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Rapid technology development in controlled environment (CE) plant production has been 
applied to a large variety of plants. In recent years, strawberries have become a popular 
fruit for CE production because of their high economic and nutritional values. With the 
widespread use of light-emitting diode (LED) technology in the produce industry, growers 
can manipulate strawberry growth and development by providing specific light spectra. 
Manipulating light intensity and spectral composition can modify strawberry secondary 
metabolism and highly impact fruit quality and antioxidant properties. While the impact 
of visible light on secondary metabolite profiles for other greenhouse crops is well 
documented, more insight into the impact of different light spectra, from UV radiation to 
the visible light spectrum, on strawberry plants is required. This will allow growers to 
maximize yield and rapidly adapt to consumer preferences. In this review, a compilation 
of studies investigating the effect of light properties on strawberry fruit flavonoids is 
provided, and a comparative analysis of how light spectra influences strawberry’s 
photobiology and secondary metabolism is presented. The effects of pre-harvest and 
post-harvest light treatments with UV radiation and visible light are considered. Future 
studies and implications for LED lighting configurations in strawberry fruit production for 
researchers and growers are discussed.

Keywords: LED, light spectrum, secondary metabolite, UV, visible light

INTRODUCTION

Strawberry (Fragaria × ananassa) is a valuable crop cultivated worldwide. All strawberry species 
belong to the genus Fragaria and are members of Rosaceae, a family that contains many 
economically significant crops, primarily fruits such as apple (Malus domestica), pear (Pyrus 
communis), and peach (Prunas persica). The most cultivated strawberry species produced in 
North America is F.  ×  ananassa, arising from breeding between two species: F.  ×  virginiana 
and F.  ×  chiloensis (Stewart and Folta, 2010). Strawberry fruits provide a wide range of sensory 
elicitation and health benefits to the consumer, including high fiber, micronutrient, and ascorbic 
acid content (Giampieri et  al., 2012; Afrin et  al., 2016; Battino et  al., 2016). Additionally, 
strawberry fruits are part of a growing trend that highlights plant-derived antioxidants for 
their proven health benefits (Nile and Park, 2014). These consumer-liking and health-promoting 
properties have consequently led to strawberry’s strong economic role in the fruit industry. 
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In 2016, the global total production of strawberries was over 
US$17.7 billion, and this value has substantially increased over 
the last 10  years (FAO, 2016).

The production of strawberry fruit and their nutritional 
value are highly impacted by the surrounding environment; 
therefore, strawberries are often produced in controlled 
environments (CEs) where lighting and temperature are controlled 
(Samtani et al., 2019). The use of artificial lighting is a common 
approach for flower initiation and improved fruit yield (López-
Aranda et al., 2011; Hidaka et al., 2014). The critical photoperiod 
for strawberry flower initiation varies depending upon cultivars 
and interactions with temperature (Bradford et al., 2010; López-
Aranda et  al., 2011; Heide et  al., 2013). Inhibition of flower 
initiation at high temperature has been reported for strawberry 
plants with flowering habits under different photoperiods (Ito 
and Saito, 1962; Heide, 1977; Serçe and Hancock, 2005). As 
such, it is suggested that it is inadequate to classify strawberry 
cultivars solely based on their flowering habits (i.e., short-day, 
long-day, and day length-insensitive) without considering 
temperature effects (Durner et al., 1984). Artificial light properties, 
including wavelength and intensity, also play an important 
role in strawberry fruit production and quality (Nadalini et al., 
2017; Zahedi and Sarikhani, 2017). For instance, sole blue 
light treatment enhances strawberry (F. × ananassa cv. Elsanta) 
fruit production, approximately 25% more than other light 
sources (Nadalini et  al., 2017). End-of-day 735-nm radiation 
treatment results in a higher strawberry sucrose level (Zahedi 
and Sarikhani, 2017). These studies have proven that the  
use of artificial lighting systems allows growers to optimize  
fruit production and meet consumers’ sensory desires  
(Nadalini et  al., 2017; Zahedi and Sarikhani, 2017).

Plant-derived antioxidants are produced through secondary 
metabolic pathways, and act as an essential protective barrier 
against both biotic and abiotic stressors, including light stress 
(Pocock, 2015; Nadalini et  al., 2017). Secondary metabolites 
such as flavonoids and quinones protect plants from oxidation 
caused by free radical scavenging (Lü et  al., 2010). The extent 
of secondary metabolite accumulation further influences plant 
and fruit features, such as specific coloration and antioxidant 
properties that consumers adore (Akula and Ravishankar, 2011). 
The high level of total antioxidant capacity contained in 
strawberry fruit enables the neutralization of free radicals and 
reduces oxidative stress in the human body (Afrin et al., 2016). 
The most prevalent secondary metabolites in strawberry fruits 
are flavonoids, including anthocyanins (Aaby et  al., 2012), 
which are associated with antioxidative and anti-inflammatory 
properties. Flavonoids predominantly protect plants from UV 
radiation (Panche et al., 2016), and anthocyanins protect plants 
from blue and green light (Landi et  al., 2020a). In recent 
years, known antioxidant properties of strawberry fruit have 
prompted the rise of its global consumption.

Considering the important role that strawberry plants play 
in the fruit industry, several reviews on strawberry production 
have been conducted, including flower initiation, development, 
handling, flavor profile, and health benefits (López-Aranda 
et  al., 2011; Heide et  al., 2013; Afrin et  al., 2016; Baicu and 
Popa, 2018; Yan et al., 2018). However, there is limited information 

available on the impact of light properties on strawberry 
productivity and secondary metabolite accumulation. Secondary 
metabolite accumulation in strawberries is impacted by interactive 
effects between light wavelengths, developmental stages, and 
lighting strategies (i.e., pre-harvesting and post-harvesting; Erkan 
et  al., 2008; Kadomura-Ishikawa et  al., 2013). To this end, 
this review attempts to compile and compare available research 
on the impact of light properties within the wavelength ranges 
of UV radiation (<380  nm) to the visible light spectrum 
(380–730  nm) on strawberry fruit production, as well as the 
major group of secondary metabolites, flavonoid compounds. 
This may lead to improved strawberry fruit production and 
quality with additional health values in antioxidant activity, 
while possibly allowing for knowledge transfer to other berry 
plants grown in CEs.

FLAVONOID PROFILE AND FUNCTION 
IN STRAWBERRY FRUITS

Plant secondary metabolites have several functions in light 
signaling and defending against abiotic stresses (Thirumurugan 
et al., 2018). The most prevalent class of secondary metabolites 
in strawberry fruits is phenolic compounds, which have at 
least one phenol unit (aromatic organic ring) in their chemical 
structures. Phenolic compounds are further divided into different 
sub-groups, including coumarins, flavonoids, phenolic acids, 
and tannins. Flavonoids are widely found in foods and beverages 
of plant origin (i.e., fruits and vegetables; Rozema et  al., 2002; 
Delgado et  al., 2019). Flavonoids are easily recognized as 
flower pigments – they are responsible for the color and aroma 
of flowers (Dewick, 2001). Flavonoids can be  further 
sub-classified to different subgroups: anthocyanins, flavonols, 
and flavanols (Aaby et  al., 2012; Alvarez, 2014). Over 10,000 
flavonoids have been reported, representing the third largest 
group of naturally occurred secondary metabolites, after 
terpenoids and alkaloids (Martens et al., 2010). Most flavonoids 
absorb wavelengths between 315 and 400  nm; therefore, they 
play an important role in UV radiation screening and as 
antioxidants for plants (Kotilainen et  al., 2009). Sunlight and 
UV radiation exposure directly impact the extent of flavonoid 
accumulation in plants (Downey et  al., 2006).

Anthocyanins
Anthocyanins are the most prevalent phenolic compound found 
in the outer cell layers of various fruits, constituting up to 
40% of total phenols in some strawberry cultivars (Aaby et  al., 
2012). In strawberry, the major anthocyanin is pelargonidin 
3-glucoside, with reported anti-inflammatory effects (Da Silva 
et  al., 2007; Amini et  al., 2017). Although anthocyanin 
accumulation is implicated in UV–B protection (280–315 nm), 
it also occurs under stress conditions involving visible light 
and far-red radiation (Carvalho and Folta, 2016; Dou et  al., 
2017). Anthocyanins are the pigments responsible for coloration 
in flowers and fruits, often serving as visual signal for insect-
mediated pollination and seed dispersers (Turturică et al., 2015). 
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Anthocyanin stability largely depends on light, temperature, 
pH, and the co-pigmentation with other flavonoids (i.e., flavonols; 
Martens et al., 2010; Turturică et  al., 2015). Anthocyanin color 
is pH-dependent because of its ionic nature; anthocyanin 
pigments appear red under acidic conditions and blue under 
alkaline conditions (Khoo et  al., 2017). In strawberry plants, 
anthocyanin accumulates quickly in the late stages of ripening, 
beginning when fruits turn from white to red and increase 
more than 10-fold in red, ripe berries (Kadomura-Ishikawa 
et  al., 2013). These phytochemicals largely contribute to 
antioxidant capacity, impacting the nutritional benefits of the 
fruit (Aaby et al., 2012; Kadomura-Ishikawa et al., 2013). About 
70% of total antioxidant capacity comes from anthocyanins, 
highlighting its importance among plant secondary metabolites 
(Wang and Millner, 2009; Giampieri et  al., 2012).

Flavonols
Flavonols are abundantly found in a variety of fruits and 
vegetables including apples, grapes, and berries, and are reportedly 
associated with antioxidant potential and reduced risk of vascular 
disease in humans (Panche et al., 2016). In cultivated strawberry, 
the major flavonols are quercetin and kaempferol (Labadie 
et  al., 2020). Flavonols are often the main flavonoids at the 
beginning of the fruit development, but at the ripening stage 
the flavonoid pathway switches to anthocyanin production 
(Chassy et  al., 2012). Compared to anthocyanins, flavonols 
contribute more to antioxidant protection against UV-B radiation 
(Ferreyra et  al., 2012; Zoratti et  al., 2014); however, they are 
more sensitive to light properties (Carbone et al., 2009). Studies 
have reported that flavonol accumulation is highly reduced 
under shadow treatment in grape (Vitis vinifera) skins and is 
influenced by light levels in grape berry (Vitis berlandieri  × 
V. vinifera; Pereira et  al., 2006; Matus et  al., 2009). Apart from 
functioning as a tissue-protector against UV radiation, flavonols 
act as flower pigments that attract and defend against insects 
(Gronquist et  al., 2001). Flavonols influence plants’ responses 
to gravity, but these effects were observed in mutants only 
(Owens et  al., 2008).

Flavanols
Flavanols, also called flavan-3-ols, are the most common dietary 
flavonoids. They are used as functional ingredients in food 
processing to control microbial levels and provide oxidative 
stability (Aron and Kennedy, 2008). Flavanols consist of 
monomeric units (i.e., catechins and epicatechin), in addition 
to oligomeric and polymeric compounds (proanthocyanidins, 
also called condensed tannins; Al-Dashti et  al., 2018). Like 
anthocyanins and flavonols, flavanol accumulation is 
developmental stage-dependent (Zhang et al., 2013). For instance, 
supplemental UV radiation increases flavanol content during 
development but not in mature grape berries (V. vinifera  
cv. Cabernet Sauvignon). Flavanols help plants protect against 
harmful pathogens, such as microbes and fungi, as well  
as insects and herbivorous animals (Aron and Kennedy,  
2008). As for flavanols’ dietary effects, they may improve 
vascular function and nitric oxide availability, as well as  

modulate metabolism and respiration (Al-Dashti et al., 2018). 
Being flavanol polymers, it has been reported that 
proanthocyanidins possess antioxidative and cardio-preventive 
properties (Monagas et  al., 2010).

PLANT PHOTOMORPHOGENETIC 
RESPONSES AND FLAVONOID 
BIOSYNTHESIS UNDER UV RADIATION

Biologically active radiation extends from 300 to 800  nm. UV 
radiation lies in the wavelength range below 380  nm, followed 
by the visible spectrum between 380 and 720  nm. Outdoors 
or in an environment lit without supplemental light, approximate 
6% of solar radiation is UV radiation, comprising 95% UV-A 
radiation (315–380 nm) and 5% of UV-B radiation (280–315 nm). 
UV-C radiation (<280 nm) does not penetrate to Earth’s surface 
because of the ozone layer. Currently, the major focus of UV 
radiation-plant investigations is on the UV-B wavelength range, 
and the number of studies targeting UV-A radiation is relatively 
small (Verdaguer et  al., 2017).

Secondary metabolite formation, including phenolic 
compounds and antioxidants, is a plant’s response to UV-A 
and UV-B radiation (Caldwell and Britz, 2006), and most 
flavonoids absorb light in the UV-A radiation range (Cerovic 
et  al., 2002). High levels of UV radiation can cause damage 
to plants at different levels, including DNA and lipids, leading 
to impaired gene transcription and photosynthesis (Kunz et al., 
2006; Khudyakova et  al., 2017). Plant responses to UV-A and 
UV-B radiation are summarized in Figure  1A. UV radiation 
alters plant morphology and biomass accumulation during 
both vegetative and reproductive stages (Müller-Xing et  al., 
2014; Bernal et  al., 2015), and UV-A radiation is perceived 
by several photoreceptors, including cryptochromes and 
phytochromes (Figure  1B; Mockler et  al., 2003; Folta and 
Carvalho, 2015). Cryptochromes (cry1 and cry2) are flavin-
type blue light photoreceptors (320–500  nm) that have been 
implicated in numerous developmental and circadian signaling 
pathways (Banerjee and Batschauer, 2005; Jones, 2018). 
Phytochromes (phyA to phyE) are light-sensitive proteins with 
photo-reversible conformers: Pr and Pfr (Folta and Carvalho, 
2015). Phytochrome Pr, the inactive form of phytochrome, 
has a primary absorption peak at 660  nm and a secondary 
absorption peak located at 380  nm. Absorption peaks of the 
active form shift approximately 20–70  nm, toward longer 
wavelengths (408 and 730  nm; Stutte et  al., 2009).

The mechanisms underlying this process are poorly 
investigated in plants, and varied plant responses to UV-A 
radiation regarding leaf size, morphology and biomass 
accumulation are reported (Biswas and Jansen, 2012; Kataria 
and Guruprasad, 2012; Verdaguer et  al., 2017). Leaf size is 
one of the most important determinants of light capture and 
productivity. Increased rosette size was observed under different 
accessions of Arabidopsis thaliana grown indoors under 1.59 W 
m−2 UV-A radiation and 30 μmol m−2 s−1 of white light (4,000 K; 
Biswas and Jansen, 2012). The use of UV-blocking films further 
revealed that UV-A radiation increases total leaf area in soybean 
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(Glycine max) when grown in a greenhouse (Zhang et al., 2014). 
To the contrary, the solar spectrum, without UV-A and UV-B 
radiation, induced a larger leaf size when compared to UV-A 
and UV-B radiation in different varieties of sorghum (Sorghum 
bicolor; Kataria and Guruprasad, 2012). Published data shows 
no clear link between the impact of UV-A radiation and 
biomass accumulation, as inconsistent responses have been 
reported for UV-A-mediated biomass responses (Kataria and 
Guruprasad, 2012; Zhang et al., 2014). Some studies demonstrated 
stimulatory effects on biomass accumulation under UV-A 
radiation (Bernal et  al., 2013; Zhang et  al., 2014), while others 
reported inhibitory effects (Kataria et  al., 2013). One study 
concluded that the genotype determines UV-A-mediated 
responses in plants; however, the study was solely conducted 
using A. thaliana ecotypes (Cooley et  al., 2001).

Such contradictory findings may be  due to changes in 
morphology and photosynthetic activity, as well as 
accumulation of secondary metabolites (Verdaguer et  al., 
2017). Apart from the impact of plant physiological properties 
on UV-A radiation, different UV-A radiation conditions might 
contribute to these conflicting findings. Most UV-A-mediated 
response studies were conducted with UV-blocking films and 
the solar spectrum as radiation sources (Zhang et  al., 2014; 
Khudyakova et  al., 2017). The use of UV-blocking films only 
enables the reflection of a certain percentage of UV radiation 
from solar radiation, and their cut-off wavelengths vary 
depending on the manufacturer (Katsoulas et  al., 2020). In 
this scenario, although all studies reported the same radiation 
treatments (i.e., UV-A radiation), radiation spectra might 
differ. Distinct UV spectra and radiation properties could 
potentially lead to different plant responses. Furthermore, 
users cannot select for specific wavelengths passing through 
the UV-blocking films, as is possible with bandpass optical 
filters (i.e., blocking UV-A radiation only). As such, 
UV-A  +  UV-B treatments are often used as a baseline to 
compare and discuss the impact of UV-A radiation. Although 
potential interactive effects between UV-A and UV-B radiation 

have not yet been reported, they should still be  considered 
and determined with future research.

The most frequently reported UV-B-induced morphological 
changes are a decrease in leaf area and/or an increase in leaf 
thickness (Figure  1A; Klem et  al., 2012; Robson and Aphalo, 
2012; Doupis et al., 2016). UV-B radiation results in leaf changes 
(i.e., chlorosis, necrosis, and desiccation), and declines in plant 
height and shoot growth. These observations may serve as a 
protective mechanism since UV-B can damage photosystems 
(Gupta et al., 2017). Additionally, secondary metabolite responses 
differ under UV-B radiation (Schreiner et  al., 2012; Hectors 
et  al., 2014). For instance, polyamine and tocopherol levels 
upregulate quickly (within less than 24 h) in A. thaliana (Hectors 
et  al., 2014), whereas flavonoids accumulate at a lower rate, 
with steady states usually reached after several days (Kusano 
et  al., 2011). Furthermore, dose-dependent responses by 
flavonoids have been reported; a moderate UV-B dose (ambient 
radiation) induces flavonoid rutin production, which decreases 
under both reduced and enhanced UV-B dosage. Ambient 
UV-B dosage stimulates rutin accumulation, and accumulated 
rutin is more evident in buckwheat (Fagopyrum esculentum) 
leaves than in flowers (Kreft et  al., 2002; Jansen et  al., 2008). 
This suggests that different protectants respond differently based 
on UV radiation dosage, and that the relative abundance of 
different flavonoid species differs after UV radiation treatment, 
implying that distinct dose-response curves for each individual 
flavonoid compounds exist (Reifenrath and Müller, 2007).

UV-B radiation is perceived by the UV-B photoreceptor 
UV resistance locus 8 (UVR8), which promotes pest resistance 
and increases flavonoid accumulation. Under a low dose of 
UV-B radiation, UVR8 photoreceptor signaling is mediated 
through the RING-finger type ubiquitin E3 ligase 
CONSTITUTIVE PHOTOMORPHOGENIC1 (COP1; Figure 2; 
Lau and Deng, 2012; Peng et  al., 2013). COP1 promotes the 
expression of ELONGATED HYPOCOTYL5 (HY5) in A.thaliana 
(Lau and Deng, 2012) and apple (Malus  ×  domestica;  
Peng et  al., 2013). Specifically, the presence of low UV-B 

A B

FIGURE 1 | (A) Plant responses to UV-A and UV-B radiation, with both positive and negative effects induced by UV-A radiation. (B) Plant photoreceptors involved 
in flower initiation with their corresponding spectral regions, adapted from Folta and Carvalho (2015) and Jones (2018).
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radiation results in UVR8 monomerization, and UVR8 monomers 
interact with COP1 to initiate the UV-B signaling pathway. 
The UVR8-COP1 complex then activates HY5 binding to the 
promoter region of different R2R3 MYBs, and this leads to 
flavonoid accumulation in the nucleus (Peng et al., 2013; Jenkins, 
2017). Under a high dose of UV-B radiation, UV-B signaling 
may occur independently of UVR8, possibly via mitogen-
activated protein kinase (MAPK) signaling (Besteiro et al., 2011).

The negative effects of UV-C radiation on plant development 
are well established (Urban et al., 2016). Overexposure of UV-C 
radiation can lead to shortened shelf-life for fresh produce 
and a reduction in photosynthetic efficiency (De Oliveira et al., 
2016; Li et  al., 2019). UV-C radiation inflicts considerable 
damage on lipids and DNA; hence, it is often credited with 
the most bactericidal activity within the UV wavelength range 
(Santos et al., 2013). In the context of plant secondary metabolism, 
it is important to note that UV-C radiation induces the 
accumulation of phenolics and flavonoids (Nigro et  al., 2000; 
Erkan et al., 2008). However, because of higher energy contained 
in each photon, the focus on UV-C plant applications for 
secondary metabolites is largely placed on low doses and on 
pre‐ and post-harvesting treatments (Urban et  al., 2016).

THE IMPACT OF UV RADIATION ON 
STRAWBERRY FRUIT FLAVONOIDS

Two approaches are often used to manipulate wavelength in 
CE production: UV-blocking films (i.e., pure polyethylene) and 
light-emitting diodes (LEDs; Singh et al., 2015; Katsoulas et al., 
2020). Both technologies can manipulate wavelengths, yet  
they have different constraints and effective spectrum ranges.  

Earlier studies have reported the impact of UV dosage (combined 
UV-A and UV-B radiation) on strawberry fruit flavonoid levels, 
predominantly using UV-blocking films (Josuttis et  al., 2010; 
Tsormpatsidis et  al., 2011). Strawberry (cvs. Everest, Elsanta) 
fruits grown under films with high UV transparency 
(UV-A + UV-B) have higher anthocyanin and phenolic content 
(cyanidin 3-glucoside, quercetin 3-glucuronide, and kaempferol 
3-glucoside) than the strawberry fruits grown under UV-blocking 
film (Josuttis et al., 2010; Tsormpatsidis et al., 2011). Moreover, 
UV radiation affects strawberry fruit firmness and color, in 
which fruit ripened with UV radiation was smaller, firmer, 
and darker compared to fruit grown under UV-blocking film 
(Tsormpatsidis et  al., 2010; Ordidge et  al., 2012). These earlier 
studies provide insightful information on the impact of UV 
radiation on strawberry fruit quality and flavonoid contents. 
However, reported effects on the impact of UV radiation include 
both UV-A and UV-B radiation. Specific wavelength or radiation 
treatments within the UV wavelength range cannot be achieved 
by using solar UV radiation and UV-blocking films. It is 
unknown if interactive effects within the UV range exist for 
strawberry flavonoid accumulation.

Unlike UV-blocking films, LEDs offer higher controllability 
of light properties, such as specific wavelength(s), photoperiod 
adjustment, and a wide range of intensities (Zoratti et al., 2014; 
Alrifai et  al., 2019; Wu et  al., 2019). Many recent studies show 
the potential of manipulating plant growth and regulating plant 
secondary metabolite profiles with LED lighting on numerous 
greenhouse crops within the visible spectrum (Stewart and 
Folta, 2010; Cocetta et  al., 2017; Landi et  al., 2020b). In recent 
years, steady progress has been made regarding wall-plug 
efficiency and the life-span of UV-LEDs (Kneissl, 2016). UV-LEDs 
may be  superior to UV-blocking films when investigating UV 
radiation. However, the majority of strawberry studies using 
UV-LEDs is for enhanced strawberry fruit production, not 
insect and disease control (Kanto et al., 2009; Suthaparan et al., 
2016). To our knowledge, only one study using UV-LED on 
strawberry (cvs. Maehyang and Seolhyang) flavonoid level has 
been reported to date, demonstrating that anthocyanin content 
increased in the Seolhyang cultivar when irradiated with 
combined 254, 306, and 352-nm LED radiation (Kim et  al., 
2011). Insufficient data suggest there is a clear lack of studies 
in this regard, and further study is required to elucidate the 
impact of narrow UV-A and UV-B spectra on strawberry 
flavonoids and other secondary metabolite accumulation.

Studies on strawberry secondary metabolites and UV-C 
radiation have concentrated on pre‐ and post-harvest treatment 
(Erkan et al., 2008; Xu et al., 2017a, 2019). This might be because 
of the availability of UV-C radiation sources (i.e., UV discharge 
lamps with a major peak at 255  nm) and the adverse effect 
of UV-C radiation on plant development (Kim et  al., 2011). 
Low dose UV-C radiation at the post-harvesting stage has 
been applied to many valuable crops to reduce postharvest 
losses due to fungal growth and fruit decay (Marquenie et  al., 
2002). This UV-C radiation treatment is recognized as an 
effective method to enhance secondary metabolite concentrations 
in strawberry fruit within the food industry (Xu et  al., 2017a; 
Saini and Keum, 2018; Li et al., 2019). UV-C radiation improves 

FIGURE 2 | Proposed mechanism for UV-B signaling pathway in flavonoid 
biosynthesis.
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TABLE 1 | Strawberry anthocyanin, phenolic, and plant responses under UV radiation compared to control lighting (solar spectrum without UV radiation).

Light spectrum Cultivar Intensity and duration Temperature (°C) Response Reference

Solar UV-A + UV-B

Everest and 
Elsanta

Solar radiation (70% UV 
transmission)

19.5

Anthocyanin ↑ (cyanidin 3-glucoside)

Flavonols ↑ (quercetin 3-glucuronide 
and kaempferol 3-glucoside)

Josuttis et al., 2010

Elsanta
Solar radiation (81% UV 
transmission)

-

Anthocyanin ↑

Flavonoid ↑

phenolic ↑

Tsormpatsidis et al., 2011

Elsanta
Solar radiation (60–78% UV 
transmission)

-

Anthocyanins ↑

Phenolics↑

Ellagic acid ↑

Ordidge et al., 2012

UV-C (255 nm)

Candiss
1.70–10.2 kJ m−2 (4 min 8 s per 
week)

- Early flowering Forges et al., 2020

Albion
9.6–15 kJ m−2 (18–29 min per 
3 days)

20
Anthocyanins ↑

Flavonols ↑
Xu et al., 2017b

Benihoppe 4.0 kJ m−2 4
Total phenolic compounds ↑

Anthocyanin ↑
Li et al., 2019

Allstar
0.43–4.30 kJ m−2 (1, 5, and 
10 min, once)

5–10

Antioxidant capacity ↑

Phenolic content ↑

Anthocyanins Δ

Erkan et al., 2008

UV LEDs (254, 306, 
and 352-nm LEDs)

Seolhyang and 
Maehyang

16.4 W m−2 (8 and 16 min per 
2 days)

-
Anthocyanins ↑

Phenolics↑ (cv.Seolhyang only)
Kim et al., 2011

All solar UV radiation and UV-light-emitting diode (LED) studies comprise pre-harvest treatment, while all UV-C radiation studies include post-harvest treatment (↑: increase,  
↓: decrease).

the antioxidant capacity and reduces softening of fresh-cut 
strawberry fruit (Erkan et  al., 2008; Pombo et  al., 2009; Li 
et  al., 2019). Erkan et  al. (2008) first observed that low dose 
UV-C radiation (0.43–4.30  kJ m−2) promoted the antioxidant 
capacity and phenolic content in strawberry fruit storage at 
10°C (post-harvest), yet few effects were observed for anthocyanin 
accumulation. A recent study reported that both total phenolic 
compounds and anthocyanin in strawberry fruit significantly 
increased (>20%) with post-harvest treatment using UV-C 
radiation at 4°C (Li et  al., 2019). Low dose UV-C radiation 
(4.1  kJ m−2) slowed down strawberry fruit softening and 
degradation (Pombo et  al., 2009).

Unlike post-harvest treatment, pre-harvest treatment with 
UV-C radiation is a relatively new approach to improving 
fruit quality that shows promise (Xie et  al., 2015; Severo 
et al., 2017; Xu et al., 2017a). With UV-C radiation, strawberry 
fruit exhibit an increase in sucrose, ascorbic acid, and 
phytochemical profiles (ellagic acid and kaempferol-3-
glucuronide). It is possible that UV-C radiation might affect 
fruit quality via the action of plant hormones, as it may 
be involved in abscisic acid signaling. A recent study showed 
that pre-harvest UV-C radiation of strawberries had a dose-
dependent effect on secondary metabolite levels. Upon harvest, 
strawberry fruit that underwent UV-C radiation had a higher 
overall level of anthocyanins and flavonols at 15  kJ m−2, 
and this level dropped to that of the control under the 
highest UV-C dose (29.4  kJ m−2; Xu et  al., 2017b). However, 
pre-harvest UV-C radiation also induced a decrease in volatile 
compounds responsible for aroma, impacting its flavor profile 
(Severo et  al., 2017; Table  1).

THE IMPACT OF VISIBLE LIGHT AND 
FAR-RED RADIATION ON STRAWBERRY 
DEVELOPMENT AND FLAVONOID 
ACCUMULATION

Key transcription factors for flavonoid biosynthesis have been 
identified in many fruit crops, such as apple, grapevine, and 
woodland strawberry (Jaillon et  al., 2007; Velasco et  al., 2010; 
Shulaev et  al., 2011). These studies indicate that R2R3 MYB 
transcription factors are the primary regulators of fruit flavonoid 
biosynthesis in response to changing light conditions within 
the visible light spectrum. Contrary to its positive regulator 
role under UV-radiation, COP1 acts as a repressor of flavonoid 
biosynthesis under visible light (Shulaev et  al., 2011; Zoratti 
et  al., 2014). Specifically, COP1 is exported from the nucleus 
to the cytoplasm, allowing nuclear-localized transcription factors 
to accumulate and induce expression of genes that are directly 
regulated by R2R3 MYB transcription factors (Lau and Deng, 
2012; Zoratti et  al., 2014). Within the visible spectrum, blue 
light most prominently affects fruit flavonoid accumulation, 
particularly anthocyanins in unripe strawberries (Zoratti et  al., 
2014). The relevance of blue light photoreceptors and anthocyanin 
accumulation was demonstrated at the molecular level, and it 
was observed that the elevated expression of phototropin 2 
FaPHOT2 corresponded to an increase in anthocyanin content 
(Kadomura-Ishikawa et  al., 2013), In addition, blue light leads 
to overexpression of cryptochrome, resulting in anthocyanin 
accumulation (Giliberto et  al., 2005). Blue light is perceived 
by cryptochromes that influence different plant developmental 
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steps, including flowering induction and fruit secondary 
metabolite production (Fantini and Facella, 2020). Increases 
in flavonoid/anthocyanin biosynthesis with blue light have been 
reported in tomato (Solanum lycopersicum cv. Moneymaker; 
Lopez et  al., 2012) and grape (cv. Malbec; Gonzalez et  al., 
2015). The impact of blue light and supplemental red light 
on anthocyanin accumulation has also been investigated in 
many greenhouse crops (Liu et  al., 2018).

Attention on strawberry secondary metabolites is mainly 
placed on anthocyanin accumulation in CE agriculture, and 
investigations are mainly conducted with two approaches: (i) 
sole LED lighting as a growing light with post-harvest treatment; 
and (ii) different lighting strategies that result in different 
strawberry phenolic compound/anthocyanin biosynthesis 
responses (Kadomura-Ishikawa et  al., 2013; Miao et  al., 2016; 
Nadalini et  al., 2017). Table  2 summarizes current research 
on the modulation of strawberry flavonoid and fruit productivity 
under the visible spectrum. Opposed to other greenhouse crops, 
conflicting data for blue-light-mediated responses and strawberry 
fruit flavonoid accumulation exist. It appears that blue light 
is not the most effective wavelength for anthocyanin production 
in strawberry fruit (Besteiro et  al., 2011; Piovene et  al., 2015; 
Nadalini et  al., 2017). Blue LED light (e.g., 436 and 470-nm 
light) induces a higher number of flower clusters and increases 
final yield for strawberry plants (Nadalini et  al., 2017; Magar 
et  al., 2018). A reduction in anthocyanin (pelargonidin-3-
glucoside) and phenolic concentrations was observed in 
strawberry fruit grown under sole 436-nm LED light when 
compared to the fluorescent light spectrum, with peaks at 430, 
450, 540, and 620  nm (Nadalini et  al., 2017). Different ratios 
of 630 and 450  nm (0.7–5.5) LED light has no impact on 
flavonoid concentrations for strawberry fruit when compared 
to fluorescent light (Piovene et  al., 2015). In the same study, 
lower flavonoid concentrations were reported in basil leaves 
(Ocimum basilicum) grown under red and blue LED light when 
compared to basil grown under fluorescent light. The authors 
concluded that the impact of blue light on flavonoid biosynthesis 
is species-dependent (Nadalini et  al., 2017). Light bandwidth 
might also attribute to varied responses under blue light. 
Contrary to other strawberry studies, Miao et al. (2016) reported 
increased anthocyanins (cyanidin 3-glucoside) in the strawberry 
cultivar “Yueli” grown under blue plastic film (Miao et  al., 
2016). Although details of the blue light spectrum used in 
this study are not known, it is possible that the blue light 
produced with blue plastic film has a broad spectrum that is 
similar to the one from UV-blocking films. A broader spectrum 
of blue light (>25  nm LED bandwidth) could lead to 
overexpression of both phototropin and cryptochrome, two 
main blue light photoreceptors. Further investigation into the 
impact of blue light bandwidths, as well as how blue light 
influences flavonoid accumulation in different strawberry plant 
tissues, may answer this question.

In the presence of red light and far-red radiation, activated 
photoreceptors (phytochromes) repress COP1 function and 
allow its export from the nucleus, thus inducing flavonoid 
gene expression (Lau and Deng, 2012; Tossi et  al., 2019). The 
impact of red light on strawberry secondary metabolites and 

development was reported by Choi et al. (2015), who compared 
the flavonoid and phenolic compounds of strawberry (cv. 
Daewang) when grown under 448, 634, and 661-nm LED light 
in a growth chamber, and with supplementary light in a plastic 
greenhouse. Upon fruit maturation and testing, higher levels 
of total phenolic compounds were observed under red light 
(634  +  661  nm) treatment in the growth chamber, yet there 
was no significant difference in the amount of anthocyanin 
and flavonoid between any of the treatments. This was confirmed 
in a later study with 666-nm LED and strawberry (cv. Elsanta; 
Nadalini et  al., 2017). Similar to the conflicting data obtained 
with the blue film, opposite anthocyanin responses to “red 
light” produced with red film and red LED light were reported 
(Miao et  al., 2016). Strawberry (cv. Yueli) grown under red 
film had a significant impact on total anthocyanin concentration 
and individual anthocyanins (pelargonidin 3-glucoside and 
pelargonidin 3-malonyglucoside; Miao et  al., 2016). Although 
the detailed light spectrum under these plastic films was not 
presented (Miao et al., 2016), differences in secondary metabolite 
responses to light spectrum imply that specific wavelengths 
can differentially affect secondary metabolite accumulation in 
strawberry plants.

Unlike LED light in the visible spectrum, sole far-red radiation 
has less impact on secondary metabolite accumulation. Yet, it 
plays an import role in flowering and has proven an effective 
method for improved flowering with short duration at the 
end of the day (Zahedi and Sarikhani, 2016, 2017). The authors 
tested the end-of-day approach with 735-nm LED radiation 
using different exposure durations and temperatures on various 
developmental stages for strawberry (cv. Paros). They concluded 
that flowering can be  induced in 12-week old and older 
strawberry plants through 32 daily cycles of 735-nm LED 
radiation at a cooler temperature (Zahedi and Sarikhani, 2016). 
A similar conclusion on flowering initiation was made when 
end-of-day lighting was combined with mixed red light and 
far-red radiation (Rantanen et  al., 2014).

Although beyond the scope of this review, it is noteworthy 
to mention that purple light, with different ratios of red and 
blue LED light as well as intensity, results in increased stolon 
production, higher photosynthetic activity, and fruit productivity 
in strawberry plant (Nhut et al., 2003; Wu et al., 2009; Piovene 
et  al., 2015; Naznin et  al., 2016). An increase in strawberry 
flowering and fruit yield occurs with full-spectrum and white 
LED light (Hidaka et  al., 2013; Díaz-Galián et  al., 2020). In 
addition to the purple light spectrum, intensity is critical for 
influencing strawberry growth (Zhou et  al., 2005; Choi et  al., 
2015). This response appears cultivar-dependent (Smeets, 1976, 
1980). An increased daily light integral result in higher dry 
matter accumulation, propagation efficiency, and quality of 
strawberry runner plants (Miyazawa et al., 2009; Zheng et al., 
2019). In summary, the importance of wavelength and its 
bandwidth should be  emphasized and light spectra with 
different emitting wavelengths and lighting strategies clearly 
affect flavonoid content and fruit productivity in strawberry 
plants. The shift from broad-spectrum to narrow spectrum 
artificial lighting system is gaining momentum, but there is 
a paucity of studies comparing broad-spectrum to 
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narrow-spectrum light. This is compounded by conflicting 
findings for the blue-light-mediated response in strawberry 
fruit. More CE research could further elucidate the impact 
of different wavelengths and underlying mechanisms, while 
determining interactions with temperature-dependent processes, 
to improve fruit properties, including yield, quality, and 
nutritional value.

UV RADIATION AND PHOTOBIOLOGICAL 
SAFETY

UV radiation triggers the accumulation of flavonoids and 
other secondary metabolites (Caldwell and Britz, 2006). 
However, widespread use remains elusive, mainly caused by 
a limited selection of UV radiation sources and the 
photobiological hazard it presents to humans (Voke, 1999). 
Several types of UV radiation sources (i.e., gas-discharge 
lamps, fluorescent bulbs, and LEDs) are not often used in 
plant photobiology studies. UV gas-discharge lamps radiate 
a sharp  255-nm spectrum, and are accompanied by many 
disadvantages, including low radiation output and limited 
effective radiation area (Sarigiannis et  al., 2012). These 
disadvantages limit further investigation into the impact of 
UV radiation on plants. Unlike conventional UV radiation 
sources, UV-LEDs available on the market have a wide range 
of wavelength selection. By adding aluminum nitride (AlN) 
to the GaN diodes, emitting UV wavelengths ranges cover 
from 220 to 380  nm. Unlike earlier UV devices with less 
than a 100-h lifespan (L50, 50% of light bulbs fail at 100  h), 
current UV-LEDs emitting at 280–310 nm now boast a lifespan 
of at least 3,000  h (Würtele et  al., 2011; Fujioka et  al., 2014; 
Kneissl, 2016), with some exceeding more than 10,000  h 
(Glaab et al., 2015). Although these UV-LEDs still have lower 
reliability and longevity than LEDs in visible spectrum, they 
have become an emerging radiation source for research 

involving UV germicidal irradiation, such as water treatment 
and microbial inactivation (Song et al., 2016; Kebbi et al., 2020).

A major concern when applying UV radiation in plant 
production facilities is UV photobiology safety. While 
employing any UV radiation source, there is a potential risk 
of being exposed to hazardous ocular and skin UV radiation 
(Ichihashi et al., 2003; Laube et al., 2004), and UV photobiology 
safety precautions for users are necessary (Lau, 2013). Controls 
to prevent skin and eye injuries should be  placed, and 
protective housing that restricts or reduces UV exposure is 
an effective approach. If personnel requires to entering 
UV-radiation environment, personal protective equipment is 
highly recommended. Many international bodies have published 
guidelines that assess and evaluate photobiological eye safety 
based on wavelength and exposure (European Union, 2006; 
International Electrotechnical Commission, 2006). For radiation 
between 180 and 400  nm, the exposure limit is 30  J cm−2 
within 8-h per day. Note that when users assess the UV 
radiation environment, spectral weighting functions need to 
be  applied. Sunglasses provide adequate, as most sunglasses 
are able to greatly reduce the amount of UV radiation 
(Tuchinda et  al., 2006; Wu and Lefsrud, 2018).

CONCLUDING REMARKS AND FUTURE 
OUTLOOK

Here, we  review aspects of photobiology and flavonoid 
accumulation that are relevant to strawberry plant production. 
Studies showing our interest in enhancing strawberry plant 
growth, development, metabolites, and crop status span nearly 
100 years. Information on photobiology research can be utilized 
to tailor artificial light spectra, which can target the development 
of flavonoid content in strawberry fruits. More specifically that 
different wavelengths will elicit varied responses in the growth 
and quality of fruit production. Practically applied, optimized 

TABLE 2 | Strawberry anthocyanin, phenolic, and plant responses under the assigned light exposition compared to control (white light produced by fluorescent lamps; 
1: post-harvesting treatment, 2: supplemental lighting, ↑: increase, Δ: same as control, ↓: decrease).

Light spectrum Cultivar Wavelength (nm) Intensity Temperature (°C) Response Reference

Blue light (380–500 nm) Yueli blue plastic film - - Anthocyanins ↑ Miao et al., 2016

Elsanta 436 100 μmol·m−2·s−1 22–25
Fruit yield ↑

Anthocyanin↓
Nadalini et al., 2017

Pechka 4701 80 μmol·m−2·s−1 >16 Fruit yield ↑ Magar et al., 2018

Red light (630–700 nm) Daewang 634 + 661 200 μmol·m−2·s−1 10–25
Total phenolic compounds ↑

Flavonoids and anthocyanins Δ
Choi et al., 2015

Yueli red plastic film - - Anthocyanins ↑ Miao et al., 2016
Pechka 6401 80 μmol·m−2·s−1 >16 Flower ↓ Magar et al., 2018
Elsanta 666 100 μmol·m−2·s−1 22–25 Total phenolic compounds ↓ Nadalini et al., 2017

Purple light (blue + red light) Albion 449 + 661 (ratio 1:19) 120 μmol·m−2·s−1 16–21 Fruit yield ↑ Naznin et al., 2016
Akihime 450 + 660 (ratio 3:7) 60 μmol·m−2·s−1 25 Fruit yield ↑ Nhut et al., 2003

Far-red radiation Paros 7352 15 μmol·m−2·s−1 - Flower ↑ (low temperature)
Zahedi and Sarikhani, 
2016

Full spectrum Fortuna 450 + 650* 70–120 μmol·m−2·s−1 15 Flower ↑
Díaz-Galián et al., 
2020

Fukuoka S6 White LED2 >400 μmol·m−2·s−1 25 Fruit yield ↑ Hidaka et al., 2013

*With narrow-spectrum and broad-spectrum of 650 nm LED light.

https://www.frontiersin.org/journals/plant-science
www.frontiersin.org
https://www.frontiersin.org/journals/plant-science#articles


Warner et al. Photobiology and Strawberry Fruit Flavonoid

Frontiers in Plant Science | www.frontiersin.org 9 February 2021 | Volume 12 | Article 611893

light recipes reduce the necessary electrical inputs, while 
increasing the crop yields and quality. Pre-harvesting UV 
treatment combined the UV-A to UV-C wavelengths is a 
powerful tool for stimulating flavonoid biosynthesis in strawberry 
fruits; however, UV-C radiation alone impacts flavor profile. 
In post-harvesting treatments, UV-C radiation shows promising 
results on enhancing secondary metabolites. We  expect that 
UV LEDs will be  increasingly used to stimulate desirable fruit 
metabolites, while requiring only short doses (minutes per 
day) to elicit a response. Evidence indicates that blue LED 
light can enhance flavonoid accumulation in greenhouse crops, 
but this is not explicitly seen with strawberry plants. Blue-
light-mediated responses in strawberry fruit flavonoid 
accumulation are bandwidth-dependent, rather than wavelength-
dependent. Based on literature reported, a spectrum with board 
blue light spectrum or with multiple peaks in the blue wavelength 
range targeting both phototropin and cryptochrome is optimal 
and recommended for enhancing flavonoid accumulation. 
Understanding the action spectrum (or spectral dose-response 
curve) of flavonoid biosynthesis in different tissues is important 
to improve the precision of flavonoid production and the 
antioxidant capacity in strawberry CE production, making these 
“super foods” more super. Continued investigation of this 
variation in flavonoid response to light spectrum will provide 
important knowledge on light signaling machinery, such as 
COP1-mediated pathways, in strawberry, and possibly other 
fruit producing species.

Based on research reviewed, we  believe there is value in 
pursuing further research on the implication of light spectra 
on strawberry secondary metabolites to improve crop quality 
for human health. The following areas should be  considered 
for further study to fill knowledge gaps: (1) the impact of 

pre-harvest UV-A on secondary metabolite accumulation. 
Flavonoids absorb majorly in the UV-A spectrum, yet there 
is minimal research available on the direct impact of UV-A 
on flavonoid accumulation in strawberries. (2) Further 
investigations into the impact of pre-harvest UV-C radiation, 
considering post-harvest research is very promising. UV-C LED 
sources with different wavelengths are highly available, and 
the accessibility to both researchers and producers make results 
more accessible. (3) Determination of the impact of specific 
visible light wavelengths across both cultivars and temperature, 
especially with white LED light. (4) Investigations into blue: 
red light ratios in purple lighting during vegetative growth 
and flowering to determine impact on secondary metabolite 
profile in strawberries. (5) Degradation monitoring of flavonoids 
during post-harvest storage and transport, to determine 
timeframe of benefits imposed by augmented light spectrum.
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