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Spikelet number is an important target trait for wheat yield improvement. Thus, the
identification and verification of novel quantitative trait locus (QTL)/genes controlling
spikelet number are essential for dissecting the underlying molecular mechanisms and
hence for improving grain yield. In the present study, we constructed a high-density
genetic map for the Kechengmai1/Chuanmai42 doubled haploid (DH) population using
13,068 single-nucleotide polymorphism (SNP) markers from the Wheat 55K SNP array.
A comparison between the genetic and physical maps indicated high consistence of
the marker orders. Based on this genetic map, a total of 27 QTLs associated with
total spikelet number per spike (TSN) and fertile spikelet number per spike (FSN) were
detected on chromosomes 1B, 1D, 2B, 2D, 3D, 4A, 4D, 5A, 5B, 5D, 6A, 6B, and
7D in five environments. Among them, five QTLs on chromosome 2D, 3D, 5A, and
7D were detected in multiple environments and combined QTL analysis, explaining the
phenotypic variance ranging from 3.64% to 23.28%. Particularly, QTsn/Fsn.cib-3D for
TSN and FSN [phenotypic variation explained (PVE) = 5.97–23.28%, limit of detection
(LOD) = 3.73–18.51] is probably a novel locus and located in a 4.5-cM interval on
chromosome arm 3DL flanking by the markers AX-110914105 and AX-109429351. This
QTL was further validated in other two populations with different genetic backgrounds
using the closely linked Kompetitive Allele-Specific PCR (KASP) marker KASP_AX-
110914105. The results indicated that QTsn/Fsn.cib-3D significantly increased the TSN
(5.56–7.96%) and FSN (5.13–9.35%), which were significantly correlated with grain
number per spike (GNS). We also preliminary analyzed the candidate genes within this
locus by sequence similarity, spatial expression patterns, and collinearity analysis. These
results provide solid foundation for future fine mapping and cloning of QTsn/Fsn.cib-3D.
The developed and validated KASP markers could be utilized in molecular breeding
aiming to increase the grain yield in wheat.
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INTRODUCTION

Bread wheat (Triticum aestivum L.) is one of the most important
stable foods in the world, providing more than 20% of the
calories and protein in our daily diet (Yao et al., 2019; Liu
et al., 2020). It was reported that world population is expected
to reach nine billion by 2050, which will require raising
overall food production by at least 70% to fulfill future food
demand (Yang et al., 2012). Conversely, arable land and water
resources for agriculture continue to dwindle, and climate change
also causes adverse effects on crop productivity (Evans et al.,
2008; Butterworth et al., 2010; Ceccarelli et al., 2010). Thus,
increasing wheat yield is an urgent task to fulfill global food and
nutritional security.

Grain yield of wheat is a complex trait affected by a multitude
of genetic and environmental factors and is usually constituted
of three major components, i.e., thousand kernel weight (TKW),
grain number per spike (GNS), and spike number per unit area
(Wang et al., 2018; Kuzay et al., 2019). GNS potential is largely
established by the spike architecture. Similar to other Triticeae
species, wheat contains an unbranched inflorescence, and a
number of spikelets are directly attached to the inflorescence
axis in a distichous phyllotaxis, with a terminal spikelet at its
apex (Koppolu and Schnurbusch, 2019). The spikelet is made
of an indeterminate number of florets attached to a secondary
axis (rachilla) (Hanif and Langer, 1972; Wolde et al., 2019).
Therefore, the number of fertile spikelet number per spike
(FSN) and fertile floret per spikelet ultimately determined GNS
(Guo et al., 2017; Golan et al., 2019). Previous studies have
showed that floret fertility is severely affected by environmental
and genetic factors as an abortion process of floral structures
existing continuously during the whole floral developmental
process (Guo and Schnurbusch, 2015; Sakuma et al., 2019). By
comparison, spikelet number is determined at an early stage of
wheat reproductive development, exhibiting less environmentally
sensitive with high heritabilities (Zhang et al., 2018; Gao
et al., 2019). Thus, understanding the genetic factors underlying
spikelet number would provide the prerequisite information
necessary to improve wheat yield.

Similar to other yield-related traits, spikelet number is a
complicated quantitative trait [quantitative trait locus (QTL)]
controlled by multiple genes in wheat. Thus, determination of the
number, chromosomal localization, and genetic effects of these
polygenes is desirable for obtaining optimal genotype in breeding
practice (Ma et al., 2007; Chen et al., 2020). However, due to
the complexity of wheat genome, only a few genes associated
with spikelet number or spike morphology have been cloned
through homologous cloning approach. For instance, WAPO1,
an ortholog of the rice gene APO1, on chromosome 7AL could
regulate spikelet number by effect inflorescence development
(Kuzay et al., 2019; Voss-fels et al., 2019). The domestication gene
Q on chromosome 5A encodes a member of AP2 transcription
factor family and can regulate rachis fragility, glume tenacity,
head length, and spikelet density (Faris et al., 2003; Simons et al.,
2006; Debernardi et al., 2017; Greenwood et al., 2017; Jiang et al.,
2019). The photoperiod sensitivity gene Ppd-1 on chromosome
2D is associated with multiple pollinator traits, including spikelet

number, spike length (SL), and number of days to heading
(Okada et al., 2019); TaMOC1, an ortholog gene of rice MOC1, is
significantly associated with spikelet number (Zhang et al., 2015);
FZP gene can drive supernumerary spikelet (Dobrovolskaya et al.,
2015); TaDEP1, an ortholog of rice DEP1, relates to increase SL
and reduces the spikelet number (Huang et al., 2009).

In addition, numerous QTLs for spikelet number have been
identified on almost all the 21 chromosomes in wheat using
different genetic populations and natural varieties (Cui et al.,
2012; Yu et al., 2014; Gao et al., 2015; Luo et al., 2016; Zhai
et al., 2016; Deng et al., 2017; Liu et al., 2018b; Wang et al.,
2018; Koppolu and Schnurbusch, 2019; Ma et al., 2019; Yao et al.,
2019; Kuang et al., 2020). Nevertheless, only a few of QTLs have
been genetically verified, offering a foundation for fine mapping
and map-based cloning, which greatly restrict the dissection of
the molecular mechanisms underlying spikelet number as well as
improvement of spikelet number in wheat breeding. Thus, the
identification and verification of novel QTL/genes for spikelet
number are vital.

In this study, we constructed a high-density genetic map using
the Wheat 55K single-nucleotide polymorphism (SNP) array
and a doubled haploid (DH) population derived from a cross
between two wheat elite varieties K1 and CM42. QTL mapping
for two spikelet number-related traits, total spikelet number per
spike (TSN), and FSN was performed, and subsequently, a major
QTL on chromosome 3DL was further validated in different
genetic backgrounds.

MATERIALS AND METHODS

Plant Materials and Field Trials
Quantitative trait locus mapping was conducted using a
population of 187 DH lines derived from a cross of K1 × CM42
(K1/CM42). CM42, kindly provided by Prof. Wuyun Yang
(Sichuan Academy of Agricultural Science, China), is a backbone
parent with excellent agronomic traits such as high TKW and
high yield (Yang et al., 2009). K1, bred by our lab, is characterized
by high spikelet number per spike and GNS. Two populations,
including a recombinant inbred line (RIL) populations derived
from a cross of K1× Kechengmai4 (K1/K4, 70 F7 RILs) and a F2
populations derived from a cross of K1×Yangfumai2 (K1/YFM2,
75 F2 lines), were employed to further validate the major QTL.

The K1/CM42 lines along with parents were grown in five
replicates following randomized complete-block design at the
following two experimental sites: Shuangliu of Sichuan province
(103◦52′E, 30◦34′N) and Shifang of Sichuan province (104◦11′E,
31◦6’N), China. The field trials were carried out in two crop
seasons of 2017–18 and 2018–19 at Shuangliu, and three crop
seasons of 2016–17, 2017–18, and 2018–19 at Shifang. Each plot
consisted of five 200-cm rows with an inter-row spacing of 20 cm.
The sowing density was 50 seeds per row. The K1/K4 lines were
generated by single-seed descent and cropped at Shuangliu and
Shifang in 2018–19 crop seasons. Each plot consisted of two 200-
cm rows with an inter-row spacing of 20 cm. The K1/YFM2
population was cropped at Shuangliu in 2019–20 crop seasons in
200-cm rows with 15-cm space between individuals.
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Phenotypic Evaluation and Statistical
Analysis
The TSN, FSN, plant height (PH), and SL of the K1/CM42
and K1/K4 populations were manually measured at maturity by
using plants from middle row of each plot. For the K1/CM42
population, the primary spike of 10 random plants from each
family in 2017–18 and 2018–19 crop seasons and three random
plants from each family in 2016–17 crop seasons were selected.
For the K1/K4 population, the primary spikes of five random
plants from each family were selected. For the K1/YFM2
population, the TSN, FSN, PH, and SL of primary spike of each
individual were measured. Subsequently, all selected spikes were
harvested and manually threshed for evaluating GNS, TKW,
grain width (GW), and grain length (GL) using SC-G software
(WSeen, Hangzhou, China).

The frequency distribution of traits in each environment
and their correlation were calculated using SPSS version 20.0
for Windows (IBM SPSS, Armonk, NY, United States). The
best linear unbiased predictions (BLUPs), which were used for
QTL detection, correlation analyses, and effect analyses, were
calculated using the R package “lme4.” Analysis of variance
(ANOVA) was performed using the data from 2017–18 and
2018–19 crop seasons in the K1/CM42 population by SPSS.
The broad-sense heritability (H2) was calculated according to
the method described by Smith et al. (1998) and Muqaddasi
et al. (2019). Student’s t test used to evaluate the significance of
difference was performed by SPSS.

Genotyping
Genomic DNA of each line in the K1/CM42 population and their
parents was extracted using the 2 × cetyl trimethylammonium
bromide (CTAB) method and hybridized on the Wheat 55K SNP
array by China Golden Marker (Beijing, China). DNA integrity
was checked and confirmed on agarose gels, and DNA quantity
was measured by spectrophotometry.

Genetic Map Construction and
Quantitative Trait Locus Detection
IciMapping 4.1 (Meng et al., 2015) and JoinMap 4.1 were used
for genetic construction and QTL detection in the present study.
First, the function of “bin” in IciMapping 4.1 was used to remove
redundant markers based on their segregation patterns in the
mapping population with the parameters of “Missing Rates” and
“Distortion Value” being set as 20% and 0.01, respectively. Then,
the function of “Population” in JoinMap 4.1 was used to create
groups with limit of detection (LOD) score values ranging from 2
to 10. Finally, the Kosambi mapping function was used to order
the bin markers with the parameters being set as LOD ≥ 5 and
round = 3 in JoinMap 4.1. To reduce the complexity of QTL
mapping analyses, only one marker was selected as a delegate
from each bin to construct the linkage map. QTL detection
in each environment was performed by IciMapping 4.1 with
the inclusive composite interval mapping (ICIM), and a test
of 1,000 permutations was used to identify the LOD threshold
that corresponded to a genome-wide false discovery rate of 5%
(P < 0.05). The missing phenotype was deleted in QTL analysis.

Development of Kompetitive
Allele-Specific PCR Markers
Probe DNA sequences for selected SNP were subjected to
design Kompetitive Allele-Specific PCR (KASP) markers using
the Triticeae Multi-omics Center1. Sequence probes for the
FAM signal and the HEX signal were added to the primers
of two parental genotypes, respectively. The KASP assays were
performed in Bio-Rad CFX96 real-time PCR system with 10-µl
reaction volumes consisting of 5 µl of 2 × master mix, 0.2 µl
of primer mix, 3 µl of ddH2O, and 2 µl of DNA sample (50–
150 ng/µl). Thermal cycling conditions were 94◦C for 15 min
hot-start activation, followed by a touchdown phase of 10 cycles
(94◦C for 20 s, touchdown at 61◦C initially and then decreased
by 0.6◦C per cycle for 60 s) and finally 26 cycles of regular PCR
(94◦C for 20 s, 55◦C for 60 s, and rest plates at 37◦C for 1 min).
Further cycling and resting were performed if the clustering is not
significant: 94◦C for 20 s, followed by 57◦C for 60 s (3–10 cycles
per step). The information of DNA sequences flanking the SNP
was kindly provided by Prof. Jizeng Jia’s Lab (Institute of Crop
Sciences, Chinese Academy of Agricultural Sciences).

Prediction of Candidate Gene
The physical positions of flanking markers were obtained by
blasting against (E-value of 1e-10) the genome assembly of
Chinese Spring (CS)2. Genes among the mapping interval were
extracted from IWGSC RefSeq v1.1 annotation3. The annotations
and functions of a given gene were analyzed using UniProt4.
Gene collinearity among wheat, barley, rice, and maize was
performed using the Triticeae-Gene Tribe5. The temporal and
spatial gene expression patterns were extracted from Wheat
Expression Browser6. To further explore the potential candidate
genes, we designed the corresponding specific primers1,7 to
isolate and sequence these candidate genes (Tsingke Biotech Co.,
Ltd., China). The primer sequences were listed in Supplementary
Table 2. Twenty-five-microliter PCR reaction volumes were as
follows: 12.5 µl of 2 × EasyTaq PCR SuperMix (TransGen
Biotech Co., Ltd., China), 3 µl of DNA sample, 1 µl of primer
mix, and 7.5 µl of ddH2O.

RESULTS

Phenotypic Variation
Significant differences (P < 0.001) on TSN and FSN between
K1 and CM42 across five environments and their corresponding
BLUP data were detected. K1 showed more TSN and FSN
than did parent CM42 (Figure 1 and Table 1). In addition, we
observed the development of spikelet, and we found that K1
showed more TSN at a very early stage of spike development

1http://202.194.139.32/
2https://urgi.versailles.inra.fr/download/
3https://wheat-urgi.versailles.inra.fr/
4http://www.uniprot.org/
5http://wheat.cau.edu.cn/TGT/
6http://www.wheat-expression.com/
7http://coultona.cyverseuk.org/
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than that of CM42, as well as at heading and maturity stages,
indicating that spikelet number is determined at an early stage of
wheat reproductive development (Figure 1). For the K1/CM42
lines, the TSN and FSN ranged from 16.3 to 26.8 and from 14.2
to 25.8, respectively, showing wide and significant variation and
approximately normal distribution (Table 1 and Figure 2). In
addition, the TSN and FSN values across all environments and
BLUP data were significantly positively correlated (P < 0.001),
showing high broad-sense heritabilities (0.85 for TSN and
0.82 for FSN), indicating that they were mainly under genetic
control (Table 1).

Phenotypic correlations between TSN, FSN, and other
yield related traits are listed in Table 2. Significant and
positive correlations (P < 0.001) between TSN and
FSN and GNS, and significant and negative correlation
(P < 0.01) between TSN and GL, and FSN and GL were
observed in the K1/CM42 population. The highest positive
correlation was detected between TSN and FSN (r = 0.96).
No significant correlation was detected between TSN and
TKW, TSN and PH, TSN and SL, FSN and TKW, FSN
and PH, and FSN and SL were observed in the K1/CM42
population.

Linkage Map Construction
Among 53,063 SNPs from the Wheat 55K SNP array, 14,645 SNP
markers (27.6%) were polymorphic between the two parental
lines. Of them, 822 SNPs had more than 20% missing data
points, 10 SNPs were not anchored on the physical linkage
map, and 745 SNPs were not anchored on the genetic linkage
map. Finally, the rest 13,068 SNP markers (call rate ≥ 80%)
were used for linkage analysis and map construction. These
markers were divided into 2,406 bins: 1,384 bins contain one
SNP marker only, 1,022 bins contain multiple SNPs, and the
largest bin contains 626 SNP markers on 4B. Linkage analysis
showed that 2,406 bin markers were mapped on 27 linkage
maps for the 21 chromosomes of wheat, in which two linkage
groups were constructed for each of chromosomes 1A, 1D,
5A, 5B, 6A, and 6D. Based on the genetic information, all
SNP markers including bin markers and redundant markers
were integrated onto the genetic map with a total length of
3,091.39 cM and an average interval distance of 1.28 cM per
bin and 0.24 cM per marker. All of the mapped markers
were located to the A (33.75%), B (45.98%), and D (20.26%)
genomes with a total length of 1,009.07, 895.54, and 1,186.79 cM,
respectively. In addition, the lengths of constructed linkage
maps range from 17.67 (1A-1) to 206.47 cM (5D); the markers
on linkage maps range from 20 (1D-2) to 1228 (4B); the
average interval distance between adjacent markers ranges
from 0.08 (4B) to 4.37 cM (1D-2); and the average interval
distance between adjacent bin markers ranges from 0.63 (2B) to
5.14 cM (1D-2) (Table 3 and Supplementary Table 1). Based
on the physical locations of these SNPs on the CS genome,
the marker order was relatively consistent with that in the
wheat genome assembly on most of the chromosomes (1A,
1B, 2A, 3B, 3D, 4A, 4B, 5A, 5B,5D, 6A, 6D, 7A, 7B, and 7D)
(Supplementary Figure 1).

Quantitative Trait Locus Mapping
Phenotypic data of TSN and FSN evaluated in five environments
and their corresponding BLUP values were used for QTL
mapping, where the BLUP values were treated as an additional
environment. A total of 27 QTLs for TSN and FSN were detected,
which were located on chromosomes 1B, 1D, 2B, 2D, 3D, 4A,
4D, 5A, 5B, 5D, 6A, 6B, and 7D, respectively. Among them, five
QTLs defined as stable were detected in multiple environments
and combined QTL analysis, explaining the phenotypic variance
ranging from 3.64% to 23.28%. The rest QTLs were detected
in one environment, explaining 2.47–18.4% of the phenotypic
variance (Table 4).

For TSN, 14 QTLs were detected on chromosomes 1B, 1D,
2B, 2D, 3D, 5A, 5B, 5D, 6A, 6B, and 7D. Of them, a major
QTL QTsn.cib-3D was stably detected in four environments
and combined QTL analysis, explaining 6.5% to 23.15% of
the phenotypic variance with LOD values ranging from 6.1 to
18.51. Another stable QTL QTsn.cib-2D was detected in two
environments and combined QTL analysis, explaining 3.64–
10.23% of the phenotypic variance. The positive alleles of the two
loci were all contributed by K1. For the remaining 12 QTLs, they
were detected in one environment and explained 2.47–15.04% of
the phenotypic variance. The positive alleles of eight loci were
from K1, and four loci were from CM42 (Table 4).

For FSN, 13 QTLs were identified on chromosomes 1B, 1D,
2D, 3D, 4A, 4D, 5A, 5B, 5D, and 7D. Of them, QFsn.cib-3D
was a major QTL and stably detected in four environments
and combined QTL analysis, explaining 5.97–23.28% of the
phenotypic variance with LOD values ranging from 3.73 to 14.94.
QFsn.cib-7D was detected in two environments and combined
QTL analysis, explaining 7.51–12.58% of the phenotypic
variance. The positive alleles of the two loci were contributed
by K1. QFsn.cib-5A was detected in two environments with
the phenotypic variance ranging from 5.86% to 18.4%, and the
positive allele was contributed by CM42. The rest of the 10 QTLs
were detected in single environment, accounting for 4.42–18.26%
of the phenotypic variance. The positive alleles of seven and three
loci were contributed by K1 and CM42, respectively (Table 4).

Remarkably, a comparison of the intervals of loci for TSN
and FSN revealed that QTsn.cib-3D and QFSN.cib-3D were co-
located in the interval of AX-110914105–AX-109429351. We thus
temporarily designated the locus as QTsn/Fsn.cib-3D (Table 4).

Effects of QTsn/Fsn.cib-3D on Total
Spikelet Number Per Spike, Fertile
Spikelet Number Per Spike, and
Yield-Related Traits in the K1/CM42
Population
QTsn/Fsn.cib-3D was a major and stable QTL influencing
TSN and FSN. We subsequently developed a KASP marker
(KASP_AX-110914105) based on SNP of the flanking marker
(AX-110914105) (Supplementary Table 2). As expected, on the
basis of the genotyping results for KASP_AX-110914105 in the
K1/CM42 population, significant differences (P < 0.001) on
TSN and FSN were detected between lines with homozygous
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FIGURE 1 | Spike morphology of the parents and representative lines. The morphology of spikes of K1 and CM42 at young spike stage when terminal spikelet
appeared (A), heading stage (awn was cut) (B), and maturity (awn was cut) (C) are shown. (D) The mean of total spikelet number per spike (TSN) and fertile spikelet
number per spike (FSN) of K1 and CM42 at maturity in five environments. (E) The morphology of spikes of representative lines from the K1/CM42 population; ∗∗∗

represents significance at P < 0.001.

TABLE 1 | Phenotypic variation and heritability (H2) of TSN and FSN for the parents and the K1/CM42 lines in different environments.

Trait Environment Parents The K1/CM42 lines H2

K1 CM42 Range Min. Max. Mean SD CV (%) SK. Ku.

TSN 2017SF 21.8 ± 0.84 18.6 ± 1.14∗∗∗ 7 18 25 21.21 1.478 6.97% 0.116 −0.239 0.85

2018SF 25.2 ± 1.32 20.7 ± 1.64∗∗∗ 6.7 20.1 26.8 23.42 1.405 6.00% −0.17 −0.46

2018SL 25.2 ± 0.63 21 ± 0.82∗∗∗ 7.2 19.5 26.7 23.02 1.511 6.56% −0.108 −0.779

2019SF 25.2 ± 0.42 21.7 ± 1.16∗∗∗ 8.3 18.3 26.6 22.05 1.543 7.00% 0.115 0.391

2019SL 24.2 ± 1.23 20.6 ± 0.84∗∗∗ 9.4 16.3 25.7 21.01 1.878 8.94% −0.029 −0.287

BLUP 23.7 20.7 5.3 19.4 24.7 22.14 1.087 4.91% −0.2 −0.3

FSN 2017SF 21 ± 0.71 18.2 ± 1.3∗∗∗ 7.7 17.3 25 20.91 1.515 7.24% 0.081 −0.29 0.82

2018SF 22.8 ± 1.62 18.5 ± 1.65∗∗∗ 8.2 17.2 25.4 21.61 1.439 6.66% −0.2 0.04

2018SL 23.3 ± 0.95 19.4 ± 0.7∗∗∗ 8.4 16.7 25.1 21.02 1.601 7.62% 0.008 −0.566

2019SF 25.2 ± 0.42 20.7 ± 1.16∗∗∗ 9.7 16.1 25.8 21.04 1.608 7.64% 0.042 0.579

2019SL 23.4 ± 1.71 18.9 ± 1.1∗∗∗ 9.9 14.2 24.1 19.66 1.862 9.47% −0.104 −0.246

BLUP 22.4 19.7 5.5 18.2 23.7 20.85 1.052 5.04% −0.19 -0.25

Note. BLUP, best linear unbiased prediction; SD, standard deviation; CV, coefficient of variation; SK., skewness; Ku., kurtosis; H2, broad-sense heritability. ∗∗∗ represents
significance at P < 0.001.
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FIGURE 2 | Phenotypic performances, distribution, and correlation coefficients for total spikelet number per spike (TSN) (A) and fertile spikelet number per spike
(FSN) (B) of parents and K1/CM42 lines in five environments and their corresponding best linear unbiased prediction (BLUP) values; ∗∗∗ represents significance at
P < 0.001.

alleles from K1 and CM42 in each environment and BLUP
data (Figure 3). In addition, we further analyzed the effects
of QTsn/Fsn.cib-3D on yield-related traits in the K1/CM42
population. The results revealed that QTsn/Fsn.cib-3D
significantly affected GNS (7.61%) and GL (1.81%) but did
not influence the TKW, PH, SL, and GW (Figure 4).

Validation of QTsn/Fsn.cib-3D in
Different Genetic Backgrounds
Since the favorable allele of QTsn/Fsn.cib-3D was from K1,
the other two populations (K1/K4 and K1/YFM2) containing
a common parent K1 were used to validate the effects of
QTsn/Fsn.cib-3D in different genetic backgrounds. The KASP
marker KASP_AX-110914105 closely linked to QTsn/Fsn.cib-3D

TABLE 2 | Correlation coefficients for TSN and FSN with other agronomic traits.

Traits TSN FSN

FSN 0.96∗∗∗

GNS 0.57∗∗∗ 0.63∗∗∗

PH 0.1 0.08

SL 0.05 0.04

TKW −0.11 −0.13

GW 0.04 0.05

GL −0.23∗∗ −0.21∗∗

Note. The correlation coefficients were evaluated by the BLUP data. TSN, total
spikelet number per spike; FSN, fertile spikelet number per spike; GNS, grain
number per spike; PH, plant height; SL, spike length; TKW, thousand kernel weight;
GW, grain width; GL, grain length; BLUP, best linear unbiased prediction. ∗∗ and
∗∗∗ represent significance at P < 0.01 and P < 0.001, respectively.

was used to assess the alleles from the common parent K1. For
the K1/K4 population, 27 lines were found to be homozygous
for the K1 allele, and the remaining 41 lines were found to be
homozygous for the non-K1 allele (Figure 5). For the K1/YFM2
population, 17 plants were found to be homozygous for the K1
allele, 19 plants were found to be homozygous for the non-K1
allele, and the remaining 39 plants were found to be heterozygous
allele (Figure 5). Subsequently, Student’s t-test was performed
to analyze significant differences on TSN and FSN (P < 0.05)
between classes with different allele. As expected, the lines with
the homozygous K1 allele had significantly (P < 0.01) higher
TSN (5.56–7.96%) and FSN (5.13–9.35%) than those carrying the
non-K1 homozygous allele (Figure 5). Moreover, a significant
difference on TSN (6.62%) and FSN (7.71%) was also detected
between lines with K1 homozygous allele and heterozygous
allele (Figure 5).

Candidate Genes Analysis of
QTsn/Fsn.cib-3D
Alignment of the flanking markers of QTsn/Fsn.cib-3D
showed that it was corresponding to a physical interval
of 549.49–555.2 Mb on chromosome arm 3DL (Figure 6
and Table 4). According to CS reference genome, there
were 76 predicated genes in this interval (Figure 6). An
analysis of the spatial expression patterns (Borrill et al.,
2016; Ramírez-González et al., 2018) showed that 40 genes
were expressed in various tissues, and several of them were
abundantly expressed in spikes, indicating that they are supposed
to be involved in spike development (Figure 6). Among
these genes, TraesCS3D02G439000, TraesCS3D02G439200,
TraesCS3D02G442000, TraesCS3D02G443900, and
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TABLE 3 | General information of the high-density genetic linkage map.

Chromosome Group Number of bin markers Number of markers Length (cM) Density (cM/bin) Density (cM/marker)

1A 1 21 91 17.67 0.84 0.19

2 65 744 68.84 1.06 0.09

1B 1 167 752 132.77 0.80 0.18

1D 1 17 20 87.43 5.14 4.37

2 80 688 125.60 1.57 0.18

2A 1 101 305 145.13 1.44 0.48

2B 1 159 631 100.80 0.63 0.16

2D 1 81 302 140.51 1.73 0.47

3A 1 149 660 102.83 0.69 0.16

3B 1 98 989 90.43 0.92 0.09

3D 1 80 575 178.38 2.23 0.31

4A 1 142 889 194.68 1.37 0.22

4B 1 103 1,228 98.91 0.96 0.08

4D 1 86 271 107.92 1.25 0.40

5A 1 163 795 154.26 0.95 0.19

2 17 40 46.85 2.76 1.17

5B 1 69 723 75.19 1.09 0.10

2 96 310 92.56 0.96 0.30

5D 1 95 258 206.47 2.17 0.80

6A 1 47 328 71.71 1.53 0.22

2 20 48 26.78 1.34 0.56

6B 1 144 693 114.38 0.79 0.17

6D 1 32 122 77.24 2.41 0.63

2 29 127 94.25 3.25 0.74

7A 1 139 511 180.32 1.30 0.35

7B 1 141 683 190.50 1.35 0.28

7D 1 65 285 168.97 2.60 0.59

A genome 10 864 4,411 1,009.07 1.17 0.23

B genome 8 977 6,009 895.54 0.92 0.15

D genome 9 565 2,648 1,186.79 2.10 0.45

Total 27 2,406 13,068 3,091.39 1.28 0.24

TraesCS3D02G445400 are likely associated with spike growth and
development according to the gene annotation (Supplementary
Table 3). To further analyze potential polymorphism of these
candidate genes between K1 and CM42, and K4 and YFM2, we
designed gene-specific primers to isolate and resequence the
five genes (Supplementary Table 2). For TraesCS3D02G439000,
TraesCS3D02G439200, and TraesCS3D02G442000, no sequence
variation in coding sequences (cds) between K1 and the other
three parents was detected (Supplementary Figures 4–6).
For TraesCS3D02G443900, three SNPs in the cds between K1
and the other three parents were detected, and two of them
were non-synonymous SNPs (Figure 7 and Supplementary
Figure 7). Interestingly, we isolated and assembled the complete
coding sequences of TraesCS3D02G445400 from K1 and
YFM2 using these designed specific primers. However, only
partial coding sequences could be obtained from CM42 and
K4 (Supplementary Figure 8). We speculated that significant
differences may exist in the sequences of TraesCS3D02G445400
between K1 and CM42 and K4. Based on these sequences, two
synonymous SNPs in the coding sequence between K1 and the
other three parents, and extra six synonymous SNPs and three
non-synonymous SNPs between K1 and YFM2 were detected,
respectively (Figure 7 and Supplementary Figure 8).

DISCUSSION

Grain number per spike as one of three major components
determining wheat yield is ultimately determined by the number
of FSN and fertile floret per spikelet. In the present study, by
assessing two spikelet number-related traits TSN and FSN in a
DH population among five environments, we found that TSN
and FSN were significantly and positively correlated with GNS
(Table 2) with a high heritability (0.85 for TSN and 0.82 for FSN)
(Table 1). The results were consistent with previous knowledge
(Che et al., 2018; Würschum et al., 2018; Zhang et al., 2019) that
they are environmentally stable yield components and mainly
determined by genetic factors. Therefore, increasing spikelet
number could be considered as an effective strategy for increasing
GNS and hence the grain yield.

Comparison of Constructed Genetic
Linkage With Previous Studies
Quantitative trait locus analysis is a well-established and widely
used tool for dissecting the genetic basis of complex traits,
and a high-density genetic map plays a fundamental role in
QTL analysis (Salvi and Tuberosa, 2005; Cooper et al., 2009;
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TABLE 4 | Summary of QTLs detected in the K1/CM42 population.

Trait QTL Env. Chr. Pos. (cM) Interval (cM) Flanking markers LOD PVE (%) Add Physical pos. (Mb)

TSN QTsn.cib-1B.1 2019SL 1B 82.8 82.78–83.11 AX-111070175–AX-110565341 14.95 15.04 −0.98 584.32–591.96

QTsn.cib-1B.2 2019SL 1B 89.3 88.25–89.43 AX-109977434–AX-109971635 8.53 8.19 0.73 630.07–632.63

QTsn.cib-1D 2017SF 1D 88.1 87.67–88.23 AX-109917997–AX-108878320 4.1 5.27 −0.3 432.71–433.18

QTsn.cib-2B.1 2019SF 2B 1.7 1.26–1.86 AX-109825368–AX-110387848 3.87 4.11 −0.32 158.35–158.35

QTsn.cib-2D 2018SF 2D 98 94.3–100.31 AX-89629279–AX-112286381 9.03 4.24 −0.45 535.22–648.11

2018SL 94.4 94.3–100.31 AX-89629279–AX-112286381 3.89 10.23 −0.5

BLUP 100.2 94.3–100.31 AX-89629279–AX-112286381 9.79 3.64 −0.38

QTsn.cib-3D 2017SF 3D 104.5 103.64–108.09 AX-110914105–AX-109429351 13.63 18.93 −0.58 549.49–555.21

2018SL 105.4 103.64–108.09 AX-110914105–AX-109429351 6.1 12.01 −0.5

2019SF 104.5 103.64–108.09 AX-110914105–AX-109429351 18.51 23.15 −0.76

2019SL 103.7 103.64–108.09 AX-110914105–AX-109429351 7.49 6.79 −0.66

BLUP 104.5 103.64–108.09 AX-110914105–AX-109429351 17.79 6.5 −0.48

QTsn.cib-5A 2019SF 5A 152 103.64–154.26 AX-111472310–AX-108732747 7.82 8.52 0.46 573.56–597.74

QTsn.cib-5B 2018SF 5B 25.1 25.05–31.04 AX-110050262–AX-108791526 6.06 2.47 0.33 10.13–34.49

QTsn.cib-5B 2018SF 5B 0.6 0.56–0.89 AX-108863479–AX-109820694 7.96 3.27 −0.38 565.01–565.98

QTsn.cib-5D 2018SL 5D 14.8 14.75–24.21 AX-110472882–AX-110213253 4.17 7.59 −0.4 28.74–157.2

QTsn.cib-5D 2017SF 5D 33 32.78–33.01 AX-110186027–AX-111496275 8.3 10.75 −0.43 279.12–284.12

QTsn.cib-6A 2018SF 6A 2.9 2.63–3.34 AX-109340483–AX-108959026 9.2 3.97 −0.42 52.98–97.59

QTsn.cib-6B 2017SF 6B 62 61.84–62.4 AX-110602749–AX-109036922 5.4 7.87 0.37 100.68–127.16

QTsn.cib-7D 2019SF 7D 79.5 78.81–79.93 AX-111061288–AX-110826147 11.39 13.21 −0.6 65.5–66.54

FSN QFsn.cib-1B.1 2018SL 1B 52.3 52.24–52.57 AX-110365753–AX-110547478 5.52 10.4 −0.5 251.53–347.65

QFsn.cib-1B.2 2019SL 1B 82.8 82.76–83.11 AX-111070175–AX-110565341 15.16 15.57 −1.05 584.32–591.96

QFsn.cib-1B.3 2019SL 1B 89.4 88.25–89.43 AX-109977434–AX-109971635 8.47 8.01 0.76 630.07–632.63

QFsn.cib-1D 2018SF 1D 85.3 83.84–85.3 AX-108813568–AX-111890874 7.39 6.51 −0.46 436.08–436.2

QFsn.cib-2D 2019SF 2D 75.3 74.01–75.49 AX-110390887–AX-111601893 5.66 4.42 −0.41 16.85–23.3

QFsn.cib-3D 2017SF 3D 104.4 103.64–108.09 AX-110914105–AX-109429351 11.2 23.28 −0.65 549.49–555.21

2018SL 105.3 103.64–108.09 AX-110914105–AX-109429351 3.73 7.23 −0.41

2019SF 103.7 103.64–108.09 AX-110914105–AX-109429351 14.94 10.8 −0.64

2019SL 103.6 103.64–108.09 AX-110914105–AX-109429351 6.53 5.97 −0.65

BLUP 103.7 103.64–108.09 AX-110914105–AX-109429351 12.52 11.52 −0.39

QFsn.cib-4A.1 BLUP 4A 98 97.33–98.03 AX-109508535–AX-109957052 18.34 18.26 −0.5 603.5–605.63

QFsn.cib-4A.2 BLUP 4A 108.7 108.3–113.43 AX-110042237–AX-110488353 10.44 9.74 0.36 606.51-612.07

QFsn.cib-4D BLUP 4D 34.4 31.49–34.44 AX-110984743–AX-110458818 6.68 5.74 0.29 9.31–9.76

QFsn.cib-5A 2018SF 5A 71.8 71.77–74.49 AX-110012348–AX-111591583 18.09 18.4 0.77 452.12–459.97

2019SF 74.1 71.77–74.49 AX-110012348–AX-111591583 8.26 5.86 0.48

QFsn.cib-5B 2018SF 5B 0.6 0.56–0.89 AX-108863479–AX-109820694 7.05 6.21 −0.46 565.01–565.98

QFsn.cib-5D 2017SF 5D 32.9 32.78–33.01 AX-110186027–AX-111496275 3.9 7.57 −0.37 279.12–284.12

QFsn.cib-7D 2017SF 7D 78.8 76.18–88.52 AX-108882010–AX-89366204 3.96 7.51 −0.39 63.48–90.62

2019SF 80 76.18–88.52 AX-108882010–AX-89366204 16.74 12.58 −0.72

BLUP 79.1 76.18–88.52 AX-108882010–AX-89366204 10.74 9.87 −0.38

Note. Add, additive effect (positive values indicate that alleles from CM42 are increasing the trait scores, and negative values indicate that alleles from K1 are increasing
the trait scores); Chr., chromosome; Pos., position; PVE, phenotypic variation explained; LOD, limit of detection.

Yamamoto et al., 2009). In the present study, by using the wheat
55K SNP array, a high-density genetic map containing 13,068
SNPs with a total length of 3,091.39 cM was constructed. The
marker order was relatively consistent with that in the wheat
genome assembly on most of the chromosomes (Supplementary
Table 1 and Supplementary Figure 1). It is well known that
the SNP markers in the Wheat 55K SNP array were well chosen
from the 660K SNP array. Compared with previously reported
genetic maps, we extracted 2,739 and 4,860 common mapped
markers from the Wheat 55K and 660K SNP array, respectively
(Supplementary Table 4) (Cui et al., 2017; Liu et al., 2018a). The
genetic positions of these markers were relatively consistent in

the three genetic maps (Supplementary Figures 2, 3), indicating
that the genetic map constructed in present study was accurate
and credible and could be effectively used for QTL analysis.

Comparison of Stable Quantitative Trait
Loci for Spikelet Number With Previous
Studies
Over the past decades, QTLs that control spikelet number have
been extensively studied and identified on almost every wheat
chromosome. In this study, five stable QTLs for TSN and FSN
were detected on chromosomes 2D, 3D, 5A, and 7D. Of them,
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FIGURE 3 | Genetic map of the major quantitative trait locus (QTL) QTsn/Fsn.cib-3D and its effect. Genetic map integrated with the developed Kompetitive
Allele-Specific PCR (KASP) marker KASP_AX-110914105 (A). The black area is the interval of the major QTL QTsn/Fsn.cib-3D (A). Effects of the major QTL
QTsn/Fsn.cib-3D on total spikelet number per spike (TSN) (B) and fertile spikelet number per spike (FSN) (C) shown as box plots calculated after grouping the
K1/CM42 population into two classes based on the KASP marker; K1 and CM42 indicate the lines with and without positive alleles of QTsn/Fsn.cib-3D; ∗∗∗

represents significance at P < 0.001.

QTsn/Fsn.cib-3D associated with TSN and FSN was detected as
a major QTL for spikelet number. This QTL was mapped in a
4.455-cM interval and physically corresponding to 549.49 and
555.2 Mb on chromosome arm 3DL according to the physical
location of flanking markers (Table 4 and Figure 3). As far as
we know, several QTLs for spikelet number on chromosome
3D including QSns.sau-3D, QSsn.czm-3D, QSspn.cau-3D, and
QSpn.ipk-3D had been reported in previous studies.QSsn.czm-3D
and QSspn.cau-3D were located on the short arm of chromosome
3D flanked by 3DS_2577014_1698-IWA4559 and Xcau.3D-5-
Xcau.3D-6, respectively (Cui et al., 2012; Chen et al., 2020).
QSns.sau-3D detected by Luo et al. (2016) was located between
gpw3109 (306.5 Mb) and gdm8 (357.1 Mb). Given that the
physical intervals of these QTLs were different from those
of the QTsn/Fsn.cib-3D, the QTsn/Fsn.cib-3D may be different
from these loci. The remaining QTL, QSpn.ipk-3D, detected by

Pestsova et al. (2006) was located between Xgwm383 (532.19 Mb)
and Xgwm3 (579.89 Mb). Although the QTL seems overlapped
with QTsn/Fsn.cib-3D, it was a minor QTL detected in one
environment, explaining only 3.9% of the phenotypic variance.
These results indicated that QTsn/Fsn.cib-3D is probably a
novel and major QTL for spikelet number. Additionally, the
rest three stable QTLs QFsn.cib-7D, QTsn.cib-2D, and QFsn.cib-
5A in present study were overlapped or close to QTLs for
spikelet number reported previously, indicating they are likely
alleles. For example, QFsn.cib-7D was located between 66.54 and
90.62 Mb on chromosome arm 7DS. This interval was overlapped
with QTspn.cau-7D and QFspn.cau-7D reported by Chen et al.
(2020). QTsn.cib-2D mapped in the physical interval of 534.32–
648.11 Mb on chromosome arm 2DL was overlapped with
QTssn.WJ.2D.2 and QFsn.WY.2D (Cui et al., 2012). QFsn.cib-
5A mapped between 455.42 and 459.97 Mb on chromosome
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FIGURE 4 | Effects of QTsn/Fsn.cib-3D on grain number per spike (GNS), spike length (SL), plant height (PH), thousand kernel weight (TKW), grain width (GW), and
grain length (GL) in the K1/CM42 population. K1 and CM42 indicate the lines with and without positive alleles of QTsn/Fsn.cib-3D; ∗∗ and ∗∗∗ represent significance
at P < 0.01 and P < 0.001, respectively.

FIGURE 5 | Validation of QTsn/Fsn.cib-3D in two populations with different genetic environments. Fluorescence PCR typing results of the Kompetitive Allele-Specifc
PCR (KASP) marker KASP_AX-110914105 in K1/K4 (A) and K1/YFM2 (D) populations. Orange circle represents lines carrying the allele of K1; blue box represents
lines with the allele of K4 (A) and YFM2 (D), respectively. Effects of QTsn/Fsn.cib-3D on total spikelet number per spike (TSN) (B) and fertile spikelet number per
spike (FSN) (C) in the K1/K4 population. Effects of QTsn/Fsn.cib-3D on total spikelet number per spike (TSN) (E) and fertile spikelet number per spike (FSN) (F) in the
K1/YFM2 population; ∗∗ and ∗∗∗ represent significance at P < 0.01 and P < 0.001, respectively; AA represents the homozygous allele from K1; aa represents the
homozygous allele from non-K1; Aa represents the heterozygous allele.

arm 5AL was close to QFsn.WY.5A.2 detected by Cui et al.
(2012).

Effects on Yield-Related Traits and
Potential Use of QTsn/Fsn.cib-3D
Similar to previous studies (Chen et al., 2020; Cui et al.,
2012), TSN is significantly and positively correlated with FSN.

Thus, QTLs, especially the major QTLs, for TSN and FSN
were usually identified in same locus. For instance, seven
stable QTLs for spikelet number were identified by Chen
et al. (2020), and five of them were associated with TSN
and FSN simultaneously. The loci of QTsn/Fsn.czm-1A and
QTsn/Fsn.czm-1D were identified by Zhou et al. (2017), showing
significant effects on TSN and FSN. A QTL cluster for FSN
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FIGURE 6 | Expression patterns of genes in the physical interval of QTsn/Fsn.cib-3D in various tissues. Black areas are the genetic interval (A) and physical interval
of QTsn/Fsn.cib-3D on chromosome 3D (B); (C) and (D) represent the genes that were expressed in various tissues and their expression patterns.

FIGURE 7 | Sequence analysis of the TraesCS3D02G443900 (A) and TraesCS3D02G445400 (B) showing the single-nucleotide polymorphisms (SNPs) and
corresponding amino acid variations between K1 and CM42, and K4 and YFM2. The nucleotide of K1 and the other parents is shown in red and black, respectively.
Blue box and gray line on gene structure schematic diagrams represent the exome and intron or UTR, respectively.
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and TSN identified on chromosome 5D was located in the
same region as that detected by Li et al. (2007) and Cui
et al. (2012). Moreover, as one of the subcomponent of
GNS, an increase of spikelet number could directly increase
GNS (Hai et al., 2008). Therefore, it is not surprising that
the major QTL QTsn/Fsn.cib-3D identified in present study
showed significant and positive effects on TSN, FSN, and
GNS (Figures 4, 5). Additionally, we further analyzed the
effects of QTsn/Fsn.cib-3D on other yield-related traits including
TKW, SL, PH, GW, and GL in the K1/CM42 populations.
QTsn/Fsn.cib-3D showed moderate negative influence on GL,
but no influence on TKW, PH, SL, and GW (Figure 4).
These results suggested that QTsn/Fsn.cib-3D combined with
developed KASP markers has potential application values
in wheat breeding.

Potential Candidate Genes for
QTsn/Fsn.cib-3D
In the interval of QTsn/Fsn.cib-3D, there are 76
confidence genes in CS (Supplementary Table 3). Based
on the expression analysis and gene annotation, five
genes TraesCS3D02G439000, TraesCS3D02G439200,
TraesCS3D02G442000, TraesCS3D02G443900, and
TraesCS3D02G445400 are abundantly expressed in spikes,
indicating they are likely associated with spike growth and
development (Figure 6). Of them, TraesCS3D02G445400
encodes a glutathione S-transferase, which has been reported
to be related to panicle and spikelet numbers, and plays an
important role during the growth and development processes
in rice (Kim et al., 2013; Hu et al., 2014). TraesCS3D02G442000
encodes an auxin response factor. Previous studies have
revealed that auxin signal transduction acts critical roles in
modulating various biological processes including growth,
development, and stress resistance (Qiao et al., 2018;
Brauer et al., 2019). TraesCS3D02G439200 is an ortholog of
OsHAK5 of the rice and encodes a potassium transporter
(Supplementary Figure 9). OsHAK5 plays a crucial role in
maintaining rice architecture including PH, root, and tiller
by altering cellular chemiosmotic gradients and regulating
ATP-dependent polar auxin transport (Yang et al., 2020).
TraesCS3D02G439000 encodes an F-box family protein, which
is known to be involved in the vegetative and reproductive
growth and development of many plants (Van Den Burg
et al., 2008; Ma et al., 2019). TraesCS3D02G443900 encodes
a BTB domain-containing protein, which was reported to
be involved in multiple functions including floral organ
development and disease resistance in Arabidopsis, rice,
maize, and tomato (Gingerich et al., 2005; Chen et al.,
2014; Chern et al., 2014; Xu et al., 2016). To further
explore the candidate gene, we isolated and assembled
the coding sequences of the five genes from four parents.
Sequence alignment showed that two non-synonymous
SNPs and one synonymous SNP in coding sequence of
TraesCS3D02G443900 were detected between K1 and CM42,
and K4 and YFM2; two synonymous SNPs in the coding
sequence of TraesCS3D02G445400 were found between K1

and CM42, and K4 and YFM2; and the extra six synonymous
SNPs and three non-synonymous SNPs were found between
K1 and YFM2, respectively (Figure 7). For the rest three
genes TraesCS3D02G439000, TraesCS3D02G439200, and
TraesCS3D02G442000, no sequence variation in coding
sequences was simultaneously detected between K1 and the
other three parents (Supplementary Figures 4, 5, 6). Thus,
TraesCS3D02G443900 and TraesCS3D02G445400 could be
considered as a focus for further work on fine mapping
and gene cloning.
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