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Plant disease detection technology is an important part of the intelligent agricultural
Internet of Things monitoring system. The real natural environment requires the plant
disease detection system to have extremely high real time detection and accuracy.
The lightweight network MobileNetv2-YOLOv3 model can meet the real-time detection,
but the accuracy is not enough to meet the actual needs. This study proposed a
multiscale parallel algorithm MP-YOLOv3 based on the MobileNetv2-YOLOv3 model.
The proposed method put forward a multiscale feature fusion method, and an efficient
channel attention mechanism was introduced into the detection layer of the network to
achieve feature enhancement. The parallel detection algorithm was used to effectively
improve the detection performance of multiscale tomato gray mold lesions while
ensuring the real-time performance of the algorithm. The experimental results show that
the proposed algorithm can accurately and real-time detect multiscale tomato gray mold
lesions in a real natural environment. The F1 score and the average precision reached
95.6 and 93.4% on the self-built tomato gray mold detection dataset. The model size
was only 16.9 MB, and the detection time of each image was 0.022 s.

Keywords: multiscale, convolutional neural network, tomato gray mold, object detection, intelligent agriculture,
deep learning, plant diseases

INTRODUCTION

Plant diseases are the main cause of food loss in the world’s economy. Food loss from crop infections
caused by pathogens such as bacteria, viruses, and fungi is a persistent problem. This situation is
further complicated by the fact that disease is more likely to metastasize globally now than ever
before. In order to minimize the damage caused by diseases during crop growth, crop prevention is
imperative. Traditionally, crop inspections and plant diseases are determined by farmers or experts
with some training or experience. This manual method is expensive because it requires continuous
monitoring and is not feasible for larger areas.

Tomato is one of the largest vegetable crops planted in China because of its variety, abundant
nutrition, and high yield. However, in recent years, gray mold, leaf mold, early blight, late blight,
and other common diseases of greenhouse tomato frequently occur, which brings serious threats
to the yield and quality of greenhouse tomato. Tomato gray mold is a worldwide infectious disease
caused by Botrytis cinerea, and it is harmful to the growth of greenhouse tomato. The disease has
the characteristics of easy occurrence, rapid spread, strong fungicide resistance, and great economic
loss. It has become one of the key factors to inhibit the safe production of greenhouse tomato (Elad
and Shtienberg, 1995). In addition to harming tomato, the pathogen can also harm more than 20
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crops such as eggplant, pepper, and cucumber. The incidence
of tomato gray mold mostly starts from the tip of the leaf
and expands inward along the veins in a “V” shape, initially
watery, and then yellowish brown, with deep and shallow striate
lines on the edges. The boundary between the disease lesion
and healthy tissue is clear. Gray mold layer can emerge on the
surface of the lesion when the humidity is high, and the region
above the pathogenic part can be affected leading to death in
severe cases (O’Neill et al., 1997). According to a preliminary
field investigation, the tomato yield loss caused by this disease
is generally 15–20% and even reaches about 30% in severe
cases. The yield loss of tomato gray mold in greenhouse has
caused serious losses to national economy and people’s life and
has become the main reason that restricts the high efficiency
and safe production of vegetables. Therefore, effective control
of disease occurrence becomes the key to achieve sustainable
development of the tomato industry. At present, chemical agents
are mainly used to control tomato gray mold in production. The
amount of fungicides used to control gray mold is more than
60% of the amount of fungicides used throughout the planting
season. Due to frequent fungicide use, fungicide resistance is
prominent and the prevention effect is unsatisfactory (Borges
et al., 2015). In the concept of digital agriculture, precise and
rational application of fungicides is the direction of agricultural
development, and achieving rational application of fungicides is
one of the important measures to ensure high yield and safety
of vegetables and fruits. It can not only effectively control the
occurrence of diseases but also effectively reduce environmental
pollution. One of the preconditions for the rational application
of fungicides is that information of vegetable growth status must
be accurately obtained, among which the key basic technology
is to quickly and accurately obtain the types of vegetable
diseases and their degree of disease damage. Therefore, the rapid
and accurate diagnosis of diseases is an important measure to
ensure the high yield and safety of vegetables, which has great
practical significance to improve the green, safe, and sustainable
production capacity of vegetables.

Existing studies mainly focus on exploring the occurrence
of diseases, and there are only a few studies dealing with the
early detection of diseases (Nigam and Jain, 2020). Traditional
diagnostic methods for plant diseases usually obtain diagnostic
results after comprehensive analysis of plant diseases by plant
protection workers based on experience and pathological
analysis, but these traditional detection methods are inefficient,
involve a heavy workload, have poor real-time performance, and
are unable to achieve early and rapid diagnosis, often delaying
the optimal treatment period of diseases, increasing the dosage
of fungicides, and increasing costs and environmental pollution
(Martinelli et al., 2015). Because of the complexity and variability
of diseases of a large number of plants, even experienced
phytopathologists cannot accurately diagnose a specific disease.
It is also worth noting that many agricultural regions are
difficult to be properly monitored throughout the process
(Barbedo, 2013). Early detection of pathogens is essential to
reduce disease transmission and promote effective management
practices (Sankaran et al., 2010). It is very important to seek a
rapid and accurate early detection method.

With the rapid development of facility agriculture in
Shouguang City, Shandong Province, China, tomato gray mold
has increasingly become a limiting factor affecting tomato
production and development, especially in early spring and late
autumn tomato cultivation. Using deep neural network to extract
features is better than traditional feature extraction methods,
and this study will continue to use deep learning methods to
detect tomato gray mold lesion objects with different sizes. In
this study, images of healthy and infected tomato gray mold
leaves in a real natural environment were collected. A multiscale
parallel network structure from dense to sparse was proposed
based on the universal object detection method YOLO (you only
look once). The aims were to establish a rapid and accurate early
detection model for tomato gray mold and provide scientific basis
for the early diagnosis of tomato gray mold.

RELATED WORK

Intelligent Agriculture
Intelligent agriculture, relying on modern information
technology, has achieved precision management and visual
diagnosis of agricultural production through intelligent
perception of the agricultural production environment and data
analysis. It is the highest form of agricultural development.
Machine vision and its associated emerging technologies hold
great potential in intelligent agricultural applications (Tang et al.,
2020). Li J. et al. (2020) presented a reliable algorithm based
on field RGB-D camera, which can detect and locate fruiting
branches of multiple litchi groups accurately and automatically
in a large environment. Chen et al. (2020) established a
measurement framework of orchard harvesting operation based
on multivision technology, and the experimental results show
that the proposed adaptive stereo matching strategy has high
matching accuracy and stable performance for different sampling
depths. Lin et al. (2020) presented a fruit detection method
in a natural environment using partial shape matching and
probabilistic Hough transform, and experiments on datasets of
citrus, tomato, pumpkin, melon, luffa, and mango show that
this method is competitive for the detection of most types of
fruits in a natural environment, such as green, orange, circular,
and noncircular. These studies show that intelligent agriculture
based on machine vision and image processing technology
has become a key research field in the new agricultural
information technology.

Plant Disease Detection
As an important part of intelligent agriculture, plant disease
detection provides a theoretical basis for the scientific
formulation of disease control measures and scientific application
of drugs. With the application of convolutional neural network
in the field of computer vision, the research of plant disease
detection has developed rapidly. Convolutional neural network
(CNN) is known as a general function simulator, and its ability
to fit features is much stronger than that designed based on
experience. Initially, researchers simply applied CNN to plant
disease detection task, applied network structure for classification

Frontiers in Plant Science | www.frontiersin.org 2 May 2021 | Volume 12 | Article 620273

https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles


fpls-12-620273 May 7, 2021 Time: 14:8 # 3

Wang and Liu Tomato Gray Mold Detection

to detection task, and only used CNN to extract features from
samples. After that, researchers proposed end-to-end plant
disease detection models, which could achieve better detection
results under a relatively ideal environment (Mohanty et al.,
2016; Amara et al., 2017; Durmus et al., 2017; Wang et al., 2017;
Aravind et al., 2018; Brahimi et al., 2018; Ferentinos, 2018).

In recent years, the anchor frame-based plant disease
detection method has achieved remarkable success, and the most
representative one is the Faster region-based CNN (R-CNN-
based plant disease detection method). Fuentes et al. (2017)
first used Faster R-CNN to locate tomato diseases and pests
directly, combined with deep feature extractors such as VGG-
Net and ResNet, and the mean average precision (mAP) value
reached 85.98% in a dataset containing 5,000 tomato diseases
and pests of nine categories. Fuentes et al. (2018) and Fuentes
et al. (2019) improved Faster R-CNN on the backbone structure
and ROI pooling according to the characteristics of plant diseases
and pest detection and the mAP reached 92.5%. Ozguven and
Adem (2019) proposed a Faster R-CNN structure for automatic
detection of beet leaf spot disease by changing the parameters of
the CNN model; 155 images were trained and tested. The results
show that the overall correct classification rate of this method is
95.48%. Zhou et al. (2019) presented a fast rice disease detection
method based on the fusion of FCM-KM and Faster R-CNN.
The application results of 3,010 images showed that the detection
accuracy and time of rice blast, bacterial blight, and sheath
blight were 96.71%/0.65 s, 97.53%/0.82 s, and 98.26%/0.53 s,
respectively. The breakthroughs achieved in the existing studies
are amazing. However, the faster R-CNN-based method is a two-
stage detection method with a large amount of calculation and
is time-consuming.

At present, object detection methods based on deep learning
emerge endlessly, and many researchers have improved new
methods on plant disease detection to predict the location and
class of the lesions. Jiang et al. (2019) proposed the INAR-SSD
model, and the test on a self-built apple leaf disease dataset
achieved a performance of 78.80% mAP with a high detection
speed of 23.13 FPS. Sun et al. (2020) presented an instance
detection method improved on the basis of single-shot detector
(SSD) to detect maize leaf blight under a complex background.
The proposed method combined data preprocessing, feature
fusion, feature sharing, disease detection, and other steps. The
mAP of the new model is higher (from 71.80 to 91.83%) than that
of the original SSD model. The FPS of the new model has also
improved (from 24 to 28.4), reaching the standard of real-time
detection. Bhatt et al. (2019) presented a method to detect pests
and diseases on images captured under uncontrolled conditions
in tea gardens. YOLOv3 was used to detect pests and diseases.
While ensuring real-time availability of the system, about 86%
mAP was achieved with 50% IoU. Singh et al. (2020) concluded
that although plant disease detection technology has developed
rapidly, the methods can be only effectively used for a restricted
number of plants.

Object Detection Network Structures
The task of plant disease detection is similar to the method of
general object detection, and the task of plant disease detection

can be seen as the specific application of a general object. As for
the classical two-stage universal object detection method, the first
stage is responsible for extracting candidate windows, which are
the input of the second stage, and the second stage is responsible
for the accurate detection task (Ren et al., 2016). The two-stage
structures have many parameters and are time-consuming. For
example, when performing ROI pooling operation, the candidate
box obtained in the first stage needs to be cut out from a
high-dimensional feature map. This operation needs a large
amount of calculation and requires the aid of parallel computing
devices such as GPU.

The emergence of one-stage universal object detection
methods has solved this problem. Famous one-stage detection
methods include SSD (Liu et al., 2016) and YOLO (Redmon and
Farhadi, 2016, 2018; Redmon et al., 2016). Compared with the
traditional convolutional neural network, the SSD selects VGG16
as the trunk of the network and adds a feature pyramid network
to obtain features from different layers and make predictions.
YOLO considers the detection task as a regression problem and
uses global information to directly predict the bounding box
and category of the object to achieve end-to-end detection of
a single CNN network. YOLO can achieve global optimization
and greatly improve the detection speed while satisfying higher
accuracy. These methods are equivalent to the previous stage
of the two stages, eliminating the time-consuming ROI pooling
operation and, thus, have an innate speed advantage. The one-
stage object detection algorithm directly adds the detection head
to the backbone network for classification and regression, uses the
whole image as the input of the network, and directly returns the
position of the bounding box and the category to which it belongs
at the output layer.

In summary, the main difference between the two networks is
that the two-stage network needs to first generate a candidate box
(proposal) that may contain the lesions, and then further execute
the object detection process. In contrast, the one-stage network
directly uses the features extracted in the network to predict the
location and class of the lesions. In the field of plant diseases and
pest detection which emphasizes detection accuracy at this stage,
more models based on the two-stage network are used.

Multiscale Object Detection of Plant
Diseases
In actual plant disease detection, multiscale plant disease objects
are common in a real natural environment. This study considers
how to detect small-scale objects and large-scale objects in the
same frame image, such as in an agricultural Internet of Things
monitoring scenario, where the proximal plant leaves and the
distant plant leaves may have very different scales. In the case
of front shooting of the surveillance camera, because some plant
disease objects are far away from the camera, the object size is
small and it makes the plant disease objects occupy very small
pixels in the image. Also, the corresponding area contains less
information, which is prone to missed detection, affecting the
detection accuracy of the algorithm. Therefore, it is difficult to
identify and locate small-scale plant disease targets in the field of
target detection.
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Because small objects consist of very few pixels and generally
only occupy less than 5% of the whole image, it is difficult
to extract enough features for CNN. In order to improve the
detection performance of small objects, it is usually necessary
to combine image super-resolution, large-scale feature map
prediction, deep and shallow feature fusion, and other feature
enhancement methods (Li D. et al., 2020; Liu and Wang, 2020;
Zhao et al., 2020). However, these methods will bring additional
parameters and calculation while improving the performance
of small object detection, resulting in the reduction of the
real-time performance of the algorithm, and it is difficult to
deploy to the terminal with a small amount of computation.
Therefore, how to improve the performance of small object
detection of the algorithm to meet the needs of a real
natural environment without introducing too much additional
calculation cost to ensure real-time performance is an urgent
problem to be solved.

In order to improve the detection ability of multiscale
tomato gray mold objects, reduce the missed detection rate,
and improve the detection efficiency, MobileNetv2-YOLOv3,
which is known for its speed, was selected in this study
(Sandler et al., 2018). As a basic detection network, a
multiscale parallel tomato gray mold detection algorithm (MP-
YOLOv3) with high real-time performance was constructed by
combining multiscale pixel feature fusion and efficient channel
attention mechanism to enhance the quality of small object
features. The contributions of this study are summarized as
follows:

(1) A multiscale feature fusion strategy is proposed to fuse
feature maps of the skeleton network MobileNetv2 in
different scales from high to low, which enhances the small
object information carried by feature maps and provides
rich semantic information for the prediction layer of the
network, thereby effectively improving the small object
detection ability of the algorithm.

(2) In order to highlight the useful feature channels and
suppress the feature channels with small contribution, we
introduce an efficient channel attention module before the
detection layer to assign weights to the feature channels
according to their importance, which effectively improves
the detection performance.

(3) In order to reduce the impact of network complexity
on detection speed, a tomato gray mold detection model
MP-YOLOv3 with high real time and robustness is
proposed, which adopts a parallel processing mode on
the architecture and uses a buffer queue between the
various functions of object detection to reduce the waiting
time in detection.

(4) The model was validated on the self-built tomato gray
mold dataset. Compared with existing algorithms, it
achieved good results in small-scale tomato gray mold
object detection, significantly improved the accuracy of
tomato gray mold object detection, reduced the occurrence
of missed detection, and could meet the practical
application needs.

MATERIALS

Dataset Collection
Since there is no published image database of tomato gray
mold disease in a real natural environment, 1,000 images of
tomato gray mold pathogen in a natural environment were
collected from the Internet of Things monitoring video of tomato
greenhouse in Shouguang City, Shandong Province, China.
Meanwhile, in order to expand the sample dataset, 263 images
of tomato gray mold were obtained by the network crawler
method. A total of 1,263 images were collected. The images
include conditions on cloudy and sunny days, objects such as
branches and leaves forming shadows or shelters on the surface
of tomato leaves, etc.

Data Annotation
In image labeling, the minimum outer rectangle of each lesion
is labeled with the LabelImg tool1 to ensure that there is only one
tomato gray mold lesion object in each rectangular labeling frame
and as few background pixels as possible. After image annotation,
263 images under different weather and light conditions were
selected as the test set, and the remaining 1,000 images were
used for network training. Details of 263 images selected are
shown in Table 1.

Data Enhancement
When training deep learning model, the more and
comprehensive the training data, the stronger the recognition
ability (Theodoridis, 2015). Therefore, to enrich the image
training dataset, better extract image features, and avoid
overfitting, this study uses a variety of methods to enhance
the dataset. Due to uncertain factors such as illumination
direction and weather, the illumination conditions during
image acquisition are very complex. In order to improve the
generalization ability of the training model, the original image
is processed by eight methods: brightness enhancement and
attenuation, color enhancement and attenuation, contrast
enhancement and attenuation, and sharpness enhancement
and attenuation (Bloice et al., 2017). After image amplification,
the original annotation is still valid. Nine thousand images
after image enhancement were used for training and parameter
optimization validation of subsequent improved network. One
thousand images were randomly selected from 9,000 images as

1https://github.com/tzutalin/labelImg

TABLE 1 | Detailed information of samples in test images.

Conditions Independent
leaves

Indistinct
leaves

Shaded
leaves

Occluded
leaves

Number of
images

68 62 74 59

Number of
annotated
lesions

469 457 516 413
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the validation set, and the remaining 8,000 images were used as
the training set. There was no overlap between the training set
and the test set.

METHODS

Considering the real-time requirement of tomato gray mold
detection in a real scene, we chose MobileNetv2-YOLOv3 as
the basic detection network. However, due to the insufficient
accuracy caused by its focus on efficient convolution operation,
we combined multiscale feature fusion and efficient channel
attention to improve it. This section will give the detailed design
methods of the multiscale feature fusion module and the high-
efficiency channel attention module and propose the flow of
parallel structure.

The overall framework of the multiscale parallel tomato
gray mold early detection algorithm is shown in Figure 1.
The algorithm is divided into two parts. The first part
extracts the object features through MobileNetv2, and the
second part detects tomato gray mold objects through the
object prediction part of YOLOv3. First, the image resolution
is adjusted to 416 × 416 and it is inputted into the
MobileNetv2 network to extract features, and the fused feature
map is obtained by multiscale feature fusion. Second, these
feature maps are enhanced by the efficient channel attention
module, and the weight of feature channels is assigned
according to their importance. Third, through MobileNetv2,
a 13 × 13 × 1,024-dimensional tensor is obtained, and
through a 1 × 1 convolutional kernel for convolution
operation, a S × S × 18-dimensional tensor is obtained.
Finally, this tensor is used to predict the location of the
tomato gray mold.

Multiscale Feature Fusion Module
In tomato gray mold object detection, due to the distance between
the tomato leaf and the camera, the size of the tomato gray
mold object presented on the image is also different. The size
of the last layer of the feature layer is only 13 × 13, which
is 1/32 of the original input image, which makes the feature
layer lose some feature information of smaller objects. In deep
neural networks, the higher the layers, the smaller the size
of the feature map, and the richer the semantic information
contained. The lower feature layer has greater resolution and
retains more details in the original image, which is conducive
to determining the location of the object. To simultaneously
utilize the detailed information in the shallow feature map
extracted from the MobileNetv2 skeleton network and the
semantic information in the deep feature map, a multiscale
feature fusion module is proposed in this study. The specific
approach is to improve the network’s ability to detect small-
size tomato gray mold objects by fusing high-level features with
low-level features and predicting them on multiple-scale feature
maps. The feature map after up-sampling is combined with the
feature map with the size of 26 × 26 in the convolution process
as the basis for the second prediction. Then the feature map
with the size of 52 × 52 and 104 × 104 is obtained in this way

for the third and fourth prediction, respectively, as shown in
Figure 1.

Efficient Channel Attention Module
When generating fusion feature maps, our algorithm uses the
method of channel splicing between the feature maps obtained
from the up-sampling and the feature maps extracted from
the skeleton network, resulting in large differences in the
information carried by each channel fusion feature map. The
importance of different channels of fusion features is different
for the scale detection, so it is necessary to introduce efficient
channel attention module after multiscale merging, so that the
model can learn the importance of different channel features. In
order to selectively highlight the effective feature channels and
suppress the feature channels with small contribution, we detect
the feature channels with different scales by assigning weight
to the feature channels according to the importance degree
through the efficient channel attention module, which effectively
improves the detection performance. The principle is shown in
Figure 2.

As the spatial characteristics of different channels should
have a certain correlation, if a channel has a high correlation
with its adjacent channels, it means that the feature contains
more subject features. We adopt an efficient channel attention
module that can learn the feature correlation between channels.
In the efficient channel attention module, in order to highlight
the feature correlation between channels, the feature channel
dimension is compressed. The original feature channel H ×
W × C is transformed to 1 × 1 × C by global pooling, and
global features in channel dimension are obtained. One-
dimensional convolution with convolution kernel size k is used
to extract and integrate information between each channel and
its k neighborhood channels to obtain correlation parameters Li
between channels.

Li =
k∑

j =1

αjCj
i, Cj

i ∈ ϕk
i (1)

In the abovementioned formula, αj represents one-dimensional
convolution kernel parameters, and ϕk

i represents k
neighborhood channels of feature channel Ci. The larger
the Li, the stronger the correlation between feature channels
Ci and ϕk

i , that is, the more useful information Ci contains.
To make the network focus on the feature channels with more
useful information, ωi is denoted as the weight of the feature
channel, that is, the activation value of each channel obtained by
Li passing through sigmoid function.

ωi = σ(Li) (2)

In the abovementioned formula, σ represents sigmoid activation
function. The weighted output feature channel is obtained
by multiplying the weight with the original channel feature
value. The weighted output feature channel is conducive to
highlighting the key features of the object and weakening the
nonimportant features.

As shown in Figure 1, the efficient channel attention
module was added to the proposed model. Feature maps
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FIGURE 1 | Overall framework of a multiscale parallel algorithm for the early detection of tomato gray mold in a complex natural environment.

FIGURE 2 | Efficient channel attention module.

close to the proposed model’s prediction layers have a higher
predictive impact, taking into account that more and ineffective
computation would be added if efficient channel attention
modules were used for all convolutional layers. Therefore, the
convolution and addition layers preceding the prediction layers
in the model served as inputs to the efficient channel attention
module. Using the efficient channel attention module, high
weights are assigned to tomato gray mold disease features in

the convolutional feature map and low weights to the natural
background. The final output prediction layer assigns more
weight to the image information of interest, and the information
in each channel will contain more accurate and more information
on tomato gray mold disease characteristics. Thus, the detection
rate is effectively improved, and the small object lesions which
are confused by local occlusion and natural background can
be easily missed.
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FIGURE 3 | Flowchart of the parallel detection algorithm.

Parallel Network Structure
A serial multiscale network will increase the time overhead. To
ensure the real-time performance of detection, the improved
model uses parallel detection algorithm. The flowchart of the
algorithm is shown in Figure 3. The multiscale network changes

from serial to parallel operation, and the time overhead is reduced
from the time of detection of multiple-scale networks to the
time of detection of a single-scale network. It ensures that the
time overhead of the model will not increase substantially while
improving the detection performance.
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Superiority of the Proposed Algorithm
MP-YOLOv3
To present the superiority of the proposed algorithm MP-
YOLOv3, the algorithm is compared with Tiny-YOLOv3,
MobileNetv2-YOLOv3, MobileNetv2-SSD, and Faster R-CNN
regarding their advantages and disadvantages of their specific
features. The comparison is shown in Table 2.

It can be seen from Table 2 that the proposed algorithms are
improved by combining multiscale feature fusion and efficient
channel attention on the basis of MobileNetv2-YOLOv3. With
the addition of very few parameters and little impact on the
speed, a high-precision real-time tomato gray mold detection
algorithm is constructed.

EXPERIMENTAL DESIGN

Experimental Operation Environment
In this experiment, under Ubuntu 16.04 operating system,
Caffe deep learning framework was built on i7-7700HQCPU
(16 GB memory) and NVIDIA GTX 1070 GPU (8 GB memory)
hardware platform, and Python language programming was used
to realize the training and testing of the tomato gray mold object
detection network model.

Model Training
In this study, a stochastic gradient descent method was used
to train the network in an end-to-end joint manner. In order
to improve the training efficiency, during network training, the
network parameters were initially initialized with the pretraining
model on ImageNet (Deng et al., 2009), so that good initial
values of the model were achieved to reduce the training time
cost and speed up model convergence. The initial learning
rate was set to 0.001, the weight attenuation rate was set
to 0.0005, the momentum factor was set to 0.9, and the
verification period was set to 5,000, that is, the network tests

TABLE 2 | Comparison of the characteristics of different algorithms.

Algorithms Network
structure

Backbone
network

Feature
extraction
capability

The proposed
method

One-stage MobileNetv2 Multiscale feature
extraction

Tiny-YOLOv3 One-stage 7-layer conv +
Max

The ability of deep
feature extraction is
poor.

MobileNetv2-
YOLOv3

One-stage MobileNetv2 The ability of deep
feature extraction is
poor.

MobileNetv2-SSD One-stage MobileNetv2 The ability of deep
feature extraction is
poor.

Faster R-CNN Two-stage ResNet The accuracy
outperforms some
of the one-stage
detectors, but the
speed is low.

the accuracy of the training model on the verification set every
5,000 iterations, and the training was stopped when the model
accuracy rate reaches convergence. The maximum number of
iterations was set to 50,000. Training ended when the loss
dropped to around 1. The training model was saved after
the training, and the model was verified with the test set.
The final output of the network was the identified object and
its probability of being the object of tomato gray mold, and
the result only retained the region with a probability value
greater than 0.8.

Evaluating Indicator
In this study, both recall rate and accuracy rate should be
considered in the process of object detection of tomato gray mold,
so F1 value and AP value were used to evaluate the recognition
results.

F1 =
2PR
P + R

(3)

P =
TP

TP + FP
(4)

R =
TP

TP + FN
(5)

AP =
∑

P
N

(6)

In the abovementioned formula, P represents precision, R
represents recall rate, TP (true positive) represents the number
of tomato gray mold objects that the algorithm can accurately
detect, FP (false positive) indicates the number of background
misidentified as tomato gray mold objects, FN (false negative)
indicates the number of unrecognized tomato gray mold objects,
and N is the total number of images.

EXPERIMENTAL RESULTS AND
ANALYSIS

Detection Results of Tomato Gray Mold
In order to verify the performance of MP-YOLOv3 proposed
in this study, the identification results of the network on 263
test sets were further analyzed. There were 1,855 tomato gray
mold objects in 263 test sets. The number of objects identified
by this method was 1,689, of which 1,578 were tomato gray
mold objects. The recall rate, accuracy, and misidentification
rate of this method were 85.07, 93.43, and 6.57%, respectively.
Examples of the identification results and specific identification
results of this research method are shown in Figure 4 and
Table 3, respectively.

From Table 3 and Figure 4, it can be seen that the detection
effect is the best in the sparse independent leaf scenario with a
recall rate of 96.59%. The blurred indistinct tomato gray mold
object can be accurately identified. This method can correctly
identify 86.65% of the indistinct objects in the image. This
method can effectively identify the tomato gray mold object
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FIGURE 4 | The effect diagram of the detection method in this paper. (A) Independent leaves; (B) indistinct leaves; (C) shaded leaves; (D) occluded leaves.

TABLE 3 | Detailed detection results of tomato gray mold.

Conditions Independent leaves Indistinct leaves Shaded leaves Occluded leaves Total

Number of objects correctly identified 453 396 432 337 1,578

Number of annotated lesions 469 457 516 413 1,855

Recall rate 96.59% 86.65% 83.72% 81.60% 85.07%

with a shaded surface, and the recognition recall rate is 83.72%.
In addition, this method is also applicable when the leaves are
occluded, and its recognition recall rate is 81.60%. According
to Figure 4, MP-YOLOv3 also has a high detection accuracy
for small-size lesions, which proves that multiscale detection
has a good detection effect for objects with different sizes.
Through the above analysis, it can be concluded that despite the
phenomenon of misidentification and missed identification, the

method in this study can accurately detect the tomato gray mold
object in the image.

Analysis of Ablation Experiments
To examine the detection effects of the two improvement
modules in MP-YOLOv3, benchmarked on the previous network,
the multiscale feature fusion module and the efficient channel
attention module were considered as two experimental variables
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using the dataset built from this study to conduct a series
of ablation experiments. Among them, “

√
” means joining the

module and “ × ” means not joining it. The results are shown
in Table 4.

As can be seen from Table 4, the two improved modules
proposed in this study could both enhance the detection
efficacy of tomato gray mold, and the combination of the two
modules had the best detection efficacy, which verified the
rationality of the model designed in this study. The improvement
of the multiscale feature fusion module enriches the feature
information of small objects in feature maps. The improvement
of the efficient channel attention module enables the feature maps
of network output to more efficiently characterize objects.

Comparison of Different Detection
Methods
To verify the detection performance of MP-YOLOv3, the
algorithm is compared with Tiny-YOLOv3, MobileNetv2-
YOLOv3, MobileNetv2-SSD, Faster R-CNN, and other
algorithms. The experimental results are shown in Table 5.

It can be seen from Table 5 that the detection effect of
the algorithm in this study is the best among the compared
advanced algorithms, and the detection average precision reaches
93.4%, which is 8.1% higher than the AP of MobileNetv2-
YOLOv3. By improving the feature extraction network of
MobileNetv2-YOLOv3, the number of layers of the network is
deepened and the extracted features are more detailed, which
ensures that the model improves the detection accuracy at
the same time. The number of model parameters did not
increase, the size of the model was only 16.9 MB, and the
detection time of each image was 0.022 s, which achieved a good
detection effect.

CONCLUSION AND FUTURE
DIRECTIONS

Conclusions
(1) The method proposed in this study can identify the tomato

gray mold object from images with complex background,
and it is expected to be applied in tomato growth
information monitoring and tomato disease automated
inspection. Compared with the traditional method of
disease detection, this method is more challenging. On
the one hand, the object of tomato gray mold at the

TABLE 4 | Detection effects of ablation experiments.

Strategies Multiscale
feature fusion

module

Efficient
channel
attention
module

F1 score/% Average
precision/%

1 × × 87.9 85.3

2
√

× 91.7 89.6

3 ×
√

93.2 91.1

4
√ √

95.6 93.4

TABLE 5 | Comparison of detection results using different algorithms.

Algorithms F1 score/% Average
precision/%

Single image
detection

time/second
(s)

The proposed
method

95.6 93.4 0.022

Tiny-YOLOv3 86.8 84.1 0.023

MobileNetv2-
YOLOv3

87.9 85.3 0.022

MobileNetv2-
SSD

88.5 86.6 0.035

Faster R-CNN 89.9 87.8 0.126

early stage of growth is smaller; on the other hand, the
object of tomato gray mold at this time is very similar to
the background color, resulting in the use of traditional
methods which cannot effectively and accurately identify
the lesions in the image. Deep learning theory makes
early detection of tomato gray mold possible. It can
automatically extract image features and is an effective
detection method.

(2) The proposed method uses the multiscale feature fusion
module and the efficient channel attention module to
fuse the features of different scales and effectively solve
the problem of insufficient semantic information of low-
level features and improve the detection effect of the
model on multiscale tomato gray mold objects. The
experimental results show that the proposed algorithm
has certain advantages over other existing algorithms and
solves the problems of multiscale change, occlusion, and
poor detection of small-size objects, which can improve
the accuracy of object detection while ensuring a small
amount of calculation.

(3) The model has excellent performance in practical
application and can adapt to a complex natural
environment. It lays a research foundation for subsequent
disease object positioning and spraying pesticides on
demand, reduces the use of chemical pesticides, and has
important significance for protecting farmland ecology.

Future Directions
Crop disease detection is one of the key problems to solve
automation in agricultural fields, and object detection is also one
of the most difficult tasks of computer vision for a long time.
In this study, the task of tomato gray mold object detection
was studied, innovative algorithms were proposed, and some
progress was made. However, there are still some problems that
deserve further study.

(1) In this study, an early detection model of tomato gray
mold disease was proposed, and future work needs to
further solve the problem of missed detection of under
extreme shooting angle to achieve accurate early diagnosis
of tomato gray mold disease at different parts under
different shooting conditions.
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(2) The current work should be transplanted to mobile
terminals, such as smartphones, tablet PC, etc., to improve
practicability and increase the modern atmosphere. Later
in the practical application test, a large number of data
will be used to continuously improve the practicability and
accuracy of tomato gray mold detection.

(3) Various environmental parameters of greenhouse tomato
crops will be collected in real time by the Internet
of Things technology, and a tomato gray mold early-
warning model will be constructed. Tomato gray
mold will be early-warned by analyzing the real-
time collected data.

(4) Although this study can achieve excellent detection
and recognition results, data-driven deep learning
technology requires a large number of samples to
support, and it is difficult to obtain sufficient sample
size in the field of plant disease monitoring with
a wide variety of species. In the future, we will
solve this problem from the aspect of small sample
disease detection.

(5) Additional care would be necessary with poorly
supervised learning when applied to automatic pest
detection in our area due to the high cost to deal
with labeling work.
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