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The current pandemic has caused chaos throughout the world. While there are few
vaccines available now, there is the need for better treatment alternatives in line with
preventive measures against COVID-19. Along with synthetic chemical compounds,
phytochemicals cannot be overlooked as candidates for drugs against severe
respiratory coronavirus 2 (SARS-CoV-2). The important role of secondary metabolites or
phytochemical compounds against coronaviruses has been confirmed by studies that
reported the anti-coronavirus role of glycyrrhizin from the roots of Glycyrrhiza glabra.
The study demonstrated that glycyrrhizin is a very promising phytochemical against
SARS-CoV, which caused an outbreak in 2002–2003. Similarly, many phytochemical
compounds (apigenin, betulonic acid, reserpine, emodin, etc.) were isolated from
different plants such as Isatis indigotica, Lindera aggregate, and Artemisia annua and
were employed against SARS-CoV. However, owing to the geographical and seasonal
variation, the quality of standard medicinal compounds isolated from plants varies.
Furthermore, many of the important medicinal plants are either threatened or on the
verge of endangerment because of overharvesting for medicinal purposes. Therefore,
plant biotechnology provides a better alternative in the form of in vitro culture technology,
including plant cell cultures, adventitious roots cultures, and organ and tissue cultures.
In vitro cultures can serve as factories of secondary metabolites/phytochemicals that
can be produced in bulk and of uniform quality in the fight against COVID-19, once
tested. Similarly, environmental and molecular manipulation of these in vitro cultures
could provide engineered drug candidates for testing against COVID-19. The in vitro
culture-based phytochemicals have an additional benefit of consistency in terms of yield
as well as quality. Nonetheless, as the traditional plant-based compounds might prove
toxic in some cases, engineered production of promising phytochemicals can bypass
this barrier. Our article focuses on reviewing the potential of the different in vitro plant
cultures to produce medicinally important secondary metabolites that could ultimately
be helpful in the fight against COVID-19.
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INTRODUCTION

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)
has become the deadliest virus in a century. SARS-CoV-2,
which originated in Wuhan, China in December 2019, has
killed more than two million people so far. This is the third
time that a coronavirus has caused an outbreak during the
21st century, SARS and Middle East respiratory syndrome
(MERS) being the previous ones. This virus has been termed
the novel coronavirus (SARS-CoV-2) and causes a severe
respiratory syndrome collectively called coronavirus disease 2019
(COVID-19). The disease, because of the ease of spread of its
causative virus, became a pandemic very quickly. Owing to
this, 2.37 million people have died because of COVID-19 and
108.33 million have tested positive for the virus as of February
13, 2021 (Worldometer, 2020).

Scientific advancements allowed researchers to advise
governments across the world on quick prevention measures.
Based on the rapid information coming out about the virus,
including its transmission pattern, morphology, and deeper
biological information, the World Health Organization (WHO)
and other leading health organizations across the world advised
on emergency containment and control measures. Control on
a global scale allowed stakeholders from every sector to work
toward mitigation measures more efficiently. Slowing down
the spread and thus containment of the virus has also allowed
scientists to work on many treatment options for COVID-19.
Although the current option to treat COVID-19 patients is to
alleviate symptoms and avoid co-infection with bacteria through
medications, trials on different drug and vaccine candidates
are underway (Thanh Le et al., 2020). However, the safety
concerns regarding repurposed drugs and the fact that vaccines,
when available, will only prevent infection, calls for additional
avenues of drugs to treat patients. Plants provide one such
avenue through the products of their secondary metabolism, i.e.,
phytochemicals. But these too are limited by safety concerns,
seasonal and geographic dependence, and lesser uniformity in
the metabolite profile of medicinal plants across the globe. The
solution to these barriers in harnessing secondary metabolism
running in plant cell factories is provided by plant biotechnology.
Plant biotechnology is a very promising platform for providing
uniform, safe to use, high-yield drugs against coronaviruses.
This review article highlights the important potential role of
plant cell factories to produce safe and high-yield medicinal
compounds against COVID-19. The paper reviews the important
biotechnological strategies that can be employed to make the best
use of plants for providing secondary metabolites as candidates
during anti-SARS-CoV-2 drug discovery.

TREATMENT OF COVID-19: A BRIEF
INSIGHT

Treatment options currently explored include passive immunity
(Abraham, 2020), repurposing of existing drugs, and vaccine
candidates (Harrison, 2020). For instance, recently, the already
available dexamethasone, an inexpensive steroidal drug has

been shown to save the lives of COVID-19 patients in a trial,
called RECOVERY (Ledford, 2020). Similarly, chloroquine and
hydroxychloroquine, antimalarial drugs also showed impressive
results when repurposed to treat COVID-19 patients (Keyaerts
et al., 2004; Gautret et al., 2020; Wang et al., 2020). Vaccine
trials are also underway and the Moderna biotech vaccine
candidate mRNA-1273 (approved for use now by the Food
and Drug Administration) which encodes the stabilized pre-
fusion SARS-CoV-2 spike protein has provoked an immune
response with no trial-limiting side effects (Jackson et al., 2020).
However, vaccines, based on their very mechanism of action, only
prevent a healthy individual from getting infected. Moreover, a
successful vaccine is not thought, at least soon, to be available to
the masses. Similarly, repurposing synthetic drugs also became
controversial because of their safety concerns and adverse events
(Ferner and Aronson, 2020).

The fight against COVID-19 has now become one of the
greatest challenges of the current times. The pandemic has
lasted for over a year now since its inception in December
2019. To date, over 90 vaccines are being developed for the
COVID-19 virus by different research groups in universities
and major companies. Currently, two vaccines (Pfizer-BioNTech
COVID-19 vaccine and Moderna COVID-19 vaccine) have
obtained emergency use authorization from the Food and Drug
Administration in the United States. Pfizer and Moderna have
developed messenger RNA-based vaccines that have been shown
to be 90–95% effective when given at preventing doses 21 and
28 days apart, respectively (Levenson and Howard, 2020). Some
of the groups are even testing the direct injection of viral proteins
that will help in eliciting the immune system and developing
resistance against the virus. One fascinating approach is the use
of genetically modified viruses to develop coronavirus proteins in
the human body. The carrier virus will act as a vector, carrying
coronavirus protein sequences in its genome. Currently, measles
or adenovirus (where the viruses are weakened) is used in this
approach to make either replicating or non-replicating virus
versions (Callaway, 2020). Another fascinating alternative is the
plant-based vaccines developed by Medicago (PMI, 2020). The
company is developing a Nicotiana benthamiana-based virus-
like particle (VLP), to develop a potential vaccine against the
coronavirus disease. The VLPs use genetic sequencing from the
coronavirus to mimic it and produce an immune response in the
body. Plant-based VLP technology offers a very safe alternative to
the vaccines already approved or in the process of development.
These vaccines are virus-free and do not rely on animal products.

PLANT SECONDARY METABOLITES
AND THEIR ANTIVIRAL POTENTIAL

Plant metabolism as a factory to produce anti-SARS-CoV
phytochemicals is an important area of consideration currently. It
is important to highlight the antiviral potential of the main classes
of plant secondary metabolites to understand the role of in vitro
plant cultures and associated biotechnological manipulation in
fighting SARS-CoV-2. Plants produce a diversity of organic
compounds classified as primary and secondary metabolites
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based on either being directly essential to the growth and
development of plants (primary metabolites) or indirectly playing
their role and not essential to growth (secondary metabolites).
Secondary metabolites are produced in plants in situations
of intracellular and/or extracellular stress and are used for
interaction with the environment and protection from pathogens.
This implies that there are thousands of secondary metabolites
produced in plants, classified in different classes by their chemical
structures. The four major classes of plant secondary metabolites
are alkaloids, glycosides, phenolics, and terpenes. The purpose
of highlighting the groups of these metabolites is to relate the
role these classes of compounds could play against SARS-CoV-
2. Several different plant-based compounds have been shown to
be effective against the previous type of coronavirus, i.e., SARS-
CoV. These compounds have been employed for their different
mechanisms of actions against SARS-CoV (Table 1).

Alkaloids, for instance, are nitrogen-containing basic
compounds and include compounds such as quinine, a bitter
alkaloid isolated from the bark of the cinchona tree (Quina).
A synthetic derivative of quinine, i.e., chloroquine has recently
been tested and found to be a good drug candidate against
SARS-CoV-2 because its DNA-intercalating properties prove
potent in alleviating the symptoms of coronaviruses based on its
biocompatibility (Devaux et al., 2020). Chloroquine, now being
tested, has been found to result in side effects such as ventricular
arrhythmias, serious cutaneous adverse reactions, and fulminant
hepatic failure (Ferner and Aronson, 2020). Overall, despite the
side effects, the experimentally proven efficacy of their analogs
and derivatives mean that natural quinines could be effective
in alleviating the symptoms based on their biocompatibility
(Devaux et al., 2020). Similarly, reserpine, an alkaloid isolated
from the dried root of Rauvolfia serpentina (Indian snakeroot)
has been shown to inhibit the replication of SARS-CoV (the
coronavirus that causes the first coronavirus-related epidemic
of this century). Reserpine could thus prove to be an important
candidate against SARS-CoV-2. Similarly, other important
alkaloids, palmatine, and chelidonine were also reported
as intercalating alkaloids and could be easily suggested as
potential drug candidates against SARS-CoV-2 (Ho et al., 2007;
Wink, 2020).

Similarly, flavone glycosides, phenolics, and polyphenolic
compounds which are characterized by aromatic rings and
hydroxyl (−OH) groups have also demonstrated important
antiviral activity in many studies. For example, three flavone
glycosides, quercetin 3-O-rutinoside, kaempferol 3-O-rutinoside,
and kaempferol 3-O-robinobioside have proven effective against
herpes simplex virus and thus points toward their potential role
in working against human viruses (Yarmolinsky et al., 2012). It
has been suggested that the −OH groups inhibit the activity of
viral proteins by forming hydrogen bonds with the positively
charged amino groups of proteins. Additionally, polyphenols can
intervene in the lipoprotein layers of the viral envelope and thus
prevent viral entry in the host cells (Wink, 2020). For instance,
the flavonoid chrysin, derived from genus Rheum and Polygonum
were tested positive for their achrysinctivity against the S protein
and inhibition of ACE2 interaction (Ho et al., 2007). Flavonoids
and polyphenolic compounds like luteolin and quercetin have

experimentally proven activity against SARS-CoV. They have
significantly blocked the entry of the virus into the cells. This
was shown through studies of Yi et al. (2004) wherein they
reported that these small molecules showed promising results
with half-maximal effective concentration (EC50) of 83.4 and
10.6 µM, respectively.

Essential oils and terpenoids have an equally important role
as antiviral plant secondary metabolites. Essential oils can enter
non-specifically into the lipid bilayer of the viral envelope,
altering the fluidity of the membrane and thus interfering
with its pathogenicity even before the entry of the virus
(Ben-Shabat et al., 2020). Terpenoids, comprised of isoprene
units, terpenes, and their oxygenated derivatives, have also
proved potent against many viruses including coronaviruses.
For instance, α-cadinol, pinusolidic acid, and ferruginol, isolated
from Chamaecyparis obtuse, betulonic acid, and cedrane-3β,12-
diol, from Juniperus formosana, and cryptojaponol isolated
from Cryptomeria japonica have been proven to be effective
against SARS-CoV (Wen et al., 2007). The results of the study
indicated that most of the terpenoids inhibited the replication
of SARS-CoV at EC50 between 3.8 and 7.5 µM. Similarly, an
important member of terpenoids, resveratrol has been shown to
prevent the entry of MERS-CoV into the cell. Resveratrol fully
prevented Vero E6 cell death at the concentration of 125–250 µM
(Lin et al., 2017).

WHY PLANT BIOTECHNOLOGY?

While the search for anti-SARS-CoV-2 drugs is ongoing,
according to Capell et al. (2020), one avenue for looking for
anti-SARS-CoV-2 drugs is the plant kingdom. In the traditional
setup, raw plants, as well as extracts from plants, were used
to treat different diseases. The WHO has suggested that 80%
of the world’s population relies on plants for the treatment of
many diseases (Bannerman et al., 1983). Plants have importantly
been employed against human respiratory problems including
respiratory viruses. Such is the importance of plant trials, that
work is currently underway on dried fruit extracts of Forsythiae
fructus as a part of the world’s search for an effective treatment
for COVID-19 (Maxmen, 2020).

However, plants face the threat of over-harvesting and
thus endangerment when collected rigorously. Similarly, due
to insufficient data on safety-related aspects of the use of
phytomedicine, concerns are still there. There is an incorrect
perception that herbal drugs are fully safe and free from any
side effects. There are hundreds of toxic constituents in different
plants. For this purpose, detailed insight into the pathways and
products of the plant’s secondary metabolism is important for
drugs that are safe to use (Nature, 2020). Equally important is
the fact that plants located in different regions of the world
have different metabolite profiles and are highly dependent on
geography and seasons. Plant biotechnology has the potential
to overcome these barriers (Ramirez-Estrada et al., 2016). Plant
in vitro cultures as an important pillar of plant biotechnology
provides an option for making the best use of plant machinery to
produce medicinally important secondary metabolites (Figure 1).
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TABLE 1 | Compounds active against SARS-CoV along with their reported anti-SARS-CoV mechanism of action.

Compound Plant Virus acting on IC50 value Reported antiviral
mechanism

References

1 Aescin Aesculus
hippocastanum

SARS-CoV 3.4 µmol/L – Wu et al., 2004

2 Celastrol Tripterygium
regelii

SARS-CoV 10.3 µmol/L Inhibits SARS-CoV 3CLpro Ryu et al., 2010b

3 Cepharanthine Stephania
japonica

SARS-CoV-2 0.98 µmol/L ACE inhibitor Fan et al., 2020

4 Chalcones I–IX Angelica keiskei SARS–CoV 11.4–129.8 µmol/L Competitively inhibits
SARS-CoV 3CLpro

Park et al., 2016

5 Dihydrotanshinone Salvia miltiorrhiza MERS-CoV 1 µg/mL – Kim et al., 2018

6 Emodin Rheum palmatum SARS-CoV 200 µmol/L Blocks the binding of S
protein to ACE2

Ho et al., 2007

7 Ginsenoside-Rb1 Panax ginseng SARS-CoV 100 µmol/L Inhibits glycoprotein activity Wu et al., 2004

8 Glycyrrhizin Licorice root SARS-CoV 300 mg/L Upregulates nitrous oxide
synthase and nitrous oxide
production

Cinatl et al., 2003;
Schoeman and
Fielding, 2019

9 Hirsutenone Alnus japonica SARS-CoV 4.1 µmol/L Inhibits PLpro activity Park et al., 2012a,b

10 Iguesterin Tripterygium
regelii

SARS-CoV 2.6 µmol/L Inhibits SARS-CoV 3CLpro Ryu et al., 2010b

11 Leptodactylone Boenninghausenia
sessilicarpa

SARS-CoV 100 µg/mL – Yang et al., 2007

12 Lycorine Lycoris radiata SARS-CoV 15.7 ± 1.2 nmol/L – Li et al., 2005

13 Myricetin Myrica rubra SARS-CoV 2.71 ± 0.19 µmol/L Inhibits ATPase activity Yu et al., 2012

14 Pristimererin Tripterygium
regelii

SARS-CoV 5.5 µmol/L Inhibits SARS-CoV 3CLpro Ryu et al., 2010b

15 Quercetin-3-β-galactoside Ginkgo biloba SARS-CoV 42.79 ± 4.97 µmol/L Competitively inhibits
SARS-CoV 3CLpro

Chen et al., 2006

16 Reserpine Rauvolfia
serpentine

SARS-CoV 6.0 µmol/L – Wu et al., 2004

17 Resveratrol Polygonum
cuspidatum

MERS-CoV – – Lin et al., 2017

18 Saikosaponin B2 Bupleurum
chinense

HCoV-229E 1.7 ± 0.1 µmol/L Interferes with events of
early viral attack

Li et al., 2005;
Cheng et al., 2006

19 Scutellarein Scutellaria
baicalensis

SARS-CoV 0.86 ± 0.48 µmol/L Inhibits ATPase activity Yu et al., 2012

20 Tanshinones I–VII Salvia miltiorrhiza SARS–CoV 0.7–30 µmol/L Inhibits PLpro activity Park et al., 2012b

21 Tetrandrine Stephania
tetrandra

HCoV-OC43 0.33 ± 0.03 µmol/L Inhibits p38 MAPK pathway Kim et al., 2019

22 Theaflavin Black tea SARS-CoV-2 – Inhibits RdRp activity Lung et al., 2020

SARS-CoV, severe acute respiratory syndrome-coronavirus; 3CLPro, 3C-like protease; PLpro, papain-like protease; MERS, Middle East respiratory syndrome coronavirus;
ACE2, angiotensin-converting enzyme 2; H-CoV-229E, human coronavirus 229E; H-CoV-OC43, human coronavirus OC43; p38 MAPK, p38 mitogen-activated protein
kinases; RdRp, RNA-dependent RNA polymerases.

Plant cell suspension cultures, callus cultures, hairy root cultures,
adventitious root cultures, and other organ cultures can serve
as the best sources of uniform production of phytomedicine
for COVID-19 (Verpoorte et al., 2002). The importance of
plant in vitro cultures lies in the reason that these cultures
can be manipulated to trigger their defense response through
activating their secondary metabolism. These triggers include
elicitation by biotic and abiotic stresses given in vitro to produce
enhanced quantities of phytochemicals. For instance, Ramirez-
Estrada et al. (2016) reviewed the potential of methyl jasmonate
as an important biotic elicitor to trigger the production of
a diversity of secondary metabolites in different plant cell
cultures (Ramirez-Estrada et al., 2016). Similarly, metabolic
engineering backed by genetic manipulation tools has been a

very viable biotechnology method to obtain novel metabolites
and enhance the yield of the existing metabolites of interest
(Gandhi et al., 2015).

Micropropagation
Micropropagation is a robust and reliable technique used for the
multiplication of plants through in vitro cultures; it produces
many homogeneous plants in a short period. Besides, the
production of bioactive secondary metabolites can be enhanced
in medicinal plants with this technique (Khan I. et al., 2020).
During micropropagation, tiny parts of the plants commonly
called explants excised from different plant species can be micro-
propagated under optimized growth conditions of culture media,
temperature, and photoperiod (Abbasi et al., 2016).
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FIGURE 1 | A schematic representation of the potential plant biotechnology methods that lead to the enhanced production of phytomedicine through in vitro
cultures against SARS-CoV-2.

As indicated in Table 2, several health-promoting metabolites,
especially those which are reported for a multitude of
antiviral potential, have been produced in many plants through
micropropagation in vitro. For instance, Santoro et al. (2013)
reported the production of higher quantities of pulegone and
menthofuran in Mentha piperita, when micro-propagated in vitro
under the effects of 4-indol-3-ylbutyric acid (IBA) and 6-
benzylaminopurine (BAP).

In a recent study, Ali et al. (2018b) reported that Ajuga
bracteosa (a high-valued medicinal plant) accumulated higher
levels of monoterpene hydrocarbons, which could be potentially
used as essential oil-based medicine against human viruses.
These hydrocarbons included limonene (3.4%), α-pinene (5.3%),
camphene (4.45%), α-thujone (9.4%), 1,8-cineole (14.3%),
borneol (11.4%), camphor (12.2%), and nerol (9.2) in the shoots
raised in vitro in response to the application of TDZ (Ali
et al., 2018a). Similarly, the supplementation of TDZ into the
MS media produced a substantial amount of monoterpenes
and sesquiterpenes through shoot cultures in the medicinally
potent plant Lallemantia Iberica (Pourebad et al., 2015). The
higher production of the important terpene volatiles (candidate
anti-SARS-CoV-2 metabolites) in the regenerated shoots can be
attributed to the different attributes of shoot cultures, such as the
juvenile stage of the differentiated shoots, as the monoterpenes
biosynthesis is directly linked to the young and immature
shoot with higher metabolic potential (Bassolino et al., 2015).
Biosynthesis of terpene metabolites generally takes place in
epidermal cells of shoot or leaf and is stored in special glandular
structures called leaf trichomes (Ali et al., 2018a). In another
study, compared with callus cultures, the in vitro raised shoot
cultures in medicinally important plants Lavandula angustifolia
and Rosmarinus officinalis were found to accumulate higher
levels of monoterpenes hydrocarbons (Gounaris, 2010). As the
growth and development during in vitro shoot cultures are highly
influenced by the effects of different plant growth regulators, the

biosynthesis of terpenes could be correlated to in vitro growth and
development. The ontogenetic changes in the shoots as a result
of plant cell growth and the accelerated but controlled secondary
metabolism during in vitro cultures are other important reasons
which influence and regulate the biosynthesis of secondary
metabolites (Khan et al., 2019a,b; Khan M. A. et al., 2020). Apart
from micro-propagated plantlets many other in vitro cultures are
also serving as useful sources of different medicinally important
secondary metabolites (Figure 2).

Callus and Cell Cultures
Plant cell cultures compared with wild plants and other
types of cultures have the advantage of being (1) less prone
to various environmental variations, (2) stable production
platforms of homogeneous and uniform yield, (3) rapid growth,
(4) reproducible, and (5) able to synthesize novel products that
do not normally exist in the native plants (Khan et al., 2017;
Khan M. A. et al., 2020). In addition to medicinal products, cell
suspensions have been employed to produce compounds used as
fragrances, food flavors, and additives, dyes, and coloring agents
(Saeed et al., 2017). A lot of important medicinal plants have
been exploited for the production of useful antiviral medicinal
metabolites through callus and cell cultures (Ali et al., 2018a,b).
For example, as listed in Table 2, considerable levels of diosgenin
(an anti-SARS-CoV metabolite) were detected in the callus
cultures of Helicteres isora L (Shaikh et al., 2020). Callus and cell
cultures in Gymnema sylvestre have shown an optimal production
of gymnemic acid (GA) which possesses the potential to work
against SARS-CoV-2 (Veerashree et al., 2012). In some studies,
the cell cultures were found to only accumulate the precursors
of volatile medicinal compounds; while, cultures of other plants
such as mentha have been recommended to produce high-valued
medicinal monoterpenes compared to those found in the intact
mentha plants. Likewise, callus cultures of M. piperita have
been reported for the accumulation of monoterpenes in special
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TABLE 2 | Production and enhancement of potential compounds against SARS-CoV-2 through plant biotechnological approaches.

Serial No. Compound/class
of compounds

Plant In vitro
culture
type

In vitro culture
conditions used

Plant growth
regulator used

Elicitor used Remarks
(Results)

References

1 Saponins Javanese ginseng
(Talinum
paniculatum)

Adventitious
root
cultures

Temperature
25 ± 1◦C in the
dark

Indole-3-butyric
acid (IBA) or NAA
(1-napthaleneacetic
acid)

Methyl
jasmonate
(MeJA) and
salicylic acid
(SA)

1.5-fold upon
elicitation with
MeJA and
1.3-fold upon
SA

Faizal and Sari,
2019

2 Astragaloside (AG) Astragalus
membranaceus

Hairy root
cultures

Orbital shaker
(100 rpm);
28 ± 1◦C in the
dark

– Methyl
jasmonate (MJ)

MJ-elicited
(2.1- and
2.0-folds
greater)

Jiao et al., 2016

3 Diosgenin Helicteres isora L. Callus and
suspension
cultures

Rotatory shaker
(50–60) rpm;
25 ± 2◦C
temperature;
40 lmol m−2 s−1

light intensity;
16/8-h light/dark
cycle

2,4-
dichlorophenoxyacetic
acid (2,4-D); kinetin
(Kin); and 6-
Benzylaminopurine
(BAP)

Escherichia
coli; Bacillus
subtilis;
Saccharomyces
cerevisiae; and
Aspergillus
niger

E. coli (1.5%)
proved best
with a 9.1-fold
increase

Shaikh et al.,
2020

4 Gymnemic acid
(GA)

Gymnema sylvestre
R. Br.

Cell
suspension
cultures

Rotatory shaker
(110 rpm);
incubator at 25◦C
in dark; pH 5.8

2,4-
dichlorophenoxyacetic
acid (2,4-D);
naphthaleneacetic
acid (NAA);
6-benzyladenine
(BA); picloram

Methyl
jasmonate (MJ);
yeast extract;
chitin; and
pectin

Yeast extract
(5.25-folds); MJ
(2.8-folds);
pectin
(2.65-folds);
while chitin
(2.62-folds)

Veerashree
et al., 2012

5 Flavonoid Isatis tinctoria L. Hairy root
cultures

Temperature 30◦C;
pH 7.0; and time
72 h

– Aspergillus
niger and
Aspergillus
oryzae

6.83-fold
increase

Jiao et al., 2018

6 Rosmarinic acid Purple basil
(Ocimum basilicum
L. var. purpurascen)

Callus
cultures

Temperature
(25 ± 2◦C); pH of
5.6–5.7; 16/8 h
light/dark

Naphthaleneacetic
acid (NAA)

Melatonin; and
UV-C
irradiations

Melatonin
(1.4-fold); UV-C
radiations
(2.3-fold)
elevation

Nazir et al.,
2020

7 Glycyrrhizin Glycyrrhiza glabra
L.

Hairy root
cultures

Temperature
28 ± 2◦C; 60 µ

mol photon m−2

s−1 light for 16 h
day and 8 h dark

Indole-3-acetic acid
(IAA)

Abiotic elicitors:
polyethylene
glycol (PEG);
CdCl2 Biotic
elicitor:
cellulase;
mannan

PEG enhanced
the yield up to
5.4-folds;
cellulase
(8.6-folds);
Mannan
(7.8-folds)

Srivastava
et al., 2019

(Continued)

Frontiers
in

P
lantS

cience
|w

w
w

.frontiersin.org
6

M
arch

2021
|Volum

e
12

|A
rticle

610194

https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles


fpls-12-610194
M

arch
9,2021

Tim
e:14:13

#
7

K
han

etal.
P

lantB
iotechnology

A
gainstC

O
V

ID
-19

TABLE 2 | Continued

Serial No. Compound/class
of compounds

Plant In vitro culture
type

In vitro culture
conditions used

Plant growth
regulator used

Elicitor used Remarks
(Results)

References

8 Chicoric acid Purple basil
(Ocimum basilicum
L. var.
purpurascens)

Callus cultures Temperature
(25 ± 2◦C; pH of
5.6–5.7; 16/8 h
light/dark

Naphthaleneacetic
acid (NAA)

Melatonin and
UV-C
irradiations

Melatonin
(3.2-folds) and
UV-C radiations
(4.1-folds)

Nazir et al.,
2020

9 Quercetin Abutilon indicum L. Callus cultures Temperature 25◦C;
pH 5.75 under dark
conditions

2,4-dichloro
phenoxy acetic
acid (2,4-D) with
indole-3-acetic acid
(IAA)

phenylalanine
(PA)

Three-fold
increase

Sajjalaguddam
and Paladugu,
2015

10 Peonidin Purple basil
(Ocimum basilicum
L. var.
purpurascens)

Callus cultures Temperature
25 ± 2◦C; pH of
5.6–5.7; 16/8 h
light/dark

Naphthaleneacetic
acid (NAA)

Melatonin and
UV-C radiations

Melatonin
(2.0-fold); and
UV-C radiations
(2.7-fold)

Jiao et al., 2018

11 Kaempferol Dysosma pleiantha
(Hance) Woodson

Callus cultures Temperature
25 ± 1◦C; pH
5.6–5.8 16 H
photoperiod from
white fluorescent
lamps at a light
intensity of 43 µmol
m−2 S−1/8 h dark
cycle

Medium (B5) 2,4-
dichlorophenoxyacetic
acid (2,4-D); kinetin

Casein hydro
lysate; coconut
water; and
peptone extract

12.39-folds
enhancement

Karuppaiya and
Tsay, 2020

12 Ephedrine Ephedra alata Suspension
cultures

Temperature
25 ± 2◦C; pH
5.7–5.8; fluorescent
light
(2500–3000 lux);
16-h photoperiod

2,4-
dichlorophenoxy
acetic acid (2,4-D);
and kinetin (Kn)

Aspergillus
niger and yeast
extract

Seven-fold
increase

Hegazi et al.,
2020

13 Caffeic acid Vitex agnus castus
L.

Agitated shoot
cultures

Rotary shaker at
140 rpm

Naphthaleneacetic
acid (NAA); benzyl
aminopurine (BAP);
gibberellic acid
(GA3)

L-phenylalanine 1.5-folds
increase

Skrzypczak-
Pietraszek
et al., 2018

14 Chlorogenic acid Cecropia obtusifolia Callus and cell
suspension cultures

Rotatory shaker at
110 rpm;
temperature 26◦C;
photoperiod of
16-h light with cool
white fluorescent
lamps at 50 lMm−2

s−1

Naphthalene acetic
acid (NAA); 2,4-
dichlorophenoxyacetic
acid (2,4-D);
indole-3-butyric
acid (IBA); and
indole-3-acetic acid
(IAA); 6-
benzylaminopurine
(BAP)

Nitrate
deficiency
(lacking
ammonium)

7.7-fold
increase

Del Pilar
Nicasio-Torres
et al., 2012
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15 Glycyrrhetinic acid Taverniera
cuneifolia (Roth)
Arn

Root cultures Microbial: 150 rpm;
temperature
26 ± 2◦C; for 24 h
Methyl jasmonate
(MJ): 120 rpm;
26 ± 2◦C; 18/6
photoperiod white
fluorescent light
(30 µmol m−2 S−1)

– Microbial
elicitation
(fungal and
bacterial);
methyl
jasmonate (MJ)

Microbial
elicitation
(three-folds);
methyl
jasmonate (2.5)
enhancement

Awad et al.,
2014

16 Matairesinol Forsythia× intermedia Cell suspension
cultures

Gyratory shaker at
110 rpm; 25◦C; in
the dark

– Methyl
jasmonate and
coniferyl
alcohol

Seven-fold
increase

Schmitt and
Petersen, 2002

17 Lignans Linum
ussitatsimum L

Cell suspension
cultures

Gyratory shaker at
100 rpm placed in
optimum conditions

Naphthalene acetic
acid (NAA)

Salicylic acid
(SA)

2.7-fold
increase

Nadeem et al.,
2019

18 Neochlorogenic
acid

Vitex agnus castus
L.

Agitated shoot
cultures

Rotary shaker at
140 rpm

α-naphthaleneacetic
acid (NAA);
benzylaminopurine
(BAP); gibberellic
acid (GA3)

L-phenylalanine 16-fold Skrzypczak-
Pietraszek
et al., 2018

19 Neolignans
(dehydrodiconiferyl)

Linum
ussitatsimum L

Cell suspension
cultures

Gyratory shaker at
100 rpm with
optimum growth
conditions

Naphthalene acetic
acid (NAA)

Salicylic acid 3.88-fold Nadeem et al.,
2019

20 p-coumaric acid Vitex agnus castus
L.

Agitated shoot
cultures

Rotary shaker at
140 rpm

α-naphthaleneacetic
acid (NAA);
benzylaminopurine
(BAP); gibberellic
acid (GA3)

L-phenylalanine 5.3-fold Skrzypczak-
Pietraszek
et al., 2018

21 (−) Menthone Peppermint
(Mentha piperita)

Micro propagation Temperature
22 ± 2◦C; pH
5.6–5.8; relative
humidity (∼70%);
light (16/8 h
light/dark cycle)

Auxins
4-indole-3-ylbutyric
acid (IBA); and the
cytokinins 6-
benzylaminopurine
(BAP)

– Two-fold
increase

Santoro et al.,
2013

22 Cynaroside Vitex agnus castus
L.

Agitated shoot
cultures

Rotary shaker at
140 rpm

α-naphthaleneacetic
acid (NAA);
benzylaminopurine
(BAP); gibberellic
acid (GA3)

L-phenylalanine 1.5-fold Skrzypczak-
Pietraszek
et al., 2018
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23 (+)-Pulegone Peppermint
(Mentha piperita)

Micro propagation Temperature
22 ± 2◦C; pH
5.6–5.8; relative
humidity (∼70%);
light (16/8 h
light/dark cycle)

Auxins
4-indole-3-ylbutyric
acid (IBA); and the
cytokinins 6-
benzylaminopurine
(BAP)

– Three-fold
increase

Santoro et al.,
2013

24 Limonene Pennyroyal (Mentha
pulegium)

Cell suspension
cultures

Shaker with 100
round per minute in
25 ± 1◦C

2,4-D Yeast extract;
salicylic acid

Limonene
increased with
increasing
concentrations
of yeast extract
elicitor

Darvishi et al.,
2016

25 (+)-menthofuran Peppermint
(Mentha piperita)

Micro propagation Temperature
22◦C ± 2◦C; pH
5.6–5.8; relative
humidity (∼70%);
light (16/8 h
light/dark cycle)

Auxins
4-indole-3-ylbutyric
acid (IBA); and the
cytokinins 6-
benzylaminopurine
(BAP)

– Two-fold
enhancement

Santoro et al.,
2013

26 Isoorientin (ISO) Cecropia obtusifolia Cell suspension
cultures

Rotatory shaker at
110 rpm;
temperature 26◦C;
photoperiod of
16-h light with cool
white fluorescent
lamps at 50 lMm−2

s−1

Naphthalene acetic
acid (NAA); 2,4-
dichlorophenoxyacetic
acid (2,4-D);
indole-3-butyric
acid (IBA);
indole-3-acetic acid
(IAA); 6-
benzylaminopurine
(BAP)

Nitrate
deficiency
(lacking
ammonium)

ISO synthesis
was induced
earlier and for
longer time
period

Del Pilar
Nicasio-Torres
et al., 2012

27 Gallic acid Barringtonia
racemosa L.

Cell suspension
cultures

25 ± 2◦C under
18 h light and 6 h
dark

2,4-D and kinetin Biotic
(chitosan);
abiotic (silver
nitrate)

2.64-fold (silver
nitrate);
1.34-fold
(chitosan)
increase

Osman et al.,
2018

28 Aloe-Emodin Cassia tora Root cultures Shaking at 60 rpm;
25 ± 2◦C; in dark
conditions

1-
naphthaleneacetic
acid and kinetin

Chitosan; yeast
extract

Chitosan (8.82
times); yeast
extract (6.21
times)

Teptat et al.,
2020

29 Rosin Rhodiola rosea
(rose root)

Compact callus
aggregate cultures

Shaken at
14.14 rad s−1

(135 rpm)

MS-Rh media
supplemented with
6-
benzylaminopurine
(BAP); naphthalene
acetic acid (NAA);
sucrose

Cinnamyl
alcohol

3 to 6-fold
increase

György et al.,
2004
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30 Salidroside Rhodiola imbricata
Edgew.

Callus and
suspension cultures

100 rpm shaker for
8 h and kept static
for 16 h; pH 5.7

Indole-3-butyric
acid (IBA); 6-
Benzylaminopurine
(BAP); gibberellic
acid (GA3); kinetin
(KN) and
Thidiazuron (TDZ)

Chemical
elicitors (growth
hormones);
physical
elicitors
(photosynthetic
lights,
ultraviolet light)

5.35-fold Kad et al., 2018

31 Scopoletin Spilanthes acmella
Murr.

Cell Suspension
cultures

Rotary shaker at
100 ± 10 rpm;
25 ± 2◦C; 16–8 h
light-dark regime,
using fluorescent
lamps at a light
intensity of 35 µ

mol m2 s−1

6-benzyladenine;
2,4-
dichlorophenoxyacetic
acid

Casein
hydrolysate and
L-phenylalanine

1.39-fold
(casein
hydrolysate);
3.43-fold (L-
phenylalanine)

Abyari et al.,
2016

32 Tyrosol Rhodiola crenulata Cell suspension
cultures

Rotary shaker at
120 rpm;
25 ± 1◦C; light
intensity
24 lmol/m2/s; 16 h
light photoperiod

6-benzyaldenine
(BA); naphthalene
acetic acid (NAA)
and thidiazuron
(TDZ)

– High level of
tyrosol were
detected

Shi et al., 2013

33 Wogonin Scutellaria lateriflora Hairy root cultures Shaking (121 rpm)
at 26 ± 1◦C

Phytohormone-free
MS medium having
sucrose and
supplemented with
antibiotic ampicillin
and cefotaxim

YE and
bacterial
suspensions (A)
A. rhizogenes
A4, (B)
Pectobacterium
carotovorum
1043 (Pba
1043), (C)
Pseudomonas
syringae var.
syringae 764
(Pss 764), (D)
Klebsiella
pneumoniae
3896, and (E)
Enterobacter
sakazakii

4.4-fold
increase

Wilczañska-
Barska et al.,
2012
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34 Rutin Vitex agnus castus
L.

Agitated shoot
cultures

Rotary shaker at
140 rpm

α-naphthaleneacetic
acid (NAA);
benzylaminopurine
(BAP); gibberellic
acid (GA3)

L-phenylalanine 2.8-fold
enhancement

Skrzypczak-
Pietraszek
et al., 2018

35 Anthocyanin Purple basil
(Ocimum basilicum
L. var.
purpurascens)

Callus cultures Temperature
25 ± 2◦C; pH
5.6–5.7; 16/8 h
light/dark

NAA (2.5 mg/L) Melatonin and
UV-C radiations

Melatonin
(3.7-fold) and
UV-C radiations
(4.1-fold)
increase

Nazir et al.,
2020

36 Cynaroside Vitex agnus castus
L.

Agitated shoot
cultures

Rotary shaker at
140 rpm

α-naphthaleneacetic
acid (NAA);
benzylaminopurine
(BAP); gibberellic
acid (GA3)

L-phenylalanine 1.5-fold yield
increase

Skrzypczak-
Pietraszek
et al., 2018

37 Luteolin Dracocephalum
kotschyi Boiss.

Seed germination Temperature 28◦C
day/20◦C night;
50% air relative
humidity;
photoperiod of 16 h
light and 8 h dark

Melatonin
(N-acetyl-5-
methoxytryptamine);
Calcium (Ca2+)

Salinity stress Salinity stress
alone
(3.21-fold);
salinity stress
with melatonin
and Ca2+

(2.83-fold
increase)

Vafadar et al.,
2020

38 Saikosaponins Bupleurum
falcatum L.

Root cultures Gyratory shaker
105 rpm;
23 ± 2◦C; 12:12
light-dark cycle (h)

Indole-3-butyric
acid (IBA)

Two step
sucrose
concentration

Four-fold yield
increase

Kusakari et al.,
2000

39 Phenolic
compounds

Morinda coreia
Buck. And Ham.

Adventitious roots
cultures

Agitated in dark on
gyratory shaker at
100 rpm; 25 ± 2◦C
temperature for
8 days

Indole-3-butyric
acid (IBA); BAP and
Kin

Chitosan 1.21-fold more
than IBA
treated root
suspension
culture

Kannan et al.,
2020

40 Essential oils
(Thymol and
p-cymene)

Carum copticum L. Callus cultures Temperature 25◦C;
pH 5.8; 16-h
photoperiod
supplied by white
fluorescent lamps
at 90 lmol m−2 s−1

in growth chamber

2,4-
dichlorophenoxyacetic
acid (2,4-D); benzyl
amino purine (BAP)

Salt stress and
chitosan

Thymol (from
14.5 to
25.1-fold);
p-cymene (from
10 to 14.5-fold
increase)

Razavizadeh
et al., 2020

CdCl, cadmium chloride; MSRs, Murashige and skoog-Rhodiola rosea medium; IBA, indole-3-butyric acid; NAA, naphthaleneacetic acid; MeJa, methyl jasmonate; SA, salicylic acid; 2, 4D, 2,4-dichlorophenoxyacetic
acid; Kn, kinetin; BAP, 6-Benzylaminopurine; PEG, polyethylene glycol; GA, gibberellic acid; TDZ, thidiazuron; BA, 6-benzyaldenine.
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FIGURE 2 | A pictorial representation of the various in vitro cultures generated through plant biotechnology methods and their potential for the commercial scale
production of phytomedicine.

secretory organs (Khan et al., 2019a). Similarly, results from
another study have shown that callus cultures of Carum copticum
also accumulated higher levels of thymol and p-cymene than their
wild-grown respective plants (Razavizadeh et al., 2020).

Light intensity or quality during in vitro cultures can influence
the plant cell’s physiological and hormonal status through the
initiation of distinct metabolic pathways that ultimately influence
and regulate the biosynthesis of important essential oils (Giri
and Zaheer, 2016; Ali et al., 2018b). In cell cultures of Ocimum
basilicum, constant light illumination produced higher total
essential oil yield including the potent volatile linalool than the
cell cultures grown under complete darkness. The process of
elicitation by application of chemical elicitors, e.g., phenylacetic
acid and methyl jasmonate and under the effects of physical
elicitors such as the absence of light illuminance in the cultures
have positively influenced the production of medicinally potent
metabolites in an A. bracteosa cell culture (Ali et al., 2018b).
In another study, important monoterpenes such as limonene
and terpinolene (potential anti-SARS-CoV-2 metabolites) were
elicited by methyl jasmonate under dark in higher amounts
in Rosa damascene cell cultures (Olgunsoy et al., 2017). The
process of elicitation is directly linked with the biosynthesis of
essential oils in the plant cell. Several factors are responsible for
the regulation of volatile compound biosynthesis. These factors
include the genetic makeup of the explant used in cell cultures,
the type of culture media, and the in vitro developmental phase
of plant cells (Holopainen, 2011). There are, however, many
limitations to cell suspension culture technology including slow
growth and scale-up hurdles, the instability of cell lines, and

subsequent lower yield of some important metabolites (Abbasi
et al., 2016). Nevertheless, optimization of cell cultures could
result in the generation of very viable factories to produce
medicinal compounds that could work against SARS-CoV-2 and
other human viruses.

Hairy Roots
Generally, the potential of plant cell cultures to produce
bioactive secondary metabolites can be enhanced by the
induction of cell differentiation. Within the different cell culture
approaches, hairy root cultures hold tremendous potential for
the biosynthesis of volatile organic compounds besides other
classes of potent secondary metabolites. When plant tissue
is genetically transformed by Agrobacterium rhizogenes which
inserts its T-DNA through the Ri plasmid, it results in the
formation of hair-like small and fine roots. The advantage of
hairy root culture technology is that it does not require further
media supplementation with plant growth regulators because the
inserted T-DNA carries the genes responsible for the endogenous
biosynthesis of auxins. Lacking the property of geotropism, hairy
roots are highly branched and can grow faster than normal
roots. They not only produce the metabolites at levels like the
normal roots but also generate metabolites that are produced
in the aerial parts of the natural plants. Furthermore, hairy
roots are physiologically and biochemically stable like any other
cell culture technology (Gounaris, 2010). An excellent study has
concluded the potential of hairy roots culture technology for
the optimal production of antiviral flavonoids in Isatis tinctoria
(Jiao et al., 2018). Isatis tinctoria (A.K.A. Isatis indigotica) has
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been shown to possess potential against SARS-CoV through
its root-derived phytochemicals (Li et al., 2005). Among the
different plants, the hairy roots of Pimpinella anisum and Achillea
millefolium resulted in the production of medicinally important
essential oils (Santos et al., 1998). In certain cases, such as the
hairy roots of Daucus carota and Laburnum alpinum, the essential
oil profiles of the volatiles were found in elevated levels, compared
with the respective callus and cell cultures. Further, the metabolic
pathways for the biosynthesis of volatiles can be manipulated
by using more effective transgenes that can be inserted into the
T-DNA region.

ELICITATION OF IN VITRO CULTURES; A
PROMISING AVENUE FOR
ANTI-CORONAVIRUS MEDICINAL
COMPOUNDS

Apart from the diversity of in vitro cultures, which can
provide avenues for phytochemical compounds against SARS-
CoV-2, enhanced production of these compounds is one
area where plant biotechnology thrives. This enhancement is
achieved through triggering or in other words eliciting the
defense response of plant cultures, discussed in the previous
section. To give a very brief overview of the mechanism of
elicitation, the process starts at the cell membrane of the
plant cell. Many different receptors are elicited to trigger
the secondary metabolism for defense. For instance, the
plasmalemma membrane-associated receptors attach the ligand
or chemical compound (exogenous or endogenous). The signal
reception is followed by transduction which includes steps like
reversible phosphorylation and dephosphorylation of plasma
membrane and cytosolic proteins, enhancement of Ca2+ in the
cytosol, H+ influx/Cl− and K+ efflux, extracellular alkalinization
and cytoplasmic acidification, mitogen-activated protein kinase
(MAPK) activation, NADPH oxidase activation and production
of reactive oxygen and nitrogen species (ROS and RNS),
early defense gene expression, jasmonate production, late
defense response gene expression, and secondary metabolite
accumulation (Ramirez-Estrada et al., 2016).

Being of biological origin (biotic) or non-biological origin
(abiotic), the compounds or physical factors that stimulate
the plant defense are termed elicitors. Biotic elicitors include
compounds that are of the pathogenic origin or are produced
by the plants after being exposed to pathogens. Abiotic elicitors
include chemical compounds such as salts or physical factors
such as environmental triggers (Devaux et al., 2020). The most
relevant example of elicitation of important anti-SARS-CoV
metabolites is that of glycyrrhizin from Glycyrrhiza glabra L.
G. glabra L. has become an endangered medicinal plant due
to the unabated extraction of glycyrrhizin (Srivastava et al.,
2019). Glycyrrhizin is a triterpenoid saponin and has been shown
to possess strong antiviral activity in killing SARS-CoV in a
lancet study (Cinatl et al., 2003). Srivastava et al. (2019) have
successfully elicited the yield of glycyrrhizin in hairy root cultures
of G. glabra L. Through this study, it was proven that both

biotic and abiotic elicitors are effective in eliciting higher yields
of glycyrrhizin.

Biotic Elicitors Can Trigger the
Production of Plant Secondary
Metabolites Against SARS-CoV-2
Compounds of a biological origin that elicit plant defense
response and thus produce higher quantities of secondary
metabolites are produced in two ways. Biotic elicitors are
either compounds coming from pathogens, i.e., exogenous in
origin or are compounds/hormones produced as a response
to the pathogen that in turn triggers the plant’s defense
response (endogenous elicitors). Plant in vitro cultures have been
used as factories for the enhanced production of medicinally
secondary metabolites through the application of many different
exogenous and endogenous elicitors (Srivastava et al., 2019).
Exogenous biotic elicitors include bacterial lysates, microbial
enzymes, polysaccharides (chitin), and yeast extracts. For
instance, cellulase, which directly serves bacteria and fungi
and helps in attacking plant cell walls, has been shown to
enhance the production of glycyrrhizin up to 8.6-fold through
the application of cellulase to the hairy roots of G. glabra L.
Besides, mannan oligosaccharides derived from the cell wall
of yeasts (Saccharomyces cerevisiae) (De Oliveira et al., 2014)
have also been reported to trigger the enhanced production of
glycyrrhizin (7.8-fold compared to control) in hairy root cultures
of G. glabra L. It should be reiterated here that glycyrrhizin
possesses a demonstrated activity against the previously epidemic
SARS-CoV. This saponin from licorice roots can inhibit the
replication of SARS-associated coronavirus with an EC50 value
ranging from 300 to 600 mg/L (Cinatl et al., 2003). Similarly,
methyl jasmonate, a very important endogenous biotic elicitor
has been shown to be effective in enhancing the production of
glycyrrhizin up to almost 109 micrograms/g dry weight after
5 days of elicitation with 100 mM of methyl jasmonate. The study
also demonstrated the role of other elicitors such as chitosan and
yeast extract on the production of glycyrrhizin and demonstrated
their effectiveness (Wongwicha et al., 2011). Other biotic elicitors
ascorbic acid, eugenol, salicylic acid, and yeast extract have been
employed for the enhancement of glycyrrhizin in cell cultures of
Abrus precatorius (Karwasara et al., 2010).

Similarly, a higher yield of trans-resveratrol, previously shown
to act strongly against MERS-CoV, has been reported in cell
suspension cultures of Vitis vinifera through the application of
2, 3-dihydroxypropyl jasmonate (Shen et al., 2012). Chitosan is a
polysaccharide that acts as a biotic elicitor and is used for high-
yield production of medicinally important secondary metabolites
(Hadwiger, 2013). Results from the study of Ferri et al. (2009)
revealed that chitosan enhanced the production of important
polyphenols, including stilbenes and flavonoids in cell cultures of
V. vinifera. There are innumerable studies available on enhancing
the yields of many important plant secondary metabolites
that could be very effective in dealing with SARS-CoV-2.
Plant secondary metabolites such as lycorine, reserpine, plant
lectins, apigenin, luteolin, and quercetin (replication inhibitors of
coronavirus) (Wu et al., 2004; Li et al., 2005; Keyaerts et al., 2007;
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Ryu et al., 2010a) have been elicited through the use of biotic
elicitors including methyl jasmonate, salicylic acid, and chitosan
(Dyakov et al., 2007; Ptak et al., 2017; Chandran et al., 2020).

Enhanced Production of
Anti-coronavirus Plant Secondary
Metabolites Through Abiotic Elicitors
Just like biotic elicitors, chemical compounds of abiotic origin
and physical factors such as environmental stimuli have also
been proven effective in the elicitation of plant defense and thus
increased production of phytochemicals (Halder et al., 2019). It is
not possible to cover all abiotic elicitors in a single subsection,
but for our purpose, abiotic elicitors compounds such as salts
(e.g., AgNO3, CdCl2, etc.) and environmental stimuli such as
continuous light/dark, different wavelengths of light, and osmotic
stress, etc. have been employed to produce high-yield secondary
metabolites in plant in vitro cultures.

Abiotic elicitation has been used for the enhanced production
of important flavonoids such as hypericin and hyperforin in
in vitro cultures of Hypericum perforatum (Shakya et al., 2019).
For instance, Tirillini et al. (2006) reported that the application
of chromium (0.01 mM) increased the production of hypericin
by 38% in plantlets of H. perforatum (Tirillini et al., 2006).
Compounds such as quercetin in H. perforatum have been shown
to act as potent anti-SARS-CoV compounds and their enhanced
production through elicitation promises an avenue for high-yield
drug production (Ryu et al., 2010a; Shakya et al., 2019). A new
addition to the lines of abiotic elicitors is the use of nanomaterials
for triggering an intense plant defense response. For example,
in one of our studies, we used silver nanoparticles (AgNPs)
for the enhancement of medicinally important phenolics and
flavonoids in callus cultures (Begum et al., 2020). Similarly,
zinc nano-oxides and iron nano-oxides have been used to
trigger the production of hypericin and hyperforin in cell
suspension cultures of H. perforatum (Shakya et al., 2019).
Apart from chemical compounds, environmental triggers have
also proved to be valuable tools in plant biotechnology for the
enhanced production of important secondary metabolites in
plant in vitro cultures. For example, Khan et al. (2019c) showed
that different spectral lights result in the enhanced production
of phytochemicals such as myricetin and apigenin among many
others. Myricetin is experimentally shown to inhibit the SARS-
CoV helicase protein in vitro by affecting ATPase activity and
thus could have potential against SARS-CoV-2 (Yu et al., 2012).
Plants in vitro cultures can serve as factories for the elicitor-
induced high-yield production of myricetin against SARS-CoV-2.
In another study, Huang et al. (2016) used UV-B irradiation to
cause flavonoid-related gene expression in hairy root cultures
of Fagopyrum tataricum. The experiment resulted in enhanced
biosynthesis of rutin and quercetin in the hairy root cultures of
F. tataricum.

Conclusively, the application of biotic and abiotic elicitors
during plant in vitro cultures is a promising avenue for
the production of enhanced quantities of drug candidates
against SARS-CoV-2.

GENETIC ENGINEERING OF PLANTS
FOR ENHANCED METABOLITES
BIOSYNTHESIS

Few reports are available on the genetic engineering of different
plant species through a transformation with the candidate genes
responsible for medicinal metabolites biosynthesis. Particularly,
the metabolic pathways responsible for producing antiviral
metabolites. In these studies, the cauliflower mosaic virus
promoter (CaMV 35S) was used for the overexpression of the
reductoisomerase DXR of the mevalonate MEP pathway in
peppermint, and a significantly higher (50%) increase in total
essential oil production was observed. The yields of cyclic
monoterpenes were enhanced by the overexpression of the
limonene synthase enzyme in the plastid. The overexpression
of the rate-limiting factors significantly enhanced the specific
yield of monoterpenes (Daviet and Schalk, 2010). It is crucial
in some instances to enhance the yield of specific compounds
of interest such as the monoterpenes α-pinene and d-limonene
which are suitable alternatives to hazardous chemicals. Thus,
the in vitro cultures through a genetic transformation in
plants can boost the production of the desired compounds
(Roberts, 2007). For instance, the production of monoterpene
alcohols can be accelerated by the overexpression of linalool
synthase, the enzyme responsible for the profound production of
glycosylated forms than the free form. Likewise, overexpression
of prenyltransferase has been found to increase the yields of the
linear as well as some cyclic sesquiterpenes (Gounaris, 2010).

METABOLIC ENGINEERING OF PLANTS
FOR PRODUCTION AND
ENHANCEMENT OF
ANTI-CORONAVIRUS COMPOUNDS

The metabolic machinery of plants could be targeted for
engineering at different points that ultimately result in either
novel compounds or the over-production of important medicinal
metabolites (Figure 3). The metabolic engineering of plants
is one area of plant biotechnology that possesses enormous
potential for producing anti-SARS-CoV-2 compounds. Many
of such pharmacological compounds have been extensively
studied and reported in the literature (De Luca et al., 2012;
Atanasov et al., 2015; Wurtzel and Kutchan, 2016; Buyel, 2018).
Traditionally, people take these compounds orally as a whole
plant, its decoction, or as a crude extract. However, it can be
detrimental as most of the time unwanted compounds are also
administered. Besides, these compounds are present at low native
concentrations in plants and most of the time is not as effective as
a pure compound. Commercial extraction of any such compound
from any plant species may have detrimental effects on the plant
population and can even push a plant species to the brink of
extinction (Barone et al., 2019). For example, mass production of
paclitaxel (source of Taxol R©) led to the endangerment of not only
its source plant (Pacific yew) but also other species of the same
genus (Hawkins, 2007).
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FIGURE 3 | A representative flow-chart for the process of metabolic engineering of in vitro cultures to produce novel compounds or to over-produce existing
compounds.

Thus, an increasing interest has been observed focusing
on in-planta production of important metabolites via genetic
and metabolic engineering. For example, genistein and taxane
(precursors of paclitaxel) have been successfully produced in
plants other than their native species. However, alongside
attempting the increased production of certain end-products or
producing new products/compounds via genetic engineering,
it has been understood that biosynthetic engineering is a
highly complicated process that demands diverse knowledge
in all fields of biochemistry, biotechnology, and molecular
biology (Barone et al., 2019). Several in vitro cultures for
growing plant tissues could be manipulated through metabolic
engineering for secondary metabolite production and its
quantity enhancement, for example; adventitious root culture,
callus culture, somatic embryogenesis and regeneration, cell
suspension culture, protoplast culture, and hairy root culture, etc.
(Gantait et al., 2020).

Despite drawbacks, attempts to overproduce a single
metabolite or end-product have progressed in recent years
and several examples can be found in the literature in which
metabolic engineering of plants has been applied in the field
of medicine. For instance, the production of genistein, an
isoflavone, and a known antiviral compound has been shown in
non-leguminous species in which this compound is not native. It
was made possible by introducing the isoflavone synthase (IFS)
gene from soybean (glycine max) to non-leguminous species
tobacco (Nicotiana tabacum), lettuce (Lactuca sativa), and
petunia (Petunia hybrida) (Barone et al., 2019). Furthermore,
to increase the quantity of genistein, anti-sense suppression
of flavanone-3-hydroxylase (F3H) and overexpression of

phenylalanine ammonia-lyase (PAL) has also been employed.
It is important to highlight here that PAL is an enzyme of the
phenylpropanoid pathway that feeds into flavonoid biosynthesis.

Artemisinin commercially known for its antimalarial activity
is also reported for its antiviral activity (Lubbe et al., 2012).
The low concentration of artemisinin in its native plant the
sweet wormwood (Artemisia annua) and its high demand in
the pharmaceutical industry have led researchers to investigate
its in-planta production as well as in other culture systems.
Although little success has been made in this direction, a potential
bottleneck has been identified which may lead to its biosynthesis
in the near future.

In another study, sweet wormwood has been successfully
transformed using Agrobacterium tumefaciens to produce taxane
(a paclitaxel precursor) (Li et al., 2015). It should be noted that
paclitaxel is a famous anticancer compound and is also known
for its anti-HIV activity (Ryang et al., 2019).

Glycyrrhizin, an active component of licorice roots, has
been reported to show antiviral activity against SARS-CoV
in vitro (Boccalone et al., 2020). This compound has been
converted via biotransformation to several other compounds
that are more stable, easily soluble, and having greater
emulsifying properties than glycyrrhizin. Other advantages of
biotransformation of glycyrrhizin include strong stereoselectivity
and regioselectivity, low byproduct production, and increased
activity (He et al., 2019). It has been found that cell suspension
culture of G. glabra and Eucalyptus perriniana can transform
glycyrrhetinic acid (a byproduct of glycyrrhizin) to several
other important compounds. For instance, these include
3−O−[α−l−arabinopyranosyl−(1→2)−β−D−glucuronopyran
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osyl]−24−hydroxy−18 β−glycyrrhetinic acid,
23,28−dihydroxy−18β−glycyrrhetinic acid−30β−glucopy
ranosyl ester, and 28−hydroxy−18β−glycyrrhetinic
acid−30β−glucopyranosyl ester which are reported to
be important medicinal compounds (Hayashi et al., 1990;
Orihara and Furuya, 1990).

Resveratrol is another example of a natural product that is
reported for its anti-coronavirus activity (Lin et al., 2017) and
has been successfully transformed via molecular engineering into
plants that normally do not produce resveratrol (Giovinazzo
et al., 2012). This compound has been reported to be found
in grapes, berries, white tea, and passion fruit, etc. in a very
low quantity which makes its extraction challenging (Shrestha
et al., 2019). Metabolic engineering has been performed by several
researchers to improve its quantity or to express it in new
plants (Giovinazzo et al., 2012). For instance, the expression
of grape genetic markers in tobacco leaves diverted the typical
substrates of chalcone synthase to produce CHS up to 300 mg/g
of resveratrol (Halls and Yu, 2008).

Plant metabolic engineering could prove to be an important
tool in directing a plant’s metabolic machinery to the synthesis
of important natural compounds against coronaviruses. For
instance, metabolically engineered soybean and canola produced
a high level of monosaturated fatty acid which otherwise
produces a high level of linolenic acid which is prone to oxidation
(Dellapenna, 2001). In another example, the use of g-tocopherol
methyltransferase (g-TMT) showed a 10-fold increase in vitamin
E activity in engineered Arabidopsis seed oil (Shintani and
Dellapenna, 1998). In an example of metabolic engineering,
b-carotene (provitamin A) has been successfully engineered
into rice endosperm (Ye et al., 2000). 3-O-glucosyl-resveratrol
production in a V. vinifera cell culture was significantly
stimulated by saliva, with a 7.0-fold increase compared to
control (Cai et al., 2012). Methyl jasmonate elicitation is an
effective strategy to induce and enhance the synthesis of the
anticancer agent paclitaxel (Taxol R©) in taxus cell suspension
cultures (Patil et al., 2014).

In an interesting experiment, N. tabacum plants were
transformed with the stilbene synthase gene from grapevine using
A. tumefaciens-mediated gene transfer. The transformed plants
not only expressed the gene but also showed resistance to the
fungal pathogen Botrytis cinerea (Hain et al., 1993). Metabolic
engineering has thus improved its composition as well as
improved its level. Stilbene synthase gene (STS-encoding gene)-
mediated transformation thus confirmed that plant molecular
engineering with resveratrol may lead to novel functions such as
resistance to stresses, fungal infection, or increased nutritional
value. STS genes have been transferred to several other crops
as well such as Medicago sativa L., Arabidopsis thaliana L,
L. sativa L, and Solanum lycopersicum L., etc. (Giovinazzo
et al., 2012). The gene expression is however controlled by the
chosen promoter. Commonly used promoters to control the
expression of STS-encoding genes include the well-characterized
constitutive promoter pCaMV35S, fungus-inducible promoter
pPR10.1, stress-responsive promoter pVst1, and the tissue-
specific promoter p-nap (Stark-Lorenzen et al., 1997; Coutos-
Thévenot et al., 2001; Fan et al., 2008). The increased nutritional

values of several fruits and edible crops via transformation along
with the higher yield of resveratrol can be exploited for use in
SARS-CoV-2 management.

Ginsenoside (ginsenoside Rb1) occupies a unique place in
the pharmaceutical industry around the globe as an active
ingredient of Panax ginseng. It has recently been reported for
its anti-SARS-CoV activity (Boccalone et al., 2020). While the
traditional methods of isolation and purification of ginsenoside
were challenging and time-consuming, the use of modern-day
biotechnological approaches not only enhances its level but also
makes the extraction process easier. These approaches include
but are not limited to tissue culture, cell suspension culture,
protoplast culture, polyploidy, in vitro mutagenesis, and hairy
root culture (Gantait et al., 2020). For instance, Yu et al. (2016)
have reported the enhanced production of ginsenoside by using
a fungal strain Alternaria panax in cell suspension cultures. The
cell wall exudates fungi that contain oligosaccharides and chitin
that act as biotic elicitors (Yu et al., 2016).

Jasmonates have been reported to induce oxidative stress
and downregulate many genes which lead to an augmentation
of ginsenoside in the cell suspension culture. The mechanism
behind the role of the elicitor mainly involve the activation
of phenylalanine amino lyase which in turn elevates the level
of defense compounds and hence ginsenoside biosynthesis (Yu
et al., 2002; Kim et al., 2004; Wang et al., 2006).

Mutagenesis and in vitro cultures which incorporate
genotypic changes in the culture is another popular method used
for the enhanced production of ginsenoside. In this method,
P. ginseng calli are exposed to varying doses of gamma radiation
ranging from 10 to 100 Gy (Gray) and for various lengths
of time to bring genetic changes and hence to increase the
ginsenoside level in callus cultures (Kim et al., 2009, 2013). The
increased production of primary ginsenosides was associated
with the high expression of squalene epoxidase, dammarenediol
synthase, and phytosterol synthase genes (Kim et al., 2013).
Summing up, it can be concluded that engineering plant
cell and tissue cultures, through in vitro mutagenesis, direct
gene transfer, and A. tumefaciens-mediated transformation
could play an important role in the production/enrichment
of natural products that are easily repeatable in a short
time and thus can be exploited in the fight against
COVID-19.

COMMERCIALIZATION OF PLANT IN
VITRO CULTURES FOR SECONDARY
METABOLITE PRODUCTION

Advances in biotechnological approaches, particularly plant
cell culturing methods, provides new means for commercially
valuable, medicinally important plant secondary metabolites
(Hussain et al., 2012). Different kinds of strategies have
been used, for example, appropriate design of bioreactor
systems, optimization of nutrient medium, highly productive
line selection, elicitation, two-phase cultivation, and metabolic
engineering (Marchev et al., 2020). The scaling-up of in vitro
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plant culturing into large-scale, economically feasible bioreactors
provides the sustainable and continuous production of high-
valued plant secondary metabolites. Secondary metabolite
production in bioreactors depends on pharmacological
significance as well as human health benefits. The production
of rosmarinic acid and saponins are the selected examples of
the commercial production of secondary metabolites in vitro
(Weathers et al., 2010). Different kinds of bioreactor systems
are used to enhance the accumulation of rosmarinic acid
such as hairy root cultures or shoot suspension cultures from
different plants. Plant suspension culture technology offers
a convenient way of upscaling plant in-vitro culture systems
for the biosynthesis of secondary metabolites. The ease of its
upscale is attributed to its shorter cycle of production and
simpler methods for bioreactor construction (Marchev et al.,
2020). The successful and rapid development of plant metabolic
engineering offers an attractive opportunity to increase the
content of secondary metabolites in cell and hairy root cultures
from aromatic and medicinal plants at a feasible level. Moreover,
plant metabolic engineering also makes it possible to understand
the molecular biology of the biosynthesis of the secondary
metabolites (Pavlov and Bley, 2018). Ginsenoside and taxole,
examples of successfully commercialized plant cell suspension
cultures, derived specialized metabolites. As reported earlier
(Table 1), ginsenosides have proven to be effective against
SARS-CoV in inhibiting glycoprotein activity (Wu et al., 2004).
Although due to the limited understanding of the molecular
basis of plant secondary metabolite biosynthesis, the widespread
utilization of the plant suspension cultures platform has yet
to be primarily realized (Arya et al., 2020). However, with
much research effort, many secondary metabolites achieved a
semi-commercial status (Weathers et al., 2010).

Regarding commercialization, the most promising fact
associated with plant tissue cultures is that they offer an
avenue for the production of these medicinally important
phytochemicals in an appropriate bioreactor. The production of
the plant in vitro cultures is indeed an important prerequisite
for the large-scale yield and commercialization of phytomedicine.
This is linked with the fact that once carefully selected and
optimized, in vitro cultures of plants could yield ten times
higher phytomedicine than plants grown naturally. However, the
production of phytomedicine in bioreactors requires the selection
of suitable cell lines/cultures, optimization of culture conditions,
application of proper elicitation strategy, immobilization of cells,
and efficient downstream processing (Marchev et al., 2020).

Commercial production of secondary metabolites largely
depends either on higher market value or high demand which
will undoubtedly be high if any of the phytochemicals tested
proved effective against the current SARS-CoV virus. The
continuous efforts in this field will lead to the controllable and
successful production of specific, valuable, and yet unknown
plant secondary metabolites (Hussain et al., 2012) against human
viruses specifically coronaviruses. Such understanding will
ultimately lead to the production of important phytochemicals
that are active against SARS-CoV-2.

CONCLUSION

Plant biotechnology is a promising platform for exploring
the unlimited potential of many diverse medicinal plants.
Unfortunately, pandemics like COVID-19 are likely to occur
again on a smaller or larger scale due to the array of
known and unknown pathogens out there. Plant biotechnology
tools and methods such as in vitro culture technology is an
asset at our disposal to harness the diversity of secondary
metabolites produced by different plants. In vitro culture
technologies can potentially grow any plant anywhere and offer
the added value of overproduction of plant cultures, enhanced
production of secondary metabolites, and the generation of novel
medicinal compounds.
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