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Net blotch, induced by the ascomycete Pyrenophora teres, has become among the most 
important disease of barley (Hordeum vulgare L.). Easily recognizable by brown reticulated 
stripes on the sensitive barley leaves, net blotch reduces the yield by up to 40% and 
decreases seed quality. The life cycle, the mode of dispersion and the development of the 
pathogen, allow a quick contamination of the host. Crop residues, seeds, and wild grass 
species are the inoculum sources to spread the disease. The interaction between the barley 
plant and the fungus is complex and involves physiological changes with the emergence 
of symptoms on barley and genetic changes including the modulation of different genes 
involved in the defense pathways. The genes of net blotch resistance have been identified 
and their localizations are distributed on seven barley chromosomes. Considering the 
importance of this disease, several management approaches have been performed to 
control net blotch. One of them is the use of beneficial bacteria colonizing the rhizosphere, 
collectively referred to as Plant Growth Promoting Rhizobacteria. Several studies have 
reported the protective role of these bacteria and their metabolites against potential 
pathogens. Based on the available data, we expose a comprehensive review of Pyrenophora 
teres including its morphology, interaction with the host plant and means of control.

Keywords: barley, Hordeum vulgare L., Pyrenophora teres, net blotch, plant growth promoting rhizobacteria

INTRODUCTION

Worldwide, net blotch caused by Pyrenophora teres Drechsler [anamorph Drechslera teres (Sacc.) 
Shoem] is a major foliar disease of barley (Hordeum vulgare L.) causing economic losses by 
reducing the grain quantity and quality. According to Smedegard-Petersen (1971), net blotch 
exists in two different forms: the spot and net form of net blotch (SFNB and NFNB), caused 
by P. teres f. maculata (Ptm) and P. teres f. teres (Ptt) respectively (Smedegård-Petersen, 1976). 
These two forms have been identified as similar morphologically, however, different at the 
genetic and pathophysiological levels (Campbell et  al., 1999; Liu et  al., 2011; Akhavan et  al., 
2016). Ptt forms dark-brown and longitudinal necrotic lesions, which can turn chlorotic (Lightfoot 
and Able, 2010), while Ptm is responsible for dark brown circular or elliptical spots with 
chlorosis on the surrounding leaf tissues (Gupta and Loughman, 2001; Jayasena et  al., 2004). 
The differentiation of these forms has been reported in Sweden (Jonsson et  al., 1997),  
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France (Arabi et  al., 1992), Western Australia (Gupta and 
Loughman, 2001), South Africa (Louw et al., 1996), and Western 
Canada (Akhavan et  al., 2016).

The distinction between these two forms is also due to 
differences in fungal growth and in symptoms’ development 
(Lightfoot and Able, 2010). Indeed, compared to Ptt, Ptm 
germinates slowly. Additionally, Ptm forms more intracellular 
vesicles compared to Ptt and is responsible of the leaf cell death 
within the fungal penetration area. The hyphal growth of Ptt 
is more extensive than Ptm before the formation of appressoria 
on the leaf surface. The time required for Ptm infection is also 
shorter than Ptt (Liu et  al., 2011). Therefore, Ptt feeds and 
infects as a necrotroph during the infection period and grows 
only intercellularly. Contrary, Ptm initially develops haustorial-
like intracellular vesicles, feeding similarly to a biotroph, and 
then switches quickly to a necrotrophic growth. Thus, Ptt behaves 
as a necrotroph, while Ptm acts as a hemibiotroph (Lightfoot 
and Able, 2010). A recent study has demonstrated that Ptm 
has significantly higher necrotrophic and saprotrophic growth 
rates than Ptt (Ronen et  al., 2019). Several toxins are produced 
by both forms of P. teres (Bach et  al., 1979; Nukina et  al., 1980; 
Barrault et  al., 1982; Friis et  al., 1991; Weiergang et  al., 2002), 
namely proteinaceous toxins and low molecular weight 
aspergillomarasmine-derived toxins contributing to the necrosis 
and chlorosis (Sarpeleh et  al., 2007, 2008). Ptt produces greater 
quantities of toxins in the culture medium (Lightfoot and Able, 
2010). In addition, the toxin composition and amount are different 
and remain to be  established in planta.

Pyrenophora teres f. teres and Pyrenophora teres f. maculata 
are morphologically very similar, while the disease symptoms 
are different. Recent studies have shown that they are two 
phylogenetically distinct species, which are considered to 
be  genetically autonomous populations (Akhavan et  al., 2016). 
A period of evolutionary separation has been suggested thanks 
to a study of intergenic regions (Ellwood et  al., 2012). Primers 
were developed on the basis of Internal Transcripted Spacer 
(ITS) regions and they allow to identify and distinguish the 
two forms of P. teres (Leisova et  al., 2006; Mclean et  al., 2009). 
In several parts of the world, the genetic diversity and population 
of P. teres were explored by using random amplified polymorphic 
DNA (RAPD; Peever and Milgroom, 1994; Campbell et  al., 
1999, 2002), amplified fragment length polymorphism (AFLP; 
Rau et  al., 2003; Leisova et  al., 2005; Serenius et  al., 2007), 
and simple sequence repeat (SSR) analysis (Keiper et  al., 2008; 
Bogacki et al., 2010; Leišová-Svobodová et al., 2014). In addition, 
both forms of P. teres have cycles of sexual reproduction 
occurring on overwintering crop residues followed by multiple 
cycles of asexual reproduction during the vegetative season 
(Piening, 1968; Duczek et  al., 1999). Therefore, Ptt and Ptm 
have a mixed breeding and an outcrossing mating system. 
Because of these characteristics, Ptt and Ptm fall into the 
category of pathogens having a high capacity to adapt to 
resistance genes of the plant host as well as to fungicides. 
The recombination between P. teres isolates can lead to multiple 
resistances, for example, towards several triazoles (Jalli, 2011; 
Poudel et  al., 2018). Studies have reported that the sexual 
reproduction between Ptt and Ptm is inducible under laboratory 

conditions (Campbell et  al., 1999; Jalli, 2011). However, other 
studies have indicated that, under field conditions, hybridizations 
between Ptt and Ptm are unusual or even absent (Rau et  al., 
2003, 2007; Serenius et  al., 2007; Poudel et  al., 2018).

The first genome assembly of Ptt was obtained using the 
Illumina Solexa sequencing platform leading to a 41.95  Mbp 
of total assembly size (Ellwood et  al., 2010). There have since 
been additional genomes sequenced and deposited in publicly 
available repositories including 11 P. teres f. teres genomes and 
five P. teres f. maculata genomes (Wyatt et  al., 2018; Wyatt 
and Friesen, 2020). The genome assemblies of both forms of 
P.  teres were constructed from long DNA reads, optical and 
genetic maps. These genomes are highly collinear and each 
one is composed of 12 chromosomes. The Ptt genome is larger 
and more repetitive than the Ptm genome (Syme et  al., 2018).

In 1973, Shipton and collaborators published the first review 
on barley net blotch. This review compiled available information 
concerning the repartition and importance of the disease (Shipton 
et al., 1973). From 1973 to 2011, other reviews have been published 
describing the disease epidemiology and the host resistance toward 
Ptm (Mclean et  al., 2009; Liu et  al., 2011). In 2020, Clare and 
collaborators reported the brief consensus maps for all loci published 
for both barley and P. teres (Clare et  al., 2020). To the best of 
our knowledge, no review has yet described the pathology of 
the fungus in relation with biological means to increase the 
resistance of the host. Beneficial bacteria are attracting attention 
in light of their potential use in agriculture (Babalola, 2010; Dutta 
and Podile, 2010; Vejan et  al., 2016, 2019; Ferreira et  al., 2019; 
Kumari et  al., 2019; Prasad et  al., 2019; Kumar et  al., 2020). The 
present review provides an overview of the existing knowledge 
on the interaction between P. teres and barley and summarizes 
the current and ongoing research on P. teres. It also presents the 
morphological description, development of the fungus and the 
interaction with barley, and synthesizes the knowledge on current 
means used to manage net blotch.

TAXONOMY HISTORY AND FOCUS ON 
PYRENOPHORA SPECIES

Established in 1809, the genus Helminthosporium became the 
repository for a large number of described taxa (Alcorn, 1988). 
Helminthosporium species attack the graminaceous plants in 
temperate regions (Sampson and Western, 1940). For instance, 
in 1943, Helminthosporium oryzae destroyed 90% of the rice in 
India, leading to a famine situation (Padmanabhan, 1973). This 
virulence was due to an increase of (i) the mean temperature, 
(ii) the rainfall, and (iii) the relative humidity. Nowadays, the 
major climate-change factors, including the increasing CO2, lead 
to an increase in humidity and therefore to optimal conditions 
for fungal development (Luck et al., 2011; Mikkelsen et al., 2015).

In 1923, Drechsler distinguished Helminthosporium species 
with cylindrical conidia growing over the whole cell surface 
and species with fusoid conidia germinating only at their ends 
(Drechsler, 1923). In 1929, Nisikado proposed two subgenera 
based on the description of Drechsler: Cylindro-Helminthosporium 
and Eu-Helminthosporium (Nisikado, 1929; Shoemaker, 1959; 

https://www.frontiersin.org/journals/plant-science
www.frontiersin.org
https://www.frontiersin.org/journals/plant-science#articles


Backes et al. Biology of Pyrenophora teres

Frontiers in Plant Science | www.frontiersin.org 3 April 2021 | Volume 12 | Article 614951

Alcorn, 1988). Later, Luttrell (1963) highlighted the differences 
between Helminthosporium sensu stricto and Graminicolous 
species in the development of conidia and conidiophores. 
Depending on the sexual states, Graminicolous species were 
separated into three genera, Bipolaris, Drechslera, and Exserohilum 
or Cochliobolus, Pyrenophora and Setosphaeria, respectively 
(Ibrahim et  al., 1966; Ariyawansa, 2014). The genus Bipolaris 
contains Eu-Helminthosporium of Nisikado and Helminthosporium 
for lignicolous species (Shoemaker, 1959; Alcorn, 1988). Leonard 
and Suggs (1974) established the Exserohilum genus for species 
having strongly protuberant conidial hilum (Alcorn, 1988). In 
1930, Cylindro-Helminthosporium became a genus under the 
name of Pyrenophora by Ito (1930).

Pyrenophora accounts for 135 species listed in Index Fungorum 
(2014), most of which are not pathogenic to humans (Ariyawansa, 
2014). Gramineae and, more specifically, Hordeum vulgare, are 
considered as the main hosts for Pyrenophora. Depending on 
the barley’s symptoms, different species of Pyrenophora can 
be  distinguished. Table  1 summarizes the main species of 
Pyrenophora involved in barley diseases.

Pyrenophora graminea [Ito & Kuribayashi; anamorph stage: 
Drechslera graminea (Rabenhorst ex Schlechtendal Shoemaker], 
is a seed-borne pathogen of barley causing leaf stripe (Porta-
Puglia et  al., 1986). Pyrenophora japonica S. Ito & Kurib. 
(anamorph stage: Drechslera tuberosa Shoemaker) is identified 
as the agent causing leaf spot symptoms on barley (Campbell 
et  al., 1999). Net blotch caused by P. teres [anamorph stage: 
D. teres (Sacc.) Shoemaker Drechsler] belongs to the kingdom 
Fungi, phylum Ascomycota, subphylum Pezizomycotina, and 
class Dothideomycetes (Figure  1; Liu et  al., 2011).

DISTRIBUTION AND ECONOMIC 
IMPACT OF NET BLOTCH

The ascomycete P. teres is the causal agent of net blotch on 
spring and winter barley. During the last decades, P. teres has 

spread throughout the world and ravaged crops in many 
countries: Australia (Gupta and Loughman, 2001; Mclean et al., 
2010), Canada (Turkington et  al., 2002; Akhavan et  al., 2016), 
Europe (Dennis and Foister, 1942; Arabi et  al., 1992; Plessl 
et  al., 2005), South  Africa (Smith and Rattray, 1930; Louw 
et  al., 1996; Campbell et  al., 1999), and the United  States 
(Lartey et  al., 2012). Net blotch causes important economic 
problems by reducing barley seed’s quality (Shipton, 1966; 
Plessl et  al., 2005; Jayasena et  al., 2007). For instance, in 
Australia, the economic losses are estimated to be  $ 117  ×  106 
per year (Murray and Brennan, 2010). In addition, yield losses 
might reach 40% in years with extensive rainfall in Germany 
(Plessl et  al., 2005).

SYMPTOMATOLOGY

Pyrenophora teres causes disease and can infect leaves, stems, 
and kernels of barley (Liu et al., 2011). Like other plant diseases, 
symptoms’ appearance is dependent on the pathogen virulence, 
host genotype, and environment. Damages are different on 
resistant and susceptible varieties. Only few dot-like lesions 
are present with no development of a net-like pattern on highly 
resistant barley (Mclean et  al., 2009; Liu et  al., 2011).

On susceptible varieties, the disease evolves quickly as shown 
in Figure  2. Twenty-two hours post infection on a six row 
winter barley named Siberia, the first symptoms appear as 
brown necrotic spots on infected tissues increasing in size to 
form elliptical or fusiform lesions to 3 by 6  mm (Figure  2B; 
Keon and Hargreaves, 1983; Mclean et al., 2009). These necrotic 
lesions may be  accompanied by chlorotic lesions of varying 
width (Figure  2C). Upon further fungal development, these 
chlorotic lesions might lead to the entire leaf ’s death (Figure 2D). 
The first wilts appear 40 h after infection (Barrault et al., 1982; 
Arabi et  al., 2003). Then, the oldest leaves start to wither, 
followed by the youngest.

These symptoms closely resemble those caused by P. japonica 
(Scott et  al., 1991) and Cochliobolus sativus (Van den Berg, 
1988), therefore examination of the conidia is often necessary 
to distinguish the pathogen agent (Mclean et  al., 2009).

Toxins’ Production
The symptoms caused by P. teres are partially induced by 
various toxins (Weiergang et al., 2002). The produced phytotoxic 
compounds include pyrenolides, pyrenolines, and three peptide 
alkaloids, aspergilomarasmine A and its derivatives (Muria-
Gonzalez et  al., 2020). Pyrenolines (A and B) and pyrenolides 
(A, B, C, and D) constitute general toxins affecting different 
plants (Nukina and Hirota, 1992; Sarpeleh et  al., 2007) and 
induced only brown necrotic spots or lesions similar to those 
induced by the pathogen 72 h after inoculation (Sarpeleh et al., 
2007). Pyrenolines A and B represent a class of bioactive 
metabolites produced by P. teres (Coval et  al., 1990). While 
tested on both monocots and dicots, pyrenoline A shows no 
host specificity. In addition, pyrenoline B is also active on 
several plant species but at higher concentrations compared 
to pyrenoline A. Pyrenolides A, B, and C produced by P. teres, 

TABLE 1 | Summary of the different species of Pyrenophora, pathogen of barley.

Teleomorph 
stage

Anamorph 
stage

Host Symptoms Bibliographic 
references

Pyrenophora 
graminea

Drechslera 
graminea

barley leaf stripe
(Tekauz, 1983; 
Porta-Puglia et al., 
1986)

Pyrenophora 
japonica

Drechslera 
tuberosa

barley leaf spot
(Campbell et al., 
1999)

Pyrenophora 
teres f. teres

Drechslera teres 
f. teres

barley
net form of 
net blotch

(Brown et al., 
1993; Jalli and 
Robinson, 2000; 
Afanasenko et al., 
2007)

Pyrenophora 
teres f. 
maculata

Drechslera teres 
f. maculata

barley
spot form of 
net blotch

(Campbell et al., 
1999; Jayasena 
et al., 2004; 
Mclean et al., 
2009; Lartey et al., 
2012)
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FIGURE 1 | Phylogenetic tree of fungi according to MycoCosm portal (adapted from Grigoriev et al., 2014). According to this phylogenetic tree, Pyrenophora teres 
belongs to the kingdom Fungi, phylum Ascomycota, subphylum Pezizomucotina, and class Dothideomycetes.

A B

C D

FIGURE 2 | Symptoms caused by P. teres on Siberia barley leaves. Control (A), 4 days after infection (B), 7 days after infection (C), and 10 days after infection (D).
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exhibit growth inhibiting and morphogenic activities towards 
other fungi. For instance, the application of pyrenolide C allows 
hyphal growth inhibition and the formation of many irregularly 
swollen hyphae in Cochliobolous lunata (Nukina et  al., 1980).

In addition to pyrenolines and pyrenolides, P. teres also 
produces three other toxins, designated as N-(2-amino-2-
carboxyethyl) aspartic acid, anhydrospergillomarasmine A, and 
aspergilomarasmine A, symbolized by A, B, and C, respectively 
(Barrault et  al., 1982; Friis et  al., 1991). These peptides are 
thermostable with a low molecular weight and cause chlorosis, 
rather than the classical net blotch necrosis, after infiltration of 
the pure compound (Muria-Gonzalez et  al., 2020). The 
aspergilomarasmines were first described by Haenni et al. (1965), 
as metabolites of Aspergillus oryzae and Aspergillus flavus (Haenni 
et  al., 1965). According to their chemical structures, toxin A 
might be  a precursor of toxin C (Figure  3; Friis et  al., 1991).

These toxins are involved in the development of the net 
blotch symptoms (Mikhailova et al., 2010). Toxin A is responsible 
for necrosis, while toxin B and C cause chlorosis (Weiergang 
et al., 2002; Mikhailova et al., 2010). Moreover, aspergilomarasmines 
A and B disturb the water balance of the plant cell. Their 
activities are enhanced by the presence of metal ions, especially 
ferric ions (Friis et al., 1991). Separated by electrophoresis, toxin 
C is the first detectable toxin, which is accumulated between 
10 and 16 days after inoculation (Friis et al., 1991). The quantity 
of toxins produced by the fungus impacts the severity of symptoms 
(Sarpeleh et  al., 2007; Mclean et  al., 2009). Aspergilomarasmine 
A (toxin C) and its derivative (toxin A) are toxics at a concentration 
of 0.25 mmol/L, while the other derivative of aspergilomarasmine 

A, toxin B, is toxic at 1 mmol/L (Bach et al., 1979; Weiergang 
et  al., 2002). These three peptides belong to host-specific 
toxins (HST; Stergiopoulos et  al., 2013). Their activities are 
dependent on the age of plants with a higher level on young 
leaves (Sarpeleh et al., 2008). Toxins of P. teres are considered 
as virulence factors defined as the degree of damage caused 
to a host and not as pathogenicity factors representing the 
qualitative capacity of a pathogen to infect and cause disease 
on a host (Sacristán and García-Arenal, 2008; Jalli, 2011).

Origin of Contamination
Characterized as a hemibiotroph, P. teres survives saprophytically 
between cropping seasons. The pathogen is present as mycelium 
on host crop residues, on seeds before sowing or wild grass 
species, forming a source of primary inoculum (Jordan and 
Allen, 1984; Brown et  al., 1993). Pyrenophora teres is able to 
contaminate young shoots and the coleoptile (Jordan, 1981). 
The pathogenic factor and the quantity of primary inoculum 
from infected residues depend on several factors. Firstly, the 
environmental conditions and, more specifically, long periods 
of wet, increase the primary inoculum levels (Mclean et  al., 
2009). The amount of residues also directly impacts the disease 
intensity since the inoculum survives on infected residues. 
Secondly, the disease levels vary greatly depending on the cultural 
practice applied. Crop rotation, avoiding barley monoculture 
and eliminating or reducing primary inoculum in the field are 
means preventing the pathogen’s development (Liu et  al., 2011). 
For instance, a minimum of 2  years between barley crops is 
required to prevent net blotch disease (Duczek et  al., 1999). 

FIGURE 3 | The biosynthetic pathway of aspergilomarasmine A (toxin C) and its derivatives (toxin A and toxin B) and their chemical structures (inspired from 
Friis et al., 1991).
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Concerning wild grass species, P. teres can infect Agropyron, 
Bromus, Elymus, Hordelymus, Stipa, and other Hordeum spp. 
(Mclean et  al., 2009). These wild grass species can impact the 
epidemiology of net blotch, but they do not provide a significant 
additional inoculum to the next year’s crop (Brown et al., 1993).

Life Cycle of Pyrenophora teres
The P. teres lifecycle implies both an asexual and a sexual 
stage (Figure  4; Jalli, 2011). Conidia are produced during the 
asexual stage, whereas the sexual stage involves reproduction 
between isolates of compatible mating types and genetic 
recombination to produce ascospores (Fowler et  al., 2017). 
The asexual stage occurs during the summer period on residues 
of the previous barley crop, and triggers the infection in autumn. 
At the end of the growing season, the fungus produces dark, 

globosely shaped pseudothecia, 1–2 mm in diameter (Figure 5A; 
Mclean et  al., 2009). As sexual organs, pseudothecia represent 
the teleomorph or perfect state of P. teres. Once mature, 
pseudothecia produce asci containing three to eight ascospores 
measuring 18–28  μm  ×  43–61  μm, light brown and helical 
in shape (Liu et  al., 2011). The ascospores production is 
temperature-dependent with an optimum between 15 and 20°C 
(Jordan, 1981; Mironenko et  al., 2005). The spores have three 
or four transverse septa (Figure  5B). These ascospores are 
released on infected residues (Figure 5C) until spring constituting 
the primary inoculum (Duczek et  al., 1999). These ascospores 
are dispersed into the air by the wind, or are splash-dispersed 
by the rain (Figure  4; Deadman and Cooke, 1989).

Following the primary infection, P. teres produces conidia 
measuring 30–174  μm  ×  15–23  μm constituting the asexual 

FIGURE 4 | Dynamics of net blotch epidemics adapted from Suffert et al. (2011). Red arrows indicate P. teres wind-dispersed infections and blue arrows indicate 
splash-dispersed infections. The months with a brown color indicate that the source of inoculum comes from swarming debris on the soil, while the months with a 
green color indicate a source of inoculum mainly from the aerial parts of the plants. The numbers indicate the pathogen’s infection stages: 1: infection by P. teres 
ascospores present on infected barley debris; 2: mycelium present on grass species infects barley young plants; 3: the net blotch disease progresses from the 
bottom to the top of the barley plant; 4: disseminated by the wind, conidia contaminate other barley plants; 5: heavily infected crops show abortion of the ear; and 
6: Pyrenophora teres colonizes the senescent tissues and produces perithecia on straw and grass species.
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cycle (Liu et  al., 2011). Generally, conidia are elongated with 
rounded ends. This secondary infection sets in 14–20  days after 
the primary infection and increases the severity of the disease 
(Mclean et  al., 2009). The conidia, considered as the anamorph 
stage or imperfect stage of P. teres are found on conidiophores, 
solitary or grouped by two or three and swollen at the base 
(Mclean et  al., 2009). Conidiophores need light to develop 
whereas conidia appear in the darkness (Wright and Sutton, 
1990). Conidia of P. teres are recognizable from other pathogens 
due to their inside septum (Alcorn, 1988). The conidia are 
qualified as viable when they present more than two segments, 
otherwise they will not germinate and cannot penetrate plant 
tissues (Figure  5D). Between April and August, conidia are 
disseminated by the wind and/or rainfall to surrounding barley 
plants, or carried for long distances to reach new barley fields 
initiating, thus, the secondary infection cycle (Figure  4; Duczek 
et  al., 1999). The infection process begins with the germination 
of ascospores or conidia on leaves. After penetrating the outer 
epidermal cell wall of barley, P. teres develops within a large 
intracellular vesicle called the primary vesicle (Liu et  al., 2011). 
Then, vesicles are formed inside the sub-stomatal chamber leading 
to haustoria, the secondary hyphae (Keon and Hargreaves, 1983).

Thus, the pathogen contaminates the leaf, particularly the 
epidermal cells, within 48  h post infection (Jørgensen et  al., 
1998). The disease progresses from the bottom to the top of 
the plant (Figure  4). Further, the severity of damages is lower 

in older plants. Indeed, the older plants have a thicker cuticle 
limiting the penetration of the pathogen and have a greater 
capacity for producing antifungal substances (Khan and Boyd, 
1969; Douiyssi et  al., 1998). Once secondary infection is 
completed, P. teres colonizes the senescent tissues and produces 
pseudothecia on straw or weed residues (Figure 4; Liu et al., 2011).

METHODS FOR THE DISEASE 
ASSESSMENT

Field trials can be  tested, known as “hill summer,” to follow 
the development of the disease and to test resistance to net 
blotch in different barley cultivars. For hill summer trials, barley 
seeds are sown in hill plots at a distance between hills of 50 cm 
at the beginning of August. Pyrenophora teres inoculation is 
conducted by distributing naturally infested straw debris before 
sowing (early August; König et  al., 2013; Vatter et  al., 2017).

The evaluation of the disease in the laboratory and under 
controlled conditions is as follows: the barley plants are grown 
in controlled enclosure (temperature, humidity, and light) 
following a cycle of 23°C day/22°C night, 80% relative humidity, 
14/10 h day/night photoperiod. For example, the P. teres pathogen 
can be  sprayed with a sprayer on the leaves at different stages 
of growth after sowing in order to follow the disease development. 
For the control condition, the barley plants are sprayed with 

A B

C D

FIGURE 5 | Vegetative and reproductive forms of P. teres and its symptoms on barley leaves. Mycelium of P. teres in barley leaf deposited on PDA medium (A), 
conidia of P. teres (B), chlorosis and necrosis symptoms on barley leaf caused by P. teres (C), and penetration of mycelium (red arrow) through barley leaf (D).
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a sterile water solution. As soon as the pathogen is inoculated, 
the barley plants are placed in a hood to increase the humidity 
level, allowing the pathogen to improve its development. This 
same experiment can be  carried out in a greenhouse under 
less controlled conditions, i.e., with a natural photoperiod.

The disease can also be followed on detached leaves (Figure 6). 
Indeed, the detached plant leaf assay is a rapid technique of 
assessment under controlled conditions. For this experiment, barley 
leaves are cut to equal lengths and then placed on filter paper 
or on an agar-agar medium deposited or poured into a sterile 
plastic Petri dish. The barley leaves can be  kept taut by means 
of agar–agar bands. Then, the inoculation is carried out by depositing 
5–10  μl of a suspension of P. teres spores on previously injured 
barley leaves (Deadman and Cooke, 1986; El-Mor et  al., 2017).

The infection response based on the measurement of individual 
lesion sizes (dimension; mm) for each second leaf was assessed 
15  days after inoculation of P. teres. The 0–5 scale was used 
in this methods, where the scores 0–5 indicate resistant and 
increasingly susceptible barley phenotypes (Arabi and Jawhar, 
2010). The disease severity for net blotch was scored on a 
dozen barley plants using modified Saari and Prescott’s double-
digit scale (D1D2, 00–99) scoring method, which was based 
on the severity scale to assess foliar diseases in cereals. The 
first digit (D1) represents the relative height of the disease on 
the plant and corresponds to the vertical disease progression. 
The second digit (D2) refers to the severity measured as diseased 
leaf area (Saari and Prescott, 1975; Jalata et  al., 2020).

GENETICS OF THE INTERACTION 
BETWEEN BARLEY AND 
PYRENOPHORA TERES

At the molecular level, several mechanisms are involved during 
the interaction between P. teres and barley. In many fungal 
diseases, the infection cycle begins with the development of 

penetration structures triggered by the perception of chemical 
and/or physical signals from the plant surface. During the 
initial interaction, the mitogen-activated protein kinase (MAPK) 
signal transduction pathway plays crucial roles in the pathogenesis 
process. In P. teres, the MAPK PTK1 gene allows the conidiation, 
appressorium formation, and pathogenicity on barley (Figure 7; 
Ruiz-Roldán et al., 2001). Other proteins containing a common 
domain in several fungal extracellular membrane proteins 
(CFEM), an eight cysteine-containing domain, are also required 
for appressorium development. CFEM-containing proteins could 
act as signal transducers or cell-surface receptors during host-
pathogen interactions (Kulkarni et al., 2003; Ismail et al., 2014a).

Pyrenophora teres is able to modulate its cell wall in function 
of the vegetative or reproductive state and of the culture media 
used. Indeed, genes involved in the synthesis and remodeling 
of cell wall polysaccharides, namely chitin, β-(1,3)-glucan, 
mixed-linkage glucan, as well as endo/exoglucanases and a 
MAPK, varied in expression in P. teres spores and mycelium 
after cultivation on several media (Backes et  al., 2020).

The cell wall of barley constitutes the first barrier to P. teres. 
To infect the plant, P. teres produces proteins degrading the 
plant cell wall (Muria-Gonzalez et  al., 2020). These enzymes 
belong to cell wall degrading enzymes (CWDE; Figure 7). Each 
of these enzymes plays a role at several time points during the 
plant-pathogen interaction. Pyrenophora teres is characterized as 
a hemibiotrophic pathogen appearing as a biotroph during the 
first 24–48  h in contact with its host before switching to the 
necrotrophic stage (Ismail and Able, 2017). So, cutinase degrades 
the plant cuticle and participates to the initial colonization of 
plant tissues. Some of these proteins have been identified such 
as endo-(1,4)-β-xylanase and glucan-(1,3)-β-glucosidase precursors 
(Ismail et al., 2014b; Ismail and Able, 2016). Endo-(1,4)-β-xylanase 
is the key enzyme responsible for degradation of xylan, 
predominant hemicellulose in the plant cell (Beliën et al., 2006). 
Glucan-(1,3)-β-glucosidase precursor catalyzes the liberation of 
α-glucose from β-(1,3)-glucan, other principal component of 

A B

FIGURE 6 | Assessment on detached leaves. The barley leaves were disinfected in an ethanol bath at 70°C followed by rinsing in three successive sterile water baths. 
All the leaves were cut to the same length then placed on agar-agar medium. These leaves were then wounded with a wooden pick. A volume of 10 μl was 
deposited at the level of the wound containing sterile water for a control condition (A) or P. teres spores at a concentration of 105 spores.ml−1 for the infected condition (B).
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plant cell wall (Boonvitthya et  al., 2012). According to Ismail 
and Able (2017), genes coding for glycoside hydrolase family 
43 protein, glycoside hydrolase family 105 protein, and 
endoglucanase-5 are highly expressed during the barley –  
P. teres interaction (Figure  7).

After the pathogen attack, the carbohydrate metabolism is 
impacted in plants. In barley, the sugar transporter genes are 
induced after pathogen attack (Williams et  al., 2000; Bogacki 
et  al., 2008). In the same way, the gene coding for a putative 
invertase allows to satisfy the increased metabolic demand on 
barley leaf tissue. An invertase-encoding gene, which cleaves 
sucrose to glucose and fructose, is induced in plants infected 
by fungal pathogens (Fotopoulos et  al., 2003). The energy 
normally used for the primary metabolism is intended for 
defense mechanisms activated by the host plant against pathogens 

(Rojas et  al., 2014). Consequently, these energy requirements 
for plant defense responses decrease the yield in barley (Shipton, 
1966; Rojas et  al., 2014).

Filamentous fungi may also produce effectors or 
proteinaceous toxins to facilitate the susceptible host 
colonization and notably cereal hosts (Gardiner et  al., 2012; 
Ismail et  al., 2014b; Muria-Gonzalez et  al., 2020). Three 
proteins have been identified in P. teres: a cysteine hydrolase 
family protein, an endo-1,4- β-xylanase A, and an unknown 
secreted protein. The cysteine hydrolase family protein shows 
homology to an isochorismatase known as an enzyme 
suppressing plant defense (Ismail et  al., 2014a).

During the interaction between P. teres and barley, a series 
of complex molecular and physiological processes activate and 
often lead to plant cell death, referred to as the hypersensitive 

FIGURE 7 | The schematic model of the fungal growth and symptoms’ development in a susceptible barley leaf. Each enzyme occurs at a specific time of 
infection. At 24 h, the spores germinate and form an appressorium through the plant epidermis supposing a biotrophic stage. By 96 h, P. teres is growing inside the 
barley leaf and develops chlorosis and necrosis suggesting a necrotroph stage. Colored bars represent the genes expressed during the plant/pathogen interaction 
and describe their molecular function(s) (Inspired from Ismail and Able, 2017).

https://www.frontiersin.org/journals/plant-science
www.frontiersin.org
https://www.frontiersin.org/journals/plant-science#articles


Backes et al. Biology of Pyrenophora teres

Frontiers in Plant Science | www.frontiersin.org 10 April 2021 | Volume 12 | Article 614951

reaction (HR; Goodman and Novacky, 1994; Greenberg, 1997; 
Heath, 2000; Lam et  al., 2001; Greenberg and Yao, 2004; Mur 
et  al., 2008; Künstler et  al., 2016; Balint-Kurti, 2019). In the 
initiation of the HR, the oxidative burst triggers the production 
of reactive oxygen species (ROS). During the interaction between 
barley and pathogens, great quantities of ROS are produced 
resulting in an increase of antioxidant enzymes’ expression 
such as catalase and superoxide dismutase (SOD; Able, 2003). 
For instance, HvCSD1, a cytosolic SOD isolated from barley, 
is upregulated in barley tissues infected by P. teres (Lightfoot 
et  al., 2017). The barley resistance to P. teres is correlated to 
this SOD activity increase and the HvCSD1 seems to be important 
in the cytosolic redox status maintenance. Other genes involved 
in oxidation-reduction processes and defense mechanisms in 
plants including FAD-binding domains proteins, a choline 
dehydrogenase, or an iso-amyl alcohol oxidase were upregulated 
during the infection of barley by P. teres (Ismail and Able, 
2017). Identified in 16 P. teres proteins, FAD-binding domain 
proteins are associated with multiple secondary metabolite 
pathways (Ismail and Able, 2016; Muria-Gonzalez et al., 2020). 
During infection of Septoria nodorum in wheat, the activity 
of catalase was also increased with the virulence of the pathogen 
and with the time post inoculation (Maksimov et  al., 2013; 
Ismail and Able, 2017). Contributing to amine and polyamine 
biosynthesis, the choline dehydrogenase plays a role in barley 
infection by P. teres. The isoamyl alcohol oxidase produces 
aspergilomarasmine-derivatives, a toxin responsible for the 
chlorotic symptoms observed and described above.

NET BLOTCH DISEASE MANAGEMENT

Chemical Control
Causing 70% of cereal diseases, fungi are commonly controlled 
by fungicides. These products aim to ensure yield and to secure 
the quality of the harvest (Bartlett et  al., 2002). Fungicides of 
the quinone outside inhibitors (QoI), the succinate dehydrogenase 
inhibitor (SDHI), and azole or demethylase inhibitor (DMI) classes 
are used as site-specific systemic fungicides (Mair et  al., 2016). 
The foliar fungicide application effectiveness to control net blotch 
has been largely carried out (Sutton and Steele, 1983; Jayasena 
et  al., 2002; Mclean et  al., 2009). First studies have shown that 
triazole-based fungicides by pulverization allowed to control net 
blotch (Sutton and Steele, 1983; Van Den Berg and Rossnagel, 
1990; Jayasena et al., 2002). Triazoles, known as DMI (propiconazole 
and prothioconazole), inhibit dimethylation between substrates 
that are necessary for the biosynthesis of ergosterol in fungi. In 
addition, SDHIs are also used to reduce the disease severity. In 
1969, carboxin was the first SDHI fungicide launched, followed 
by several other SDHIs with a narrow spectrum of activity. The 
target of SDHI fungicide is the succinate dehydrogenase (SDH) 
enzyme or succinate ubiquinone oxidoreductases, which play an 
essential role in the tricarboxylic cycle and the mitochondrial 
electron transfer chain (Rehfus et  al., 2016). The strobilurins, a 
new class of broad-spectrum fungicides, have been adopted these 
last years for net blotch control (Bartlett et  al., 2002). Strobilurin 
fungicides were inspired by natural fungicidal derivatives of 

β-methoxyacrylic acid (Bartlett et  al., 2002). Belonging to 
QoI (pyraclostrobin and picoxystrobin), strobilurins are natural 
substances isolated mainly from fungi and more specifically, 
Basidiomycetes. The strobilurin name is derived from the fungi 
genera Strobilurus (Balba, 2007). First introduced to the market 
in 1996, strobilurins inhibit mitochondrial respiration by 
blocking electron transfer at the level of cytochromes b and c  
(Bartlett et  al., 2001; Gisi et  al., 2002; Balba, 2007).

The antifungal efficacies depend also on the period of their 
application and how they are applied, as well as on the plant 
growth stage (Van Den Berg and Rossnagel, 1990). Seed treatments 
were successful if applied early in the season corresponding at 
Zadoks growth stage 23–24, but less at later growth stages (Martin, 
1985). Barley seeds are considered as a source of inoculum for 
the ascomycete P. teres. The severity of the barley net blotch is 
reduced when a fungicide seed treatment is applied (Martin, 
1985). Seed treatment effectiveness depends on fungal sensitivity, 
chemical fungitoxicity, and seed coverage quality. Iprodione is 
the fungicide providing the best control of dematiaceous fungi 
(Bipolaris and Drechslera) on seeds (Reis et  al., 2012). Another 
study demonstrates the efficiency of one application of propiconazole 
at spike emergence for the management of net blotch (Sutton 
and Steele, 1983). A correct application of fungicides before the 
emergence of the flag leaf and the ear aims to protect the 
photosynthetic potential of the top four leaves, which contribute 
to 72% of the total yield (Mclean et al., 2009). A single application 
of propiconazole is not enough when the pathogen progresses 
quickly. A recent study demonstrates that two applications with 
the combination pyraclostrobin and epoxiconazole improved net 
blotch control and increased the yield in both experimental years 
(Stepanovic et  al., 2016). Belonging to QoI, metyltetraprole is a 
new fungicide, which is effective against important cereal diseases, 
including net blotch (Suemoto et  al., 2019). Further, the 
metyltetraprole suppresses succinate-cytochrome c reductase activity 
in QoI susceptible P. teres.

With time, resistant strains to these products have emerged 
(Jørgensen and Olsen, 2007). In Europe and in Australia,  
P. teres developed a resistance to DMI fungicides (Peever and 
Milgroom, 1993; Mair et  al., 2016; Rehfus et  al., 2016). Shortly 
after the first QoIs uses, resistant isolates to these antifungal 
products were detected in field populations (Gisi et  al., 2002). 
More specifically, in 2003, resistance to QoI fungicides in  
P. teres was detected in France, Sweden, and Denmark. The 
resistance mechanism to QoIs has been identified as mutations 
in the mitochondrial target gene, cytochromes b (Sierotzki et al., 
2007). In P. teres, this mutation has been described as a substitution 
of phenylalanine to leucine at amino acid position 129 (Sierotzki 
et al., 2007). To conclude, the fungicide exerts a selection pressure, 
which leads to the selection of isolates, which have a mutation 
providing fungicide resistance, while susceptible isolates will 
be  eliminated. There is a subsequent increase in the number 
of resistant individuals in the population. Successive rounds of 
fungicide use repeat the selection of resistant isolates, which 
leads to the increase of the resistance mutation in the population 
each time the fungicide is used. Eventually, the resistant isolates 
will dominate the population and the effectiveness of the fungicide 
will be  reduced (Gisi et  al., 2000).
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In addition to the resistance among several fungal species, 
azoles use has also been affected by a restriction with a wide 
range of significant toxicities, including hallucinations, 
hepatotoxicity, and QTc prolongation (Thompson et  al., 2009; 
Gintjee et al., 2020). Faced with these problems, varietal selection, 
preventive agronomic measures, and biocontrol agents might 
be  considered as alternative solutions to fungicides products.

Host Plant Resistance
Cereals are selected according to their disease resistance (Jonsson 
et  al., 1998). By definition, a resistant genotype is characterized by 
having the least and smallest visible foliar lesions, a fungal restricted 
growth on the infected leaf tissue and an increased production of 
antifungal products by barley leaves (Graner et  al., 1996). Several 
studies have demonstrated the existence of resistance genes and 
loci to net blotch depending on the different forms of P. teres.

Geschele (1928) has first demonstrated the resistance to  
P. teres f. teres to be quantitatively inherited (Clare et al., 2020). 
The genetic control of resistance to P. teres in barley was first 
conducted in United  States in 1955 (Afanasenko et  al., 2007). 
In 1955, the first gene Pt1 conferring the barley resistance to 
P. teres was found by Schaller. Later, two additional loci, 
designated Pt2 and Pt3 were identified by Mode and Schaller 
in 1958 (Mode and Schaller, 1958; Graner et  al., 1996). Using 
different molecular techniques, several studies have identified 
net blotch resistance genes or quantitative trait loci (QTL) on 
all seven barley chromosomes (Mode and Schaller, 1958; 
Steffenson et  al., 1996; Manninen et  al., 2000; Gupta et  al., 
2011; Clare et  al., 2020). Major QTL have been identified on 
barley chromosomes 1H (Bockelman et  al., 1977; Manninen 
et al., 2000, 2006), 2H (Bockelman et al., 1977; Williams et al., 
1999; Ma et  al., 2004; Adawy et  al., 2013; Tamang et  al., 
2019), 3H (Bockelman et  al., 1977; Graner et  al., 1996), 4H 
(Friesen et  al., 2006; Grewal et  al., 2008; Adawy et  al., 2013; 
Islamovic et  al., 2017), 5H (Manninen et  al., 2006; Adawy 
et  al., 2013), 6H (Ma et  al., 2004; Friesen et  al., 2006; Abu 
Qamar et  al., 2008; Grewal et  al., 2008; Gupta et  al., 2011; 
Adawy et  al., 2013), and 7H (Williams et  al., 1999; Grewal 
et al., 2008; Mclean et al., 2009; Tamang et al., 2019). Localized 
on chromosome 6H, the Rpt5 locus has been reported by 
several studies and is considered to be  essential in the P. teres 
f. teres – barley interaction (Clare et  al., 2020). According to 
several studies, the majority of the markers significantly associated 
with NFNB resistance localize to the centromeric region of 
chromosome 6H (Abu Qamar et  al., 2008; Adawy et  al., 2013; 
Richards et  al., 2016). In the same way, the high-resolution 
mapping of a dominant susceptibility locus located in the 
centromeric region of barley chromosome 6H has been described 
using markers (Richards et  al., 2016). Therefore, these results 
indicate the importance of this region. In addition, the Rpt7 
locus confers resistance to P. teres f. teres in barley on the 
chromosome 4H. Recently, 449 barley accessions were 
phenotyped for P. teres f. teres resistance in greenhouse trials. 
Using genome-wide association, the results identified 254 
marker-trait associations corresponding to 15 QTLs. Four of 
these regions were new QTL not described in previous studies 
and are located on chromosome 3H at 233–350  Mpb, 5H at 

579  Mbp, 6H at 406–410  Mpb and 7H at 5  Mbp, respectively 
(Novakazi et  al., 2019).

Initially, the genetics conferring resistance to P. teres f. 
maculata contained three major designated loci and therefore 
has been considered less complex to compare the P. teres f. 
teres – barley interaction (Clare et  al., 2020). Designated as 
Rpt4, Rpt6, and Rpt8, these three major loci confer in barley 
a resistance to P. teres f. maculata. The Rpt4, Rpt6, and Rpt8 
loci are localized on chromosome 7H, 5H, and 4H, respectively. 
Burlakoti et  al. (2017) revealed the effect of two- and six-row 
barley, and concluded that the two-row barley (13%) resistant 
to P. teres f. maculata was less than the six-row barley (43%) tested.

The use of resistant varieties is proving to be  one of 
the most effective methods with the least environmental 
impact. Nevertheless, this selection has a high financial cost 
for farmers (Mclean et  al., 2009).

Preventive Agronomic Measures
Based on the life cycle described earlier in this review, three 
sources can form the primary inoculum of which infected 
seeds, crop debris, and straw residue. Therefore, the first step 
to control net blotch is the deletion of the primary inoculum 
of P. teres by sowing healthy seeds (Jalli, 2011). After harvesting 
barley kernels, debris and straw residues are other sources of 
primary inoculum. A study has demonstrated that amounts 
of residue infested can increase disease intensity and thus 
reduce the yield (Adee, 1989). To limit the primary inoculum 
and reduce straw debris, straw may be  baled and removed 
from fields leaving standing stubble after the harvest (Jordan 
and Allen, 1984). In addition, some farmers practiced open 
field burning a few years ago. However, due to the pollution 
(smoke and smuts) generated the loss of organic matter and 
damage to wildlife and hedges, this practice of burning is 
now prohibited. Today, new means exist to eliminate the quantity 
of inoculum present on the straw residues such as chopping 
and burying (Jordan and Allen, 1984).

In addition to these measures to limit the sources of inoculum, 
preventive agronomic measures play an essential role in the 
management of net blotch. Crop rotation is beneficial to reduce 
the severity of the pathogen. A minimum of 2  years between 
barley crops is required to prevent net blotch (Duczek et  al., 
1999). The type of seedling has also an influence on the severity 
of net blotch. Today, agricultural trends aim to reduce field 
trips with direct seeding for example. Consisting of sowing 
the seeds directly in undisturbed soil, direct sowing increases 
the quantity of P. teres present on crop debris and straw residues 
(Jordan and Allen, 1984; Mclean et  al., 2009). Therefore, direct 
sowing reduces the cost of production but increases P. teres 
severity (Jørgensen and Olsen, 2007).

Biological Control
The development of environmentally friendly methods based 
on biological agents is of great interest in the context of the 
establishment of a sustainable agriculture (Cazorla et  al., 2007). 
The seeking and the selection of biological agents targeting the 
pathogen, plays an essential role in the success of biological 
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control strategies (Cazorla et al., 2007). Biological control brings 
together a set of biocontrol agents including microorganisms 
(bacteria, fungus, and viruses), macroorganisms (birds, insects, 
and nematodes), as well as molecules derived from these organisms 
(natural substances and chemical mediators; Pérez-García et  al., 
2011). Biological control results from a combination of mechanisms, 
including competition for nutrients and space, production of 
antibiotics, and induced systemic resistance to pathogens.

To effectively limit pathogens, biocontrol agents need to 
rely on plant colonization strategies and maintain a high 
population density (Ghorbanpour et  al., 2018). Competition 
for nutrients and the space between biological control agents 
and pathogens is considered the primary mode of action 
(Sharma et al., 2009). The antibiotics production and antibiosis 
phenomenon constitute the second mechanism, which controls 
the development and spread of pathogens (Sharma et al., 2009). 
The last means for biological control agents to limit the 
development of pathogens is by inducing systemic resistance. 
Following recognition with a beneficial organism, the plant 
can respond systemically and rapidly to the perception of the 
pathogen. The phenomenon called “priming” allows the plant 
host to set up more quickly and massively the various defense 
mechanisms against pathogens (Conrath et  al., 2002).

In this review, we  only highlight the bacteria defined as 
plant growth promoting rhizobacteria (PGPR) and used in 
biological control thanks to their beneficial effects.

The term “PGPR” was first coined in 1978 and these bacteria 
are classified into two groups. The first group includes bacterial 
strains able to colonize roots, enhance emergence, stimulate 
growth either directly, by the capability of synthesizing plant 
growth-promoting substance, or indirectly, by changing the 
microbial composition in the rhizosphere in favor of the 
beneficial micro-organisms (Ait Barka et al., 2000, 2002; Hardoim 
et  al., 2008; Turan et  al., 2012). They may induce a systemic 
resistance to pathogens and modulate the plant regulatory 
mechanisms through the production of hormones such as 
auxin, cytokinins, and gibberellins (phytostimulators; Van Loon 
et  al., 1998; Ait Barka et  al., 2000, 2006; Bloemberg and 
Lugtenberg, 2001). In addition, some beneficial bacteria fix 
atmospheric nitrogen, solubilize inorganic nutrients limiting 
plant growth, stimulate nutrient delivery and uptake by plant 
roots and improve nutrient and water management (biofertilizers; 
Babalola, 2010; Afzal et  al., 2019). A second group prevents 
or decreases the deleterious effects of pathogens (Turan et  al., 
2012). These bacteria are used in agricultural practices against 
diseases in light of the improved plant performance under 
environmental stress and, consequently, of yield enhancement 
(Ait Barka et  al., 2000). The biocontrol agents that are best-
characterized belong to the genus Pseudomonas, Streptomyces 
Paraburkholderia, and Bacillus (Bloemberg and Lugtenberg, 
2001; Beneduzi et  al., 2012; Esmaeel et  al., 2016, 2018; Shafi 
et  al., 2017; Newitt et  al., 2019). For instance, a study shows 
that Bacillus substilis has antagonist activity against the causal 
agent of Fusarium head blight in wheat under in vitro and 
greenhouse assays (Palazzini et  al., 2016).

In the rhizosphere, a community of several strains is often 
more stable, suppresses a broader range of pathogens and sets 

up different mechanisms of biological control (Jetiyanon and 
Kloepper, 2002). The great potential for using bacteria has 
been shown as an alternative to fungicides in the management 
of plant diseases (Ait Barka et  al., 2002).

The microorganisms are able to produce a wide range of 
antimicrobial peptides including small bacteriocins and  
fungal defensins (Waghu and Idicula-Thomas, 2020). In  
addition, these microorganisms are also able to produce 
secondary metabolites such as peptaibols, cyclopeptides, and 
pseudopeptides by non-ribosomal synthesis (Montesinos et al., 
2012). The beneficial bacteria also produce antifungal antibiotics, 
named cyclic lipopeptides, which allow acting as antagonistic 
agents against pathogens. These molecules with low-molecular-
weight are deleterious to the growth of other organisms 
(Beneduzi et al., 2012). Synthesized in a non-ribosomal manner, 
lipopeptides exhibit surfactant and antimicrobial activities due 
to amphiphilic features that have drawn attention (Cazorla 
et al., 2007). These antibiotic compounds are mostly produced 
by Bacillus species and Burkholderia and more specifically, 
Paraburkholderia phytofirmans species (Ongena et  al., 2007; 
Pérez-García et  al., 2011; Esmaeel et  al., 2016, 2018).

Use of Biocontrol Toward Pyrenophora 
teres
Concerning P. teres, many species of Trichoderma produce 
secondary metabolites like volatile organic compounds (VOCs) 
in the presence of P. teres. These VOCs have been identified 
as sesquiterpenes, diterpenes, terpenoids, and eight-carbon 
compounds. In addition, VOCs inhibit mycelium growth and 
lead to unpigmented mycelium with vacuolization (Moya et al., 
2018). In the same way, Trichoderma isolates significantly 
decrease the severity of P. teres, up to 55% on barley seedlings, 
70% on leaves and 77% on stems (Moya et  al., 2020). Finally, 
the fungus Clonostachys rosea isolate IK726 reduces the infection 
caused by P. teres under controlled conditions (Jensen et al., 2016).

The use of biological agents is considered as one of the most 
promising methods for more rational and safer crop-management 
practices (Ongena and Jacques, 2008) since they reduce the 
inputs use and increase the plant vigor. Future experiments will 
confirm the biological control use to limit net blotch.

CONCLUSION AND FUTURE 
PERSPECTIVES

This review provides a reference point on net blotch of barley 
by highlighting P. teres severity, the changing complexity 
during the interaction between barley and P. teres and the 
management of net blotch control. Net blotch has become 
a major foliar disease of barley in many countries of the 
world. Caused by the ascomycete P. teres, this disease causes 
significant grain yield loss and reduces grain quality. Net 
blotch develops quickly when the environmental conditions 
are optimal including long periods of wet and cultural practice 
used. Additionally, P. teres produces a large quantity of toxins 
improving its virulence factor. The variability of the fungal 
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pathogenicity leads to the conclusion that symptoms’ occurrence 
is dependent on the host genotype, the pathogen virulence, 
and the environment. The net blotch control provides a 
significant challenge now and in the future. Chemical control, 
host plant resistance, and preventive agronomic measures are 
used for net blotch management. Among them, as an 
environmental-friendly means, the biocontrol agents appear 
as a promising tool towards a sustainable agriculture.
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