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Poa crymophila Keng is highly adaptable to long-term low temperature and drought

conditions, making it a desirable foraging grass of the Qinghai-Tibet Plateau. Here, the

widely targeted metabolomics and comparative transcriptome analyses were utilized

for the discovery of metabolites and genes in P. crymophila in response to cold and

drought stresses. P. crymophila were exposed to −5◦C for 24 h and recovered to

22◦C for 48 h, as well as drought for 10 days followed by re-watering for 1 day. In

total, 779 metabolic features were assigned to metabolites and 167,845 unigenes

were generated. Seventeen compounds showed significant up-regulation (variable

importance in project>1) under both stresses in themetabolic profiling, mainly annotated

as carbohydrates, flavones, and phenylpropanoids. The genes which were positively

correlated with these metabolites were assigned to pathways (sucrose-starch, raffinose,

phenylpropanoid, and flavone metabolism) using the Mapman software package.

Alpha-amylase, beta-fructofuranosidase, and sugar transport genes degraded the

glucose and starch to small molecule sugars for the purpose of osmotic adjustment

and to provide more energy for the growth of P. crymophila in an adverse environment.

The induction of cinnamoyl-CoA reductase (CCR) and the MYB gene as well as the sharp

increase in schizandrin, a kind of lignan, showed that this likely has the closest connection

with the tolerance to both stresses. Four significantly induced flavone compounds are

probably involved in reducing oxidative damage. Our results indicated that activation

of the phenlypropanoid pathway plays the primary role in P. crymophila adapting to

harsh environments. This study showed the mechanism of P. crymophila responding to

both cold and drought stresses and showed the discovery of a new biological regulator

against stresses.
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flavone, phenylpropanoids

https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org/journals/plant-science#editorial-board
https://www.frontiersin.org/journals/plant-science#editorial-board
https://www.frontiersin.org/journals/plant-science#editorial-board
https://www.frontiersin.org/journals/plant-science#editorial-board
https://doi.org/10.3389/fpls.2021.631117
http://crossmark.crossref.org/dialog/?doi=10.3389/fpls.2021.631117&domain=pdf&date_stamp=2021-04-07
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/plant-science#articles
https://creativecommons.org/licenses/by/4.0/
mailto:maxr@cib.ac.cn
https://doi.org/10.3389/fpls.2021.631117
https://www.frontiersin.org/articles/10.3389/fpls.2021.631117/full


Wang et al. Adaptations of Poa to Stresses

INTRODUCTION

Poa is an excellent gramineous forage grass and is widely
distributed in Asia, Europe, and North America. Poa crymophila

Keng grows in the meadows of hillsides and shrubs, and in the
wetlands of open forests and riverbanks between 2,500 and 5,000
meters above sea level. Poa crymophila Keng cv. Qinghai is the
primary grass species inmountainmeadows of the Qinghai-Tibet
plateau. It not only protects the local ecological environment,
but also supports the development of animal husbandry. The
long-lasting cold and drought in this region means that the
grass has had to evolve to adapt to the adverse environment.
To better understand the stress tolerances of this grass, we
analyzed its transcriptome and metabolome in response to cold
and drought.

When plants are subjected to abiotic stress, including cold
and drought, many molecular and physiological processes are
reconfigured. Numerous protective proteins and secondary
metabolites are biosynthesized to help plants to adapt to
these environmental stresses. Protective proteins, such as cold-
regulated genes (COR), heat shock proteins (HSPs), and late
embryogenesis abundant proteins (LEA), function as stabilizers
of cell structures, chaperones and protectors of proteins,
or antidotes to metal ions (Heidarvand and Amir, 2010;
Bhargava and Sawant, 2013; Miura and Furumoto, 2013).
Specialized metabolites, including carbohydrates, flavonoids,
vitamins, phenylpropanoids, steroids, and anthocyanins are also
induced by various abiotic stresses to act as osmoregulators
and antioxidants (Zhu et al., 2007; Bhargava and Sawant, 2013;
Brunetti et al., 2013). However, the substances which play
key protective roles differ depending on the plant species and
the stress.

At low temperatures, synthesis and accumulation of
saccharides has been proven to be crucial to the improvement
of cold tolerance in many plants (Kaplan and Guy, 2004;
Rekarte-Cowie et al., 2008). Saccharides, such as fructose,
mannose, pentose, and sugar, can protect cell structures by
stabilizing membrane integrity and maintaining turgor and
osmotic balance (Yano et al., 2005; Conde et al., 2011; Morkunas
and Ratajczak, 2014). On the other hand, carbohydrates may
directly quench reactive oxygen species (ROS) to mitigate
oxidative damage under stress. The physical state of the
plasma membrane also plays an important role in the cold
adaptation of plants. Increasing unsaturated phospholipids and
unsaturated fatty acids (FAs) and decreasing the proportion
of cerebrosides can improve cold tolerance in a wide range
of plants (Takahashi et al., 2013). Moreover, cold activates
the synthesis of other secondary metabolites. For example,
Arabidopsis rosettes placed in conditions with progressively
decreasing temperatures in the non-freezing range showed
an increase in expression of genes related to sucrose, proline,
raffinose, tocopherol, and polyamine synthesis as well as
phenylpropanoid and flavonoid metabolism (Usadel et al., 2008).
In cold-treated tartary buckwheat (Fagopyrum tataricum), most
of the phenylpropanoid biosynthetic transcripts are upregulated,
and some organic acids derived from the tricarboxylic acid cycle
increase (Jeon et al., 2018).

Similarly, plants coping with drought stress manipulate
many physiological processes, involving many metabolites.
Carbohydrates that contribute to growth under normal
conditions may be used to synthesize solutes for osmotic
adjustment under drought (Bhargava and Sawant, 2013).
Drought stress enhances carbohydrate accumulation in star fruit
(Averrhoa carambola), Kentucky bluegrass, cotton (Gossypium
hirsutum L.), and Phaseolus vulgaris (Yang et al., 2013; Andrade
et al., 2016; Wu et al., 2017; Zahoor et al., 2017). In Kentucky
bluegrass, increased sucrose accumulation has been shown
to be associated with superior turf performance during
drought stress, whereas fructan accumulation contributes to
rapid re-growth on re-watering (Yang et al., 2013). In cotton
(Gossypium hirsutum L.), drought stress decreases starch content
but increases sucrose content (Zahoor et al., 2017). Other
secondary metabolites are also invoked to deal with drought
stress. In Saposhnikovia divaricata subjected to progressive
drought stress, aromatic alcohols and sesquiterpenes were
identified to predominate in a total of 18 volatile components
(Men et al., 2018). LC-MS analysis of leaf metabolites from
100 barley recombinant inbred lines has revealed that many
metabolites, such as phenolic, terpenoid compounds, sinapic
acid derivatives, acylated glycosides of flavones, and polyamine
derivatives, are related to drought (Piasecka et al., 2017).
Two edible fern (Matteuccia struthiopteris) species showed
stronger resistance in the early stages of drought, due to
increases in flavonoids, total phenols, and proanthocyanidins
(Wang et al., 2019).

Many metabolites and their encoding genes, such as
anthocyanins, sugar, phenylpropanoid, and some flavonols, are
induced by both drought and cold stress (Shinozaki et al., 2003;
Mierziak et al., 2014; Nakabayashi and Saito, 2015; Barrero-
Gil et al., 2016; Pommerrenig et al., 2018), suggesting the
existence of crosstalk between the drought and cold responding
pathways. When antioxidant enzymes are either inactivated
or insufficient during stress conditions, these metabolites
probably play a vital antioxidant role in protecting plants
from damage to DNA, proteins, and membrane lipids (Bartwal
et al., 2013; Amelia et al., 2018). Yet, there remain important
gaps in understandings of the molecular and physiological
mechanisms underlying these adaptive processes, especially in
non-model plants.

Hence, the goal of our study was to reveal how Poa
crymophila Keng coped with low temperature and drought
environments. We generated transcriptomes and metabolomes
of Poa in response to cold stress and recovery temperature,
as well as drought stress and re-watering. Bioinformatic
analyses were performed to identify the major metabolites,
regulation pathways, and candidate genes responding to both
stresses. Consistencies and differences between the two stresses
were also explored in terms of metabolites and molecules.
The results provide insights into the molecular mechanisms
behind the cold and drought tolerances of P. crymophila by
exploring stress-tolerance metabolites and associated genes.
These insights could be leveraged to develop new biological
regulators against stresses or new grass varieties that have
improved tolerance.
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MATERIALS AND METHODS

Plant Materials and Stress Treatments
Poa crymophila Keng cv. Qinghai seeds were planted in plastic
pots (14 cm diameter, 25 cm length) filled with organic loam in
October 2017 and were grown in a greenhouse at 18–25◦C for
2 months in Chengdu (30.67◦N, 104.06◦E), Sichuan Province,
China. There were at least 1,000 plants in each pot. Plants were
watered by hand every 2 days. Prior to the experiment, plants
were transferred to a growth chamber set to a temperature and
light cycle of 22/16◦C (14 h day/10 h night), at a relative humidity
of 60% and an irradiance of 200 mmol·m−2s−1 (LI-6400/XT
photometer, Li-Cor Inc., Lincoln, NE, USA) for 2 weeks. Four
pots of plants acted as a control under normal conditions. To
induce cold stress, four pots of plants were directly transferred
to another growth chamber set at −5◦C for 24 h (cold stress)
with the same humidity and light conditions as above. the cold
stress treated plants were then returned back to the control
conditions for recovery from cold stress for 48 h. Leaves were
randomly selected before treatment as a control (CK), 24 h cold
stress, and 48 h recovery from cold (ReCold).Meanwhile, another
four pots of plants were not watered for 10 days (Drought) in
the third growth chamber, with otherwise normal conditions as
per the control. They were re-watered and sampled after 48 h
(ReDrought). At every sampling point, we collected five bunches
of grass as biological replicates to conduct follow-up experiments,
with at least 50 plants in each bunch.

Illumina Deep Sequencing, de novo
Assembly, and Functional Annotation
Total RNA samples were prepared using the TrizolTM reagent
(Invitrogen, Carlsbad, CA, USA), and subsequently purified
with a cDNA library constructed using the TruseqTM RNA
Sample Prep Kit (Illumina, San Diego, CA, USA) following
the manufacturer’s instructions. After quality control using an
Agilent 2100 Bioanaylzer and the ABI StepOnePlus Real-Time
PCR System, the cDNA libraries were sequenced on Illumina
HiSeqTM 4000 (Illumina) at BGI (Shenzhen, China). Each sample
yielded more than 5 Gb data. All RNA-Seq reads were deposited
to the Sequence Read Archive database (http://www.ncbi.nlm.
nih.gov/Traces/sra/) under accession number SRX2725266.

The clean reads, which were obtained by filtering raw reads
from sequencing machines using the internal filter_fq software
of BGI (Shenzhen, China), were used for bioinformatics analysis.
De novo assembly of the P. crymophila transcriptome was
conducted using Trinity (release 20130225) (http://trinityrnaseq.
sourceforge.net/) under default parameters (Grabherr et al.,
2011). The quality of the assembly was determined using total
length, mean length, N50 number, and the length distribution
of contigs and unigenes. The assembled unigene sequences
were aligned to the following protein databases: NR (release
20130408), Swiss-Prot (release 2013_03), the Kyoto Encyclopedia
of Genes and Genomes (KEGG, release 63.0), Cluster of
Orthologous Groups of proteins (COG) (release 20090331) by
blastx (e-value <0.00001); and nucleotide database NT (release
20130408) by blastn (e-value <0.00001) (http://blast.ncbi.nlm.
nih.gov/Blast.cgi). These unigenes were annotated for their

function through identifying proteins with the highest sequence
similarities. GO annotation of unigenes was conducted with NR
annotation using the Blast2GO program (release 2012-08-01)
(https://www.blast2go.com/) (Conesa et al., 2005).

Differentially Expressed Genes (DEGs)
Unigene expression levels were calculated in terms of the
fragments per kilobase of exon model per million (FPKM)
using the software package RSEM (RNA-Seq by Expectation
Maximization) (Li and Dewey, 2011). Based on the FPKM of
unigenes, the Noiseq package was used to calculate expression
differences between the treatment groups (Tarazona et al., 2011).
The DEGs were screened according to a threshold of |log2FC|≥1
and probability ≥0.8.

Metabolite Analyses
Three biological replicates (−1, −2, −3) in every sampling
point were used to detect metabolite features and study the
metabolome in widely targeted analysis at Wuhan Metware
Biotechnology Co. LTD (Wuhan, China). Frozen powder plant
leaves (100mg) were extracted overnight at 4◦C with 1.0ml
70% aqueous methanol. To improve the extraction efficiency,
the samples were shaken by a vortex three times during this
process. Samples were then centrifuged at 4◦C, 10,000 × g
for 10min. The extracts were absorbed (CNWBOND Carbon-
GCB SPE Cartridge, 250mg, 3ml; ANPEL, Shanghai, China,
www.anpel.com.cn/cnw) and filtrated (SCAA-104, 0.22µm
pore size; ANPEL, Shanghai, China, http://www.anpel.com.
cn/) to perform LC-MS analysis on an UPLC-ESI-MS/MS
system (UPLC, Shim-pack UFLC SHIMADZU CBM30A system,
www.shimadzu.com.cn/; MS, Applied Biosystems 6500 Q TRAP,
www.appliedbiosystems.com.cn/) (Chen et al., 2013; Dunn
et al., 2013). Dichloro-phenylalanine was added to each sample
before analysis as the internal standard to check the reliability
and stability of the compounds. Total ions current (TIC)
of quality control (QC) samples and multimodal maps of
detected metabolites via multiple reaction monitoring (MRM)
model were acquired on a triple quadrupole linear ion trap
mass spectrometer (Chen et al., 2013), equipped with an ESI
(electrospray ionization) Turbo Ion-Spray interface, operating in
a positive ion mode and controlled by Analyst 1.6.3 software (AB
Sciex). QC was operated by QC samples which are prepared from
a mixture of sample extracts. One QC sample is added every
10 test samples to monitor the reproducibility of samples under
the same treatment method. The overlapping TIC diagrams
of different QC samples displayed the high repeatability of
metabolite extraction and detection.

The metabolites were qualitatively and quantitatively
determined according to secondary spectral information after
removing isotopic signals, repeated signals containing K+ ions,
Na+ ions, NH4+ ions, and fragment ions from larger molecular
weight substances. The multimodal maps of metabolite detection
via MRM showed the substances that can be detected in the
samples, with each different color of the mass spectrum peak
representing one detected metabolite. The qualitative analysis
was based on RT and fragment ion under the given ratio of
declustering potential to collision energy. If the generated
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fragment ion can be identified with corresponding standard
fragment from an authentic chemical standard (BioBioPha
Co., LTD, Kunming, China and Sigma-Aldrich, Merck KGaA,
Darmstadt, Germany), the fragment was considered as definitive
identification. If the fragment cannot be identified with standard
fragments, the size of the fragment was used to speculate the
chemical groups in order to reconstruct the structure of matter
and putatively annotate compounds with the self-built database
MWDB (Metware Database, Wuhan Metware Biotechnology
Co. LTD, Wuhan, China) (Dunn et al., 2013). The quantitative
analysis of metabolites was based on the relative content which
was represented by the integration of the peaks area of each
chromatographic peak using Multiaquant software (Fraga et al.,
2010). Because of the content differences of every detected
metabolite between different samples, the mass spectral peaks of
all detectedmetabolites were corrected according to the retention
time and peak type of every metabolite in different samples to
ensure the accuracy of the qualitative and quantitative analysis.

Analysis, KEGG Annotation, and
Enrichment of Differentially Expressed
Metabolites (DEMs)
Partial Least Squares-Discriminant Analysis (PLS-DA) can
maximize the differentiation between groups and is beneficial
when searching for different metabolites. Accordingly, PLS-
DA was used to calculate the correlations between the
different groups of metabolome data (Thévenot et al., 2015).
The differential metabolites between different groups can be
preliminarily screened out on the basis of variable importance
in project (VIP) which was obtained from the PLS-DA. The fold
change was calculated by dividing the mean value of the signal
peak area of the detected substance between different groups, in
consideration of biological duplication in the Poa metabolome.
When the fold change exceeded 2 or was <0.5, and VIP >1, the
difference was considered significant.

Differential metabolites were then mapped to the KEGG
database (Kanehisa and Goto, 2000) to carry out enrichment
analysis. The Rich factor is the ratio of the number of DEMs in a
certain pathway to the total number of metabolites detected and
annotated in the corresponding pathway.

Differential Correlation Analysis and
Correlation Network Diagram
Correlation analysis was conducted for DEMs and genes using
the COR program in R (Chong and Xia, 2018). The positively
related genes with Pearson’s correlation coefficients (PCC) >0.9
were selected and further filtered on the basis of gene length
exceeding 750 bp.

The selected genes were then analyzed using the MapMan
software package (http://mapman.gabipd.org/web/guest/home),
which includes two freely available programs (Schwacke et al.,
2019). First, each input gene was given a function annotation item
“Bin” based on the reference database in MapMan. The pathway
interpretation of these genes was then visualized in MapMan.
After that, network visualization between the target metabolites

and genes was completed using the Cytoscape software package
(Shannon et al., 2003).

Quantitative Real-Time (qRT) -PCR
Verification
The purified RNA samples were reverse-transcribed using the
PrimeScript RT Reagent Kit with gDNA Eraser (Takara, Dalian,
China) following the manufacturer’s protocol. In the 4,286
upregulated genes with a length over 750 bp, 16 unigenes were
selected for the qRT-PCR assay. Gene specific qRT-PCR primers
(18–22 bp) were designed using Premier 5.0 software (Premier
Biosoft International, Palo Alto, CA). qRT-PCR was performed
using TB Green R© Premix Ex TaqTM II (Tli RNaseH Plus) (Takara
Bio Inc., Shiga, Japan) in an ABI Quantstudio 3 Real-Time
PCR System (Applied Biosystems, Foster City, CA, USA). PCR
conditions were 30 s at 95◦C, followed by 40 cycles of heating
at 95◦C for 5 s and annealing at 60◦C for 34 s. Three replicates
were performed, and the amplification specificity were checked
by melting curves. The relative expression level of each gene,
namely the fold change (FC) of gene expression between treated
samples and the control sample, was calculated using 2−11Ct,
and the beta-actin gene from the Poa transcriptome served as the
reference gene.

RESULTS

Transcriptomes of Poa crymophila Keng

cv. Qinghai
In transcriptomes of P. crymophila in response to cold,
drought, and recovery from both of these stresses, 167,845
unigenes were detected (Supplementary Table 1). The total
length of the unigenes was 103,424,584 nt, the average length
was 616 nt, and N50 was 804 nt. The transcriptome was
functionally annotated to NR, NT, Swiss-Prot, KEGG, COG,
GO, PFAM, and InterPro databases, resulting in the annotation
of 84,341, 102,333, 45,820, 52,310, 30,737, 45,724, 35,232, and
42,881 unigenes, respectively. In total, 112,353 unigenes were
annotated across the different databases, reaching 66.94% of
total unigenes (Supplementary Table 2). Next, we screened
DEGs between different experimental conditions based on
FPKM values. The results revealed that cold stress significantly
upregulated 25,929 unigenes and down-regulated 9,865 unigenes.
Drought stress significantly upregulated 41,788 unigenes and
down-regulated 7,098 unigenes. Compared with the control
group, the plants recovering from cold stress contained
30,416 upregulated DEGs and 8,535 down-regulated DEGs.
The re-watered plants, after drought treatment, contained
31,692 upregulated DEGs and 8,408 down-regulated DEGs.
Compared with the treatment group, recovering from cold stress
upregulated 20,079 DEGs and down-regulated 15,235 DEGs,
whilst re-watering upregulated 14,210 DEGs and down-regulated
23,816 DEGs (Supplementary Table 1, Figure 1).

Under cold stress, the pathways in which DEGs significantly
enriched mainly included plant-pathogen interactions,
plant hormone signal transductions, phenylpropanoid
biosynthesis, and starch and sucrose metabolism. Under
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FIGURE 1 | Significantly differentially expressed genes (DEGs) in Poa crymophila Keng cv. Qinghai transcriptomes in response to cold and drought stress and

recovery from the two stresses.

drought stress, the pathways in which DEGs significantly
enriched are FAmetabolism, biosynthesis and degradation, other
glycan degradation, nitrogen metabolism, selenocompound
metabolism, and plant-pathogen interaction. Many regulated
genes and function genes were induced to respond to cold and
drought stresses, such as transcription factors, protein kinases,
CORs, HSPs, LEAs, oxidation-reduction enzymes, and some
unidentified proteins. It is not straightforward to determine
which genes play key roles in P. crymophila in response to the
two abiotic stresses. In this study, we first searched for the key
metabolites which accumulated in P. crymophila suffering from
the cold and drought stresses, which was the most direct evidence
of the adaptability of Poa. Next, the corresponding pathways and
core genes of these metabolites were traced in the transcriptome.

Metabolome of Poa crymophila Keng cv.
Qinghai
In the metabolic profiling of P. crymophila, 779 metabolite
features were identified and annotated as metabolites by widely
targeted analysis. They were classified into carbohydrates,

lipids, flavones, phenylpropanoids, alcohols, alkaloids, terpene,
organic acids and derivatives, amino acids and derivatives, and
vitamins and derivatives (Supplementary Table 3). Compared
with the control group, the groups of cold, drought, recovery
from cold, and re-watering after drought resulted in 214,
203, 223, and 105 significantly DEMs, respectively. However,
compared with the treatment group, 128 DEMs were detected
in the plant group recovering from cold, and 160 DEMs
were detected in the re-watering group after drought. The
number of upregulated and down-regulated DEMS are listed
in Table 1.

In the process from cold stress to recovery, carbohydrates
firstly increased and then decreased, and the content of lipids,
amino acids and derivatives, nucleotides and derivatives, and
alcohols continuously increased. Flavones showed a downward
trend in the process (Table 2). For drought stress, carbohydrates
and amino acids, and derivatives increased in concentration
while other types of metabolites decreased. However, most types
of metabolites increased in content after re-watering, except for
carbohydrates and amino acids (Table 2).
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The Concentration of Some Metabolite
Significantly Increasing in Response to
Both Cold and Drought Stresses
Metabolites which responded to both cold and drought were
selected by Venn diagram analysis. On this basis there
were 17 significantly upregulated metabolites under both
stresses (Figure 2, Supplementary Table 3). Ten of them were
confidently identified with an authentic chemical standard
(D-(+)-Glucono-1,5-lactone, Gluconic acid, Putrescine, D-
Glucose 6-phosphate, Coumarin, D-Xylonic acid, Schizandrin,
Glucose-1-phosphate, D-Fructose 6-phosphate-disodium salt

TABLE 1 | Significantly differentially expressed metabolites (DEMs) in Poa

crymophila Keng cv. Qinghai in response to cold and drought stress and recovery

from the two stresses.

Group name All DEMs Down

regulated

DEMs

Up regulated

DEMs

CK-M_vs._Cold-M 214 111 103

CK-M_vs._Drought-M 203 141 62

CK-M_vs._ReCold-M 223 93 130

CK-M_vs._ReDrought-M 105 64 41

Cold-M_vs._ReCold-M 128 32 96

Drought-M_vs._ReDrought-M 160 42 118

and LysoPC 16:1), and the others (Nicotinic acid-hexoside,
Tricin O-vanilloylhexoside, MAG (18:4) isomer3, O-hexosyl-
O-pentoside, Luteolin, Apigenin 6-C-pentoside, Apigenin 8-
C-pentoside, and 2′-Deoxyinosine-5′-monophosphate) were
putatively annotated by comparing the mass spectrum to data
collected in spectral libraries (Figure 2). Therein, schizandrin
(pmf0166) showed the most significant increase in expression
abundance (over 100,000 times). Luteolin (pmb0566) and
nicotinin acid-hexoside (pma1751) presented more than five
times the enhancement in expression abundance. Moreover,
three metabolites belonging to carbohydrates, D-Fructose 6-
phosphate-disodium salt (pmf0220), D-Glucose 6-phosphate
(pme3160), and Glucose-1-phosphate (pmf0035), were also
induced to express over 22 times by cold stress and above five
times by drought. In addition, the abundance of LysoPC 16:1
(pmb0165) was more increased by cold than drought.

Pathway Analysis of Upregulated Genes
(>750 bp) Correlated With Candidate
Metabolites
A correlation analysis between the metabolites and genes
indicated that 19,106 genes were positively related to the
17 metabolites with Pearson’s correlation coefficients >0.9
(Supplementary Table 4). Among them, 14,657 upregulated
genes are linked with schizandrin (pmf0166). Considering the
further experiment concerning gene function, genes with a length
<750 bp were omitted, leaving 4,286 upregulated genes with a

TABLE 2 | The abundance changes of metabolite types from stress to recovery in response to cold and drought.

Cold/CK Re-cold/cold Drought/CK Re-drought/drought

Sum Up Down Sum Up Down Sum Up Down Sum Up Down

Lipids 31 31 0 14 14 0 19 3 16 22 18 4

Sterides 1 1 0 1 1 0

Organic acids and derivatives 22 6 16 10 9 1 17 5 12 13 12 1

Indole derivatives 1 1 0 1 1 0 2 2 0

Isoflavone 4 0 4 7 0 7 6 6 0

Vitamins and derivatives 5 3 2 2 1 1 5 1 4 3 3 0

Terpene 2 1 1 2 2 0 1 1 0 1 0 1

Carbohydrates 6 6 0 5 0 5 11 10 1 5 0 5

Alkaloids 11 5 6 5 4 1 8 1 7 7 6 1

Others 13 6 7 5 4 1 6 3 3 4 2 2

Flavanone 3 2 1 2 1 1 7 2 5 4 4 0

Flavonoid 9 1 8 1 1 0 10 2 8 7 6 1

Flavonol 11 1 10 4 0 4 11 0 11 7 7 0

Flavone 34 10 24 18 7 11 55 15 40 35 26 9

Anthocyanins 1 0 1 3 0 3 2 2 0

Nucleotide and derivates 12 9 3 21 20 1 5 1 4 11 10 1

Phenolamides 10 2 8 13 12 1 5 3 2 5 5 0

Polyphenol 2 1 1 2 1 1 1 0 1 1 1 0

Alcohols 3 3 0 1 1 0 4 3 0 2 1 1

Phenylpropanoids 22 6 16 7 5 2 15 4 11 7 5 2

Amino acid and derivatives 11 8 3 10 9 1 10 6 4 17 3 14

Proanthocyanidins 1 0 1 1 1 0
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FIGURE 2 | The significantly up-regulated metabolites under both cold and

drought stresses.

length over 750 bp for analysis of metabolic pathways usingMCC
and Mapman software. The results showed that 64 genes were
mapped in secondary metabolism and 37 in primary metabolism
(Supplementary Table 4).

In terms of secondary metabolism, genes mainly focused on
the following pathways: phenlypropanoid, flavonol, anthocyanin,
as well as lignin and lignan (Figure 3). In primary metabolism,
genes were primarily mapped to the sucrose-starch and
raffinose metabolism pathways (Figure 4), and some genes
were connected to lipid biosynthesis, photosynthesis, and
plant glycolysis.

Moreover, a network was established between different
metabolites and their corrected genes. In the network graph
of secondary metabolism, pmb0637, pmb0681, pmf166, and
pme3413 coalesced, and most genes were linked to these four
metabolites. While pmb0566, pme2292, and pma6372 were
involved with respect to the remaining genes. For the primary
metabolism network, pma1751, pme1021, and pme0534 were
closer and related to more correlated genes than pme3719,
pme0066, pmb0165, and pmb1562 (Figure 5).

The Key Genes in Poa crymophila Keng

Responding to Cold and Drought Stresses
In the correlated genes, which were mapped in Mapman, the
DEGs with a probability ≥0.8 in both stresses were screened
out as candidate genes involved in the tolerance of Poa to
cold and drought stimulations (Table 3). In primary metabolism,
seven genes responded to both stresses and were linked to
pme0534, pma1751, and pme1021. Their functions involved
glucose transportation and degradation, starch degradation, wax-
ester synthase, and FA synthesis. In addition, raffinose synthase
showed the highest expression levels in both stresses, and it

was significantly induced by drought but not by cold. A similar
trend was revealed with respect to 1-fructosyltransferase, but its
expression level was lower than raffinose synthase. In secondary
metabolism, eight genes responded to both stresses and their
notation focused on cinnamoyl-CoA reductase and flavonol
synthase. Moreover, one hydroxymethylglutaryl-CoA reductase
(TR83164|c3_g4) exhibited a remarkable increase in expression
level to 460.37 in response to the cold stress, but its abundance
was not changed by drought. Finally, some genes annotated as
asulfotransferase and UDP-glycosyltransferase were induced by
drought stress.

qRT-PCR Validation of Differentially
Expressed Unigenes From RNA-Seq
This study focused on genes that were positively related to the
metabolites in response to two abiotic stresses, we therefore chose
16 unigenes from 4,286 upregulated genes with a length over
750 bp to perform the qRT-PCR analysis. Some of those genes
were involved in phenlypropanoid, sucrose-starch pathways,
and raffinose metabolism pathways. The qRT-PCR results are
generally consistent with expression changes of these genes in
the transcriptome (Figure 6), suggesting the reliability of the
Illumina RNA-seq result.

DISCUSSION

Analysis of the Overall Response to Cold
and Drought in Poa crymophila Keng
Poa crymophila Keng grown on the Qinghai-Tibet plateau
has evolved a high tolerance and is adapted to the cold and
arid environment there. In this study, we sought to further
explore the stress-tolerance of the grass via metabolome and
transcriptome analyses. In the P.crymophila transcriptome,Many
DEGs were identified and involved in almost all aspects of the
metabolic process, which made identifying the genes that are
most important for stress responses difficult. Metabolites directly
function to help grass resist stresses. So, this study commenced
by searching for the main metabolites under two stresses and
then traced the associated pathways and genes. Here, we paid
particular attention to the induced metabolites, because they
should be positively linked to the acquirement of tolerances.

Carbohydrates first increased and then decreased in
the process from cold and drought stresses to recovery.
Carbohydrates accumulating in the cytoplasm can not only
maintain turgor and osmotic balance, but also do not interfere
with normal cellular metabolism (Chen and Murata, 2002;
Conde et al., 2011). Moreover, we speculated that carbohydrates
also provide more energy resource to Poa to synthesize particular
anti-stress compounds for surviving under adverse conditions.

Under low temperature, lipids, amino acids, nucleotides of
P. crymophila continuously increased in abundance from cold
treatment to recovery. The promotion of unsaturated lipids
may reduce the temperature at which the plasma membrane
solidifies and thus improves its fluidity (Takahashi et al., 2013).
The increased abundance of amino acids and nucleotides may
contribute to protective proteins, including CORs, dehydrins,
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FIGURE 3 | The correlated genes which positively responded to cold and drought were mapped to secondary metabolism.

FIGURE 4 | The correlated genes which positively responded to cold and drought were mapped to sucrose-starch pathway in primary metabolism.
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FIGURE 5 | The established networks between metabolites and their correlated genes. (A) The network graph of primary metabolism. (B) The network graph of

secondary metabolism.

TABLE 3 | The candidate genes in response to both cold and drought stimulations in Poa crymophila Keng cv. Qinghai (Probability >0.8).

TR-id log2(Cold/CK) Probability log2(Drought/CK) Probability KEGG-Annot

Secondary metabolism TR57051|c0_g1 10.35 0.99 9.38 0.97 Rhamnosyltransferase

TR57502|c0_g1 10.06 0.98 8.45 0.91 Flavonol synthase

TR72858|c0_g1 9.54 0.97 11.10 0.99 Cinnamoyl-coa reductase

TR68491|c2_g1 9.41 0.96 10.99 0.99 Myb proto-oncogene protein, plant

TR72119|c0_g3 9.08 0.95 10.84 0.99 Cinnamoyl-coa reductase

TR75364|c1_g1 6.66 0.92 7.172 0.92 2′-deoxymugineic-acid

TR78771|c0_g3 8.60 0.90 8.61 0.91 Cinnamoyl-coa reductase

TR64512|c0_g3 8.50 0.90 8.23 0.88 FLS1, FLS4; flavonol synthase

Primary metabolism TR82581|c0_g30 8.61 0.90 10.90 0.99 Sugar porter family MFS transporter

TR78987|c1_g11 8.01 0.85 9.92 0.98 Alpha-amylase

TR79121|c0_g4 8.37 0.90 9.42 0.97 Solute carrier family 35

TR70111|c0_g4 8.04 0.97 8.19 0.97 3-hydroxyacyl-dehydratase

TR67217|c1_g2 10.35 0.99 8.78 0.94 Wax-ester synthase

TR67628|c0_g2 7.77 0.85 8.28 0.91 Beta-fructofuranosidase

TR47006|c0_g2 8.25 0.90 7.98 0.86 –

and LEAs. A considerable number of genes encoding these
proteins have recently been identified in many plant species in
response to cold stress (Miura and Furumoto, 2013). Under
drought stress, only amino acids and their derivatives showed
more up-regulation, which may connect to LEA because LEA
genes have been reported to enhance the drought tolerance of
transgenic maize, tobacco, and upland cotton (Magwanga et al.,
2018; Minh et al., 2019).

Once the two stresses were withdrawn, growth of Poa rapidly
resumed and most metabolites showed a concentration callback.
This suggested that Poa can withstand repeated harm from
freezing and long periods of drought.

The Metabolites Induced by Both Cold and
Drought Stresses
In this study, 17 metabolites were significantly induced by both
stresses. Among them, the abundance of schizandrin (pmf0166)

increased over 100,000 times and was far higher than the other
16 metabolites (Figure 2). Schisandrin, a kind of lignan, has been
studied as a plant-based medicine (Sowndhararajan et al., 2018)
and has been shown to protect from neurotoxicity and enhance
cognitive functions in the cell line and animal models (Egashira
et al., 2008; Xu et al., 2012). However, there is a dearth of research
in terms of its function in the plant itself. Both lignan and lignin

are synthesized by monolignols via the phenylalanine pathway.
Monolignols are divided into p-coumaryl alcohol, coniferyl
alcohol, and sinapyl alcohol, resulting in the formation of H-

hydroxyphenyl, G-guaiacyl, and S-syringyl lignin, respectively
(Gray et al., 2012). Lignan is thought to come from G- and S-
lignin. Schizandrin is a kind of dibenzocyclooctene lignan and
three oxygen atoms are attached to every benzene ring via a C-
O bond (Sowndhararajan et al., 2018). Comparing the molecular
structures of schizandrin and the three monolignols, it was
inferred that schizandrin is formed by sinapyl alcohol because

Frontiers in Plant Science | www.frontiersin.org 9 April 2021 | Volume 12 | Article 631117

https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/plant-science#articles


Wang et al. Adaptations of Poa to Stresses

FIGURE 6 | qRT-PCR verifying the accuracy of RNA-seq. Sixteen unigenes were selected for the qRT-PCR assay and results are from three biological replicates.

Beta-actin gene from Poa crymophila Keng transcriptome was served as reference gene. The fold change (FC) of gene expression between treated samples and

control sample was calculated using 2−11Ct, and LogFC2 = –11Ct. the LogFC2 of each unigene in qRT-PCR and transcriptome was compared to verify the stability and

accuracy of the RNA sequencing. (A) The fitting line of LogFC2 of each unigene in qRT-PCR and transcriptome. (B) The expression change of each unigene in qRT-PCR

(–11Ct) and transcriptome (LogFC2 ).

there are also three C-O bonds in sinapyl alcohol (Figure 7).
Lignin-like polymers have been referred to as stress-lignin or
defense-lignin, and they can be induced by external biotic and
abiotic stresses such as pathogen attacks, water deficits, high light,
ozone, heavy metals, and mechanical stress (Gray et al., 2012).
Schizandrin in P. crymophila should be regarded as a “stress-
lignin” which warrants exploration in terms of its function and
regulatory mechanism.

Additionally, four flavones were also accumulated in response
to both stresses. Flavones are a kind of flavonoid which are

also derived from the phenylpropanoid metabolic pathway.
All flavonoid compounds are composed of two benzene rings
connected by a 3-carbon linking chain (Nabavi et al., 2018).
Ring A is synthesized from three malonyl-CoA molecules
generated via the transformations of glucose while ring
B is synthesized from 4-coumaroyl-CoA produced from
phenylalanine (Figure 8). Rings A and B condense to generate
chalcone, and then transform to flavanone via isomerase-
catalyzed cyclization. Flavanone is the starting compound for the
synthesis of other flavonoids (Nabavi et al., 2018). Flavones are
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FIGURE 7 | Molecular structures of p-coumaryl alcohol, coniferyl alcohol, sinapyl alcohol, and schizandrin.

converted from flavanones through flavone synthase. Flavones,
flavonols, and anthocyanins accumulating in leaf epidermal cells,
waxes, and trichomes can act as UV-B filters and form DNA
crosslinking to protect DNA from oxidative damage (Dixon,
2005; Aron and Kennedy, 2008; Albert et al., 2009; Hichri
et al., 2011). In plateau environments, the high UV and harsh
abiotic stresses probably cause over-production of ROS. The four
flavones are likely to be involved in anti-oxidation protection of
plants. Thus, it can be seen that phenylpropanoid metabolism is
a vital reason why Poa acquired multi-tolerance in our study.

In addition, four carbohydrates, such as D-Fructose
6-phosphate-disodium salt, D-Glucose 6-phosphate, Glucose-
1-phosphate, and D-(+)-Glucono-1,5-lactone, which are
intermediate products in the glycolysis pathway and two
unsaturated lipids, were amongst the 17 significantly induced
metabolites (Figure 2). Glycolysis and FA degradation
participating in the tricarboxylic acid cycle is the main
source of amino acids, which is inseparable from the synthesis of
metabolites in the phenylpropanoids pathway (Figure 9).

The Correlated Genes and Their Pathways
The genes which were positively correlated with the 17
metabolites (PCC >0.9) were identified and filtered on the
basis of the gene length exceeding 750 bp. Because the genes
correlated with each metabolite overlapped, we analyzed them
together by mapping them in Mapman to reveal their main
pathways. Sucrose-starch and raffinosemetabolismwere the chief
pathways in primary metabolism, while the phenlypropanoid
pathway functioned most notably in secondary metabolism

(Figures 3, 4). According to the expression level of each gene and
the expression differences between the two groups, the key genes
were identified.

In primary metabolism, the key genes were mainly alpha-
amylase, beta-fructofuranosidase, raffinose synthase, and sugar
porter familyMFS transporter (Table 3). Glucose and starch were
degraded to accelerated glycolysis to cope with drought and cold
stress (Bhargava and Sawant, 2013, Morkunas and Ratajczak,
2014). The status and allocation of carbohydrates enabled more
energy to be available for dealing with environmental stresses
rather than for growth. This may also explain why plants on the
plateau tend to be dwarfed.

In secondary metabolism, CCR (EC 1.2.1.44) showed

significant up-regulation in plants in response to both stresses.
CCR catalyzed the first reaction of monolignol synthesis in a

pivotal position of the phenylpropanoid pathway and directed

metabolic flux toward a different direction of monolignols
or flavonoids (Sattler et al., 2017). In Poa, significantly
induced CCR and the substantial enrichment of schizandrin
indicated that metabolic flux was more oriented to monolignols
synthesis (Figure 8).

On the other hand, the remainder of the metabolic flux in
the phenylpropanoid pathway flowed into the biosynthesis of
flavones (Figure 8). In dicots, O-glycosylated flavonols are the
major type of flavonoids, while monocot species predominantly
produce flavone C-glycosides, including chrysin, apigenin,
luteolin, and tricin, which have been detected in wheat, rice,
and maize (Tohge et al., 2017). In Poa, four flavones, including
luteolin, tricin, and apigenin, were significantly upregulated
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FIGURE 8 | Phenylpropanoid pathway. PAL, phenylalanine ammonia-lyase; C4H, cinnamate 4-hydroxylase; 4CL, 4-coumarate-CoA ligase. The monolignol

biosynthetic branch: CCR, cinnamoyl-CoA reductase; CAD, cinnamyl alcohol dehydrogenase; HCT, hydroxycinnamoyl-CoA shikimate/quinate hydroxycinnamoyl

transferase; C3H, 4-coumarate 3-hydroxylase; COMT, caffeic acid o-methyltransferase; CCoAOMT, caffeoyl-CoA o-methyltransferase; F5H, ferulate-5-hydroxylase.

The flavonoids biosynthetic branch: CHS, chalcone synthase; CHI, chalcone isomerase; F3H, flavanone 3-hydroxylase; F3′H, flavonoid 3′-hydroxylase; FLS, flavonol

synthase. Dash arrows refer to unspecified steps of a particular metabolic pathway. The colored boxes indicate metabolites that are significantly induced by both

types of stress.

under both stresses (Figure 2), which suggested that Poa accords
with monocot species. However, we only detected flavonol
synthase (FLS) and did not find flavone synthase in the
Poa transcriptome. There may be other pathways to induce
flavone synthesis.

Many transcription factors, such as MYB, WRKY, and
NAC, can regulate the synthesis of many compounds in
phenylpropanoid pathways (Gray et al., 2012; Mierziak et al.,
2014; Nabavi et al., 2018). In the 4,286 associated genes (>750
bp), there were nine MYB, three WEKY, and one NAC identified
in our study, and only one MYB was remarkably upregulated
by both cold and drought stresses. The direct targets of many
of these TFs remain unknown, and cross regulation between
TFs may also exist. Although it has been proved that biotic and
abiotic stresses can trigger lignin and flavonoids in many plants
(Gray et al., 2012), the factors and pathways of regulation require
further study. In addition, in the data concerning all DEGs and
the correlated genes, there were more unigenes in response to
drought than cold. Thus, we inferred that drought is probably
the main stress factor affecting the survival of Poa in cold and
arid areas.

CONCLUSION

In this study, we focused on P. crymophila Keng, an excellent
forage grass, and identified 779 metabolite features and 167,845
unigenes. There were 17 metabolites which were significantly
induced by both stresses, mainly carbohydrates, flavones,
and phenylpropanoids. Among them, schizandrin (pmf0166),
a kind of lignan, likely has the closest connection to the
tolerance of the plant because it showed the highest fold
change (over 10,000 times). A total of 4,286 upregulated
genes (>750 bp) were positively related to the 17 metabolites
with PCC >0.9. The key genes included alpha-amylase, beta-
fructofuranosidase, and genes related to sugar transport in
primary metabolism; and cinnamoyl-CoA reductase, flavonol
synthase, andMYB in secondary metabolism. Glucose and starch
were degraded to small molecule sugars to support the growth
of P. crymophila under adverse environmental conditions.
Phenylpropanoid metabolism appears to be a vital reason why
Poa has acquired multi-tolerance capabilities because of the
accumulation of schizandrin and flavones in phenylpropanoid
pathways. This study presented the mechanism of Poa adapting
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FIGURE 9 | The response of Poa crymophila Keng to cold and drought stresses. TAC, tricarboxylic acid cycle; CCR, cinnamoyl-CoA reductase; TF, transcription

factor; MAPK, mitogen-activated protein kinase.

to multi-stresses and provided a new anti-stress substance
that can be used to improve the tolerance of crops in
adverse environments.
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