authors report correlations across stages along the
growth cycle (Madec et al., 2017; Yue et al., 2017; Yuan et al.,
2018; Harkel et al., 2019; Lu et al., 2019), masking the actual
assessment power of PHaerial by stretching the response variable
(i.e., ground PHs).

Efforts using high-throughput to estimate PH have also
achieved reliable results using other platforms in several crops
(Harkel et al., 2019; Reynolds et al., 2020). In particular,
ground-based light detection and ranging (LiDAR) has been
reported to provide more accurate PH estimations than UAV
photogrammetry in wheat (Holman et al., 2016; Jimenez-Berni
et al., 2018; Deery et al., 2020). However, the implementation
of such a platform is limited and can be expensive (Nex
and Remondino, 2014; Guo et al., 2018) compared to high-
resolution RGB cameras. In addition, cutting-edge technologies
in remote sensing have triggered the rapid development of
affordable high-performance sensors (i.e., RGB, multispectral
and hyperspectral cameras) and UAVs with higher autonomy
and payload capacity, increasing the possibilities for field
phenotyping applications (Sankaran et al., 2015). Our workflow
using UAV-based imagery may be comparatively cheap and
more efficient than ground platforms for phenotyping large
and multi-location trials, targeting quick data acquisition and
reducing computer resources; concepts that are supported
by the literature via SfM approaches (Wang et al., 2018;
Reynolds et al., 2019).

Despite the high correlations and acceptable RSME of the
fitted model, in early stages (i.e., E+40 in Figure 6), the
limited range of variation of PH can limit the correlations
as demonstrated in HiBAP-I trials (Figure 4), which was also
found by Madec et al. (2017). The deviation between PHground
and PHaerial obtained in this study corroborates with errors
in the literature in wheat PH estimations using UAV platforms
(Table 1). In this study, we assessed the RMSEdev by the
agreement between PHground and PHaerial as a measure of
accuracy. Studies suggest that bias in crop height estimations
by UAV platforms is due to the inability of SfM to reconstruct
the top of the canopy accurately (Madec et al., 2017), the
influence of neighboring plants (Khanna et al., 2015; Watanabe
et al., 2017), and an inaccurate DTM strategy for pixel value
extraction (Hu et al., 2018). However, the performance of SfM
reconstruction could be improved by increasing the image
overlapping (Seifert et al., 2019), and possibly by using better
quality camera lenses and shortening flight time to avoid different
sky conditions during flight timing. In our study, using fixed-
ground targets at different heights proved to be an essential
validation step in the current data processing workflow for PH
estimations. The very accurate height estimations of the ground
targets achieved using PlatMR and PlatFW (R2 > 0.95 and
RMSE < 4.11 cm; Figure 3), show the real potential of this
method, and suggest that differences in plot-level estimations of

PH between the PHaerial and PHground may be partly related
to inaccuracies in manual scouting over very extensive field trials
and wind movement.

In our study, the lack of correlations in HiBAP-II at booting
highlighted some issues with PHground that are easily detectable
when drawing a transect to compare trend lines (Figure 5).
Accurate phenotyping is fundamental for the calibration or
validation of novel HTP approaches (Araus and Cairns, 2014),
as reported in studies on high-throughput genotyping (Ma
et al., 2014). Reynolds et al. (2019) discuss the cost-benefit
for phenotyping, showing that UAV-based photogrammetry
is relatively affordable when flights operate under favorable
conditions, i.e., with no rain, sunny days, and light to moderate
wind speed. However, during the flights performed at booting
in HiBAP-II Y18, the weather conditions for wind speed and
solar radiation were reasonable compared with the other GS
in the same trial. The weak correlations in this case could be
attributed to heterogeneity within and between plots and canopy
architecture issues in detecting the booting during the vegetative
stage in experimental wheat plots (Torres and Pietragalla, 2012;
Rosyara et al., 2019).

The accuracy of the DTM is paramount for accurate
estimations of PH, especially in highly dense canopies such
as those observed at A+7 and M (Bendig et al., 2014; Iqbal
et al., 2017; Yang et al., 2019). The DTM can be obtained from
measurements over the bare soil before the vegetation grows,
as performed in this study. Additionally, the DTM can also be
generated when vegetation is present by means of point cloud
classification (Pix4D, 2018). However, the main challenge of this
latter method is that generally at late GS, the bare soil is rarely
exposed close to the region of interest during flights to capture
in-field pixels. Furthermore, as the detection of bare soil pixels is
usually done by image classification methods, this can be affected
by rugged relief (Hassan et al., 2019a). Despite these limitations,
some authors prefer the estimation of DTM from vegetation
DSM, arguing that there are advantages in terms of processing
time (Zhang et al., 2018; Hassan et al., 2019a). In our study, we
use as a baseline a DTM generated from bare soil images acquired
before plant emergence. The advantage of this approach is that it
does not rely on image classification algorithms. A drawback of
using such DTM is that an extra flight is demanded and more
reference points for the SfM algorithm are needed.

UAV-Based Plant Height as a Reliable
Trait for Wheat Phenotyping
The satisfactory correlations (R2) between PHground and
PHaerial observed in this study indicate the applicability of our
study’s UAV-based workflow. However, this may not serve all the
needs of plant breeders, who often use heritability as a measure of
the precision of trials and/or to compute the response to selection
(Piepho and Möhring, 2007; Schmidt et al., 2019). Therefore our
study also used heritability (H2

g andh2
a) to confirm the UAV-

based approach’s ability to infer the predicted genetic values.
Additionally, we used the genotypic correlation to compare the
similarity between PHground and PHaerial rankings using the
predicted values.
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We found that the highest H2
g values across GS for PHaerial

may indicate more reliable phenotyping measurements. In this
case, the selection ranking of the best genotypes could be done
using PHaerial assessments. This finding was also confirmed
by the Spearman rank correlation (Figure 7). Therefore, our
workflow for phenotyping PH combined with reliable H2

g can be
an affordable and efficient method to offer breeders more accurate
genotype selection criteria. Other studies have also supported a
link between higher heritability (or repeatability, in some cases)
and PH in later GS (Hassan et al., 2019a; Deery et al., 2020).
However, some issues may appear in the temporal image when
the target traits depend on the geometric structure, as described
by Madec et al. (2017), who observed poor H2

g at the end of the
growth cycle due to plant lodging. These circumstances were not
evident in our study.

Medium to low levels of h2
a observed in the GS suggest

a meaningful environmental influence, indicating that G × E
interactions affect PH predictions (Figure 8). These results were
supported by the random effect significance (Wilks, 1938) of
G× E interaction at most of the GS analyzed, except in E+40 for
PlatMR and PHground (data not shown). The non-significance,
in these cases, can be attributed in part to the limited range
of variability for PH. Furthermore, lower h2

a are expected when
compared with H2

g due to pedigree information, in which the
h2

a uses the proportion of genetic variation due to additive genetic
effects only (Piepho and Möhring, 2007). The results confirmed
that PH is a critical trait responsive by G × E interaction,
as expected in quantitative traits (Tian et al., 2017; Tshikunde
et al., 2019). The high correlations between predicted values for
PHaerial and PHground across and within GS indicate that each
platform measured similar underlying genetic traits. This means
PHaerial can reliably predict genotypic values and rank genotypes
as reliably as PHground.

CONCLUSION

The present study implemented and validated an efficient and
scalable approach to acquire PH measurements under extensive
wheat breeding trials at different growth stages. The remote
sensing techniques applied in this study allowed the estimation
of PH using high-resolution RGB imagery recorded from two
UAV platforms and processed through a semi-automatic pipeline.
The results for all trials in two growing cycles prove that the
study workflow was able to estimate PH from UAV platforms
comparable in accuracy to those measured by ground-truth
notes. Our findings also indicate that using PHaerial for genotype
selection could be a cost-effective way to predict PH values
using temporal data from drone imagery taken in multiple
environments, mainly in late GS. Due to the reliable results
achieved by PlatFW to compute PH, it is reasonable to conclude
that a lower density point cloud does not confer PH noise
or underestimation in comparison to PlatMR.The accuracy was
responsive to image quality (i.e., GSD, weather conditions, etc.)
and the settings in the processing steps of the surface model
generation. A proper georeferencing of the orthomosaic is an
essential step for data extraction, and the UAV-PPK approach

was demonstrated to be a suitable method to replace laborious
conventional methods using GCPs.

As evidenced by wheat PH studies in Table 1, different
pixel extraction approaches can be made by choosing different
thresholds for capturing the genotype variability within and
among experimental plots. In this study, the reliably results
obtained using PH estimations at multiple GSs and environments
was also endorsed by the authors in Table 1. Finally, this study
demonstrates that it is feasible to process high-volume field-based
phenotypic data using UAV-based imagery.
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