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Southern South American Proteaceae thrive on young volcanic substrates, which are
extremely low in plant-available phosphorus (P). Most Proteaceae exhibit a nutrient-
acquisition strategy based on the release of carboxylates from specialized roots,
named cluster roots (CR). Some Proteaceae colonize young volcanic substrates
which has been related to CR functioning. However, physiological functioning of other
Proteaceae on recent volcanic substrates is unknown. We conducted an experiment
with seedlings of five Proteaceae (Gevuina avellana, Embothrium coccineum, Lomatia
hirsuta, L. ferruginea, and L. dentata) grown in three volcanic materials. Two of them
are substrates with very low nutrient concentrations, collected from the most recent
deposits of the volcanoes Choshuenco and Calbuco (Chile). The other volcanic material
corresponds to a developed soil that exhibits a high nutrient availability. We assessed
morphological responses (i.e., height, biomass, and CR formation), seed and leaf
macronutrient and micronutrient concentrations and carboxylates exuded by roots.
The results show that G. avellana was less affected by nutrient availability of the
volcanic substrate, probably because it had a greater nutrient content in its seeds and
produced large CR exuding carboxylates that supported their initial growth. Embothrium
coccineum exhibited greater total plant height and leaf P concentration than Lomatia
species. In general, in all species leaf macronutrient concentrations were reduced on
nutrient-poor volcanic substrates, while leaf micronutrient concentrations were highly
variable depending on species and volcanic material. We conclude that Proteaceae
from temperate rainforests differ in their capacity to grow and acquire nutrients from
young and nutrient-poor volcanic substrates. The greater seed nutrient content, low
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nutrient requirements (only for G. avellana) and ability to mobilize nutrients help explain
why G. avellana and E. coccineum are better colonizers of recent volcanic substrates
than Lomatia species.

Keywords: carboxylates, cluster roots, colonization, nutrients, Proteaceae, volcanic substrate-soils

INTRODUCTION

Temperate forest ecosystems of southern South America are a
unique biome that is biogeographically isolated with a highly
endemic flora (Quintero et al., 2014). These ecosystems are
frequently affected by catastrophic disturbances such as volcanic
eruptions and earthquakes that usually trigger orogenic uplift
and landslides (Veblen and Ashton, 1978; Veblen et al., 1992,
1996), which lead to soil rejuvenation, leaving bare areas where
the process of primary succession begins again. Following these
catastrophic events, volcanic eruptions leave large parts of the
landscape covered with rocks formed from lava flow, stones or
sandy substrates, which are generally nutrient-poor and with
almost no organic matter. Likewise, it is common to find volcanic
soils in southern Chile containing large amounts of active
aluminum (Al3+), oxides and hydroxides of iron (Fe) and Al,
humus-Al/Fe complexes and amorphous and poorly crystallized
minerals (e.g., allophane), which strongly sorb phosphorus (P)
(Borie and Rubio, 2003; Matus et al., 2006; Borie et al., 2019).
Therefore, volcanic soils may contain large amounts of total P,
but with a very low availability for plants.

The colonization of nutrient-impoverished environments
involves species with specialized root structures (e.g., cluster
roots) or symbiotic associations (e.g., mycorrhizas, nitrogen (N)-
fixing structures, or/and P-solubilizing bacteria) (Lambers et al.,
2008). Among them, some species of the Proteaceae family
frequently colonize young volcanic substrates (Delgado et al.,
2018). Species belonging to this family have been extensively
studied, because many of them inhabit extremely nutrient-poor
soils in southwestern Australia and South Africa, and are highly
efficient at both acquiring and utilizing nutrients, especially P
(Lambers et al., 2015a). The main nutrient-acquisition strategy
of Proteaceae involves the formation of cluster roots (CR), which
are clusters of dense hairy rootlets growing in longitudinal
rows along lateral roots (Purnell, 1960) that efficiently mobilize
nutrients from the soil by actively releasing exudates (Lamont,
2003; Shane and Lambers, 2005a; Lambers et al., 2006).
Carboxylates are the main root exudates and are involved in
several key processes in the rhizosphere including nutrient
acquisition and metal mobilization/detoxification (Jones, 1998;
Ryan et al., 2001; Chen and Liao, 2016). Carboxylates have
negative charges, allowing the complexation of metal cations
and the displacement of anions such as phosphate, from the
soil matrix. Additionally, carboxylates increase the availability
of some micronutrients through their solubilizing and reducing
capacity, for example, Mn4+ to Mn2+ and Fe3+ to Fe2+, which
are the forms that are taken up by roots that use Strategy
I (i.e., roots of dicots and non-graminaceous monocots that
release reducing/chelating substances and increase the plasma
membrane-bound reductase activity) (Marschner et al., 1986;

Dinkelaker et al., 1995). These micronutrients, like others
transition metal cations such as zinc (Zn2+), can also be
mobilized by carboxylates at the root surface, where they are
taken up by plasma membrane transporters with a low specificity
(Lambers et al., 2015b). Thus, carboxylate exudation by CR
(which occurs in large quantities compared with that of non-
CR) is an adaptive trait allowing species to thrive in nutrient-
poor soils.

Southern South America is inhabited by six Proteaceae species:
Embothrium coccineum J. R. Forst. & G. Forst., Lomatia hirsuta
Lam., L. ferruginea Cav. R. Br., L. dentata Ruiz et Pavon R.
Br., Orites myrtoidea Poepp. & Endl., and Gevuina avellana
Mol. (Donoso, 2006). These species may co-occur along their
geographical range between 36 and 44◦S. However, O. myrtoidea,
has the narrowest distribution (35–38◦S) and occurs only in
the Andes Mountains (Hechenleitner et al., 2005). Additionally,
L. dentata and L. hirsuta may occur a little further north (32◦S)
and L. ferruginea and E. coccineum, may occur much further
south (50◦ and 56◦S, respectively) (Steubing et al., 1983). In
their natural habitat, these Proteaceae grow in a wide range of
soil conditions (Souto et al., 2009; Delgado et al., 2018, 2019)
and some of them, such as E. coccineum, O. myrtoidea, and
G. avellana, can thrive in young volcanic substrates with very
low nutrient availability (Donoso, 2006; Zúñiga-Feest et al., 2018;
Ávila-Valdés et al., 2019; Zúñiga-Feest et al., 2020). Conversely,
Lomatia species perform better in relatively more fertile soils. In
fact, Lomatia hirsuta is a successful pioneer on landslides or after
forest clearing, while L. ferruginea and L. dentata grow better
under the shade of other trees growing on more developed soils
(Donoso, 2006; Zúñiga-Feest et al., 2020).

The South American Proteaceae are considered outliers from
the main centers of Proteaceae diversity, which are found in
South western Australia and South Africa (Prance and Plana,
1998), both ancient landscapes with severely P-impoverished soils
(Lambers et al., 2010). The South American Proteaceae differ
from the Proteaceae of Southwest Australia and South Africa,
because, in general, they have lower seed P concentrations
(Groom and Lamont, 2010; Delgado et al., 2015b). This
suggests that seedling establishment of southern South American
Proteaceae depends more heavily on nutrients in the substrate
than on nutrient reserves in their seeds. In fact, except for
the larger-seeded G. avellana (354 mg dry weight seed−1),
the southern South American Proteaceae produce small seeds
(≤17 mg seed−1 dry weight) (Delgado et al., 2014), and form
CR, even before they shed their cotyledons (e.g., ∼1 month-old
E. coccineum seedlings; Delgado et al., 2015b). We propose that
CR formation is a key strategy for nutrient uptake at very early
life stages. However, the ability of these species to establish and
thrive in soils with a low P availability such as recent volcanic
substrates, is not fully understood.
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Recently, Zúñiga-Feest et al. (2020) reported that G. avellana
grows faster than L. dentata in nutrient-poor volcanic sand,
but this trend is the opposite when these plants are grown
on the same volcanic substrate, supplemented with a complete
nutrient solution. This finding suggests that these species differ
in their ability to grow in soils/substrates with different nutrient
availability, possibly due to their different nutritional demand
or nutrient-acquisition strategy. Although all Proteaceae from
southern south America can grow on nutrient-poor volcanic
soils, it is unknown how they adjust their growth, biomass
allocation to CR, and carboxylate exudation when they grow
on volcanic soil/substrate with different nutrient availability. In
order to address this question, we conducted an experiment
where seedlings of five Proteaceae (E. coccineum, L. hirsuta,
L. ferruginea, L. dentata, and G. avellana) were grown in
three volcanic materials with different nutrient availability. We
hypothesized that the colonizing ability strongly depends on
nutrient demand of the species and their ability to sustain
growth under low-nutrient conditions. Specifically, we expected
that the seedling performance of the only larger-seeded species,
G. avellana, will be less affected by nutrient availability of the
soil/substrate, because the higher nutrient content in its seeds
will support their initial growth. Additionally, E. coccineum, the
species reported as colonizer of volcanic substrates, will perform
well in both nutrient-rich volcanic soil and young nutrient-
poor substrates due to its greater nutrient-uptake capacity
and faster rates of root carboxylate exudation. In contrast,
species belonging to the genus Lomatia, will perform better
in nutrient-rich soils, because they have greater nutritional
demands. Therefore, the aim of this study was to assess the
differences in seedling performance of five temperate rainforest
Proteaceae and the morpho-physiological traits involved in
soils/substrates with different nutrient availability, aiming to
understand their differential colonizing ability under field
conditions. Understanding how these species perform in different
soil conditions will be key to support restoration activities with
these native species and the information generated could be
useful to extrapolate to other species that present similar morpho-
physiological traits.

MATERIALS AND METHODS

Sampling Sites
Three volcanic materials were collected from the localities of
Ensenada (41◦ 10′52.48′′S – 72◦ 27′16.74′′W), Choshuenco
(39◦ 33′ 12′′S – 72◦ 8′ 43.44′′W) and Experimental Station
“Agropecuaria Austral” (ESAA) (39◦ 45′30′ – 73◦ 14′55′′W),
Chile. At one extreme, substrates from the localities of
Choshuenco and Ensenada correspond to recent volcanic
deposits. Thus, from the Ensenada site, we collected deposits
of volcanic sand from the last eruption of “Calbuco” volcano
(on 23–24 April, 2015), and from the Choshuenco site, deposits
of volcanic sand were collected at the foot of the “Mocho-
Choshuenco” volcano, of which the last eruption was recorded in
1864 (Rawson et al., 2015). At the other extreme, soil collected
at the ESAA, belonging to the Universidad Austral de Chile,

corresponds to a developed soil that originated from volcanic
ashes (Duric Hapludand; CIREN, 2003) that is locally named
Trumao (Valdivia soil Serie). The three volcanic materials were
taken to the greenhouse of the Universidad Austral, and sieved
through a 5-mm sieve to remove organic material (e.g., roots,
leaves, etc.) and other larger debris. These volcanic materials
were analyzed chemically in the Soil Laboratory of the Faculty
of Agricultural Sciences at the Universidad Austral de Chile,
using the methods described in Delgado et al. (2018), showing
differences in their nutrient concentrations and other chemical
parameters. For example, soil from ESAA presented, on average,
a two and six times greater N and P availability, respectively,
than the Choshuenco and Ensenada substrates. Likewise, soil
from ESAA contained nine and 20 times more total P than
Choshuenco and Ensenada substrates, respectively. The youngest
volcanic substrate, collected at Ensenada, showed the lowest
values of exchangeable cations (Ca2+, K+, Na+, and Mg2+) and
the highest percentage of Al saturation (Table 1). Additionally,
water-retention curves and pore-size distribution were measured
for disturbed volcanic materials used in this experiment. For
the determination of water-retention curves, saturated samples
of each material (230 cm3) were drained at decreasing water
potential values (0, −6, −15, −33, and −1,500 kPa). The
distribution of soil pores was obtained from the water-retention
curve as described by Dörner et al. (2010) and, according to pore
size classified by Ingram et al. (2015), the lowest amount of plant-
available water was found in the youngest volcanic substrate,
collected at Ensenada site (Table 1, Supplementary Figure 1).

TABLE 1 | Chemical and physical analysis of the substrates used in the
experiment. Each value corresponds to the average of three soil
samples ± standard error (SE).

ESAA Choshuenco Ensenada

N (mg kg−1) 45.0 (3.3) 29.4 (6.3) 25.2 (1.4)

P-Olsen (mg kg−1) 19.3 (3.2) 2.3 (0.2) 2.4 (0.2)

P total (mg kg−1) 1,656 (30) 177 (5.3) 82 (0.2)

pH (H2O) 5.59 (0.05) 6.43 (0.2) 6.37 (0.04)

pH (CaCl2) 4.87 (0.02) 5.68 (0.2) 5.59 (0.03)

Ca (cmol+ kg−1) 2.82 (0.3) 0.40 (0.2) 0.1 (0.00)

Mg (cmol+ kg−1) 0.42 (0.1) 0.09 (0.03) 0.007 (0.00)

K (cmol+ kg−1) 0.23 (0.01) 0.04 (0.02) 0.004 (0.00)

Na (cmol+ kg−1) 0.04 (0.02) 0.04 (0.01) 0.001 (0.00)

Al (cmol+ kg−1) 0.20 (0.00) 0.02 (0.01) 0.03 (0.01)

Sum of cations (cmol+ kg−1) 3.52 (0.2) 0.65 (0.2) 0.11 (0.00)

ECEC (cmol+ kg−1) 3.71 (0.2) 0.67 (0.2) 0.14 (0.01)

Al saturation (%) 5.31 (0.3) 4.12 (1.6) 19.8 (2.6)

Bulk density (g cm−3) 0.47 (0.2) 1.04 (0.02) 1.03 (0.01)

Total porosity (%) 72.2 (3.6) 58.0 (1.04) 63.8 (0.19)

*Wide pores; >50 µm (%) 18.6 (3.7) 32.9 (0.95) 47.7 (2.07)

**Narrow pores; 50–10 µm (%) 11.0 (0.5) 10.4 (0.24) 5.1 (2.07)

**Middle pores; 10–0.2 µm (%) 26.1 (1.4) 10.4 (0.44) 8.7 (0.3)

***Fine pores; <0.2 µm (%) 16.4 (0.7) 4.4 (0.05) 2.4 (0.01)

ECEC, effective cation-exchange capacity. Function of pore size according to
Ingram et al. (2015): *aeration and water transmission, **water-holding capacity,
and ∗∗∗residual (very strongly bound water and unavailable to plants).
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Plant Material
In March 2016, seeds of G. avellana, E. coccineum, L. hirsuta,
L. ferruginea, and L. dentata were collected from the Botanical
Garden of the Universidad Austral de Chile, Valdivia. The seeds
were taken to the laboratory (Universidad Austral de Chile,
Valdivia) and stored at 4◦C for 3 months to perform stratification
requirements (Donoso and Escobar, 1986). Then, in order to
stimulate germination, seeds were treated with 250 mg L−1 of
gibberellic acid and placed in a temperature-controlled chamber
at 20◦C. After 1 month, the germinated seeds were planted in the
different volcanic materials described above.

Experimental Design
Forty-five plants of each species were randomly separated into
three groups of 15 seedlings each. Individual plants of each
group were planted in 1-L pots of one of the collected materials
from each site. The plants were maintained in the greenhouse
for 9 months, from July 2016 to April 2017. The average
temperature during the experiment was 19.2◦C, with maximum
and minimum temperatures of 34.8 and 7.2, respectively. The
average light intensity was 261 µmol photons m◦2 s◦1 between
10:30 and 11:30 AM, with maximum and minimum values of
618 and 72 µmol photons m◦2 s◦1, respectively. The plants were
irrigated regularly to field capacity with tap water.

Height and Biomass Determination
At the end of the experiment, the height of the stem was
recorded for all seedlings. In addition, seedlings were harvested
and separated into leaves, stems, non-cluster roots and CR,
and dried in an oven at 60◦C for 48 h. Subsequently, the
different plant organs were weighed on an analytical balance
(AS220-C2 Radwag, Randon, Poland) to determine total biomass
and biomass distribution. The number of mature (living) and
senesced CR were also determined. For this, the color was used to
distinguish between mature (white) and senesced (dark-brown)
CR, as described in Delgado et al. (2015a). Additionally, to better
understand the nutrient limitation on growth, we used reaction
norm approach described by Sadras and Richards (2014), where
values of total biomass and total height of each species were
expressed in relative terms with respect to total biomass and total
height of seedlings grown in the nutrient-poorest substrate.

Collection and Determination of Root
Exudates
Exudates were collected from the total root system of each
plant following the methodology described in Delgado et al.
(2014). Briefly, the roots were washed with tap water, incubated
in CaSO4 (0.2 mM) and shaken for 2 h. Subsequently, the
solution was filtered, to avoid the presence of microorganisms,
with a sterile syringe containing a filter of 0.22 µm. The liquid
samples containing the exudates were frozen at −20◦C and
then lyophilized using a freeze-dryer (Model FD8508, Bondiro,
Ilshin Lab, Co. Ltd., Korea). Finally, lyophilized samples were re-
suspended in water for high-performance liquid chromatography
(HPLC) and quantified using HPLC equipment (JASCO, LC-
Net II/ADC, Tokyo, Japan) following the protocol described by

Delgado et al. (2013). Citrate, malate, oxalate, and succinate were
used as standards. These determinations were carried out at the
Institute of Agroindustries of the Universidad de La Frontera,
Temuco. The values were expressed as a rate of carboxylates
exuded per gram of fresh weight (FW) per hour (µmol g−1 FW
h−1). The exudates from six seedlings per species grown in the
different substrates were analyzed.

Foliar and Seed Mineral Concentrations
Leaves were dried at 60◦C in a forced-air oven for 48 h
and pulverized to analyze P, N, Mn, Fe, Cu, Zn, and Al
concentration. Nitrogen was determined through acid digestion,
Kjeldahl distillation and titration (Baker and Thompson, 1992).
To determine the other elements, samples were ashed at
500◦C for 8 h and then treated with 2 M hydrochloric
acid. Phosphorus was determined by colorimetry using the
vanadate phosphomolybdate method. Manganese, Fe, Cu, Zn,
and Al concentrations were quantified using a simultaneous
multielement atomic absorption spectrophotometer (Model 969,
Unicam, Cambridge, United Kingdom) using the methodology
described by Sadzawka et al. (2004). Additionally, in order
to evaluate the influence of seed nutrient content on plant
performance, macro- and micronutrients were determined in the
seeds of all species. For this, 0.5 g of seeds were milled and
the nutrients were determined using the same methodologies
described for leaf nutrient concentration. We used the dry weight
of the seeds previously reported by Delgado et al. (2014) to
determine the nutrient content of the seeds.

Statistical Analyses
To determine if there were significant differences in the responses
of the species and the different volcanic materials, as well
as possible interactions between the factors studied, the data
were evaluated using a two-way ANOVA with a Tukey’s a
posteriori test (P ≤ 0.05). To determine significant differences
in seeds nutrient concentrations and content, we used one-way
ANOVA with Tukey’s a posteriori test (P ≤ 0.05). Additionally,
relationships between total plant biomass and nutrient content in
seeds were tested by linear regression. ANOVAs and regression
analyses were performed using the Sigma Plot v.12 and
Graphpad prims v.8, respectively. Finally, a principal component
analysis (PCA) was performed to associate chemical variables
of the three volcanic materials with the plant traits, using the
R Studio program.

RESULTS

Height and Biomass Determination
All species showed the best performance, i.e., total height and
total dry biomass, when grown in ESAA soil (Figures 1A,B).
For seedlings grown in ESAA soil, the total height and total dry
biomass were about six to eight times and three to 19 times
greater than those of the seedlings grown on Choshuenco and
Ensenada substrates, respectively (Supplementary Figure 3). The
growth response varied significantly (P ≤ 0.05) among species,
even on the same substrate. Thus, in ESAA soil, E. coccineum and

Frontiers in Plant Science | www.frontiersin.org 4 February 2021 | Volume 12 | Article 636056

https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles


fpls-12-636056 February 15, 2021 Time: 18:36 # 5

Delgado et al. Proteaceae Differ in Their Ecophysiology

FIGURE 1 | Mean total height (A) and total dry biomass (B) per plant of
Gevuina avellana (Ga), Embothrium coccineum (Ec), Lomatia hirsuta (Lh),
L. dentata (Ld), and L. ferruginea (Lf) grown in three volcanic materials: ESAA,
Choshuenco and Ensenada. Each bar corresponds to the average per plant
(n = 15) ± standard error (SE). Different letters indicate significant differences
among species and volcanic materials (P ≤ 0.05).

L. dentata seedlings showed the greatest growth in total height,
being significantly greater than those in G. avellana, L. hirsuta,
and L. ferruginea seedlings (Figure 1A). However, the greatest
total dry biomass was found in G. avellana which was significantly
(P ≤ 0.05) greater than that in the other species (Figure 1B). On
the poorest substrates, Choshuenco and Ensenada, G. avellana
was also the species showing the greatest total dry biomass,
followed by E. coccineum and the Lomatia species. In general,
we observed no significant (P ≤ 0.05) differences in total height
and total dry biomass of the species grown on the Ensenada and
Chohuenco substrates.

Except for L. ferruginea, shoot/root ratio was significantly
(P ≤ 0.05) affected by volcanic material. Thus, the highest
shoot/root ratio values were found in the plants grown in
soil from ESAA compared with those grown on substrates
from Ensenada and Chohuenco (Figure 2A). Similarly, the
CR/Total plant dry biomass ratio was also significantly affected
by substrate, with higher values on the poorest substrates,
Choshuenco and Ensenada (Figure 2B). Interestingly, G. avellana

FIGURE 2 | Shoot/root ratio (A) and cluster roots (CR)/total plant dry biomass
ratio (B) of Gevuina avellana (Ga), Embothrium coccineum (Ec), Lomatia
hirsuta (Lh), L. dentata (Ld), and L. ferruginea (Lf) grown in three volcanic
materials: ESAA, Choshuenco and Ensenada. Each bar corresponds to the
average per plant (n = 15) ± standard error (SE). Different letters indicate
significant differences among species and volcanic materials (P ≤ 0.05).

showed a significantly (P ≤ 0.05) higher CR/Total plant dry
biomass ratio on Choshuenco substrate than on the other two
substrates (Figure 2B).

Number and Biomass of Cluster Roots
(CR) and Carboxylate Exudation Rate
From Whole Root Systems
All seedlings produced CR, even those grown in the soil richest
in nutrients (ESAA). In fact, a greater average number and
biomass of CR was observed when the seedlings were grown in
the richest soil than in the nutrient-poor substrates, Choshuenco
and Ensenada (Figure 3A). In ESAA soil, L. dentata and
L. ferruginea were the species that presented the largest number
of CR. However, their biomass was similar or less than that
of the other species, especially in the nutrient-poor substrates.
Conversely, G. avellana was the species with the greatest CR
biomass in all volcanic materials, and it also exhibited the
fastest carboxylate-exudation rate, especially on the nutrient-
poor substrates (Figure 3B). The main carboxylate exuded by
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FIGURE 3 | (A) Mean number and biomass of senesced and mature cluster roots (CR) per plant (n = 15) and (B) carboxylate-exudation rates from entire root
systems (n = 6) of Gevuina avellana (Ga), Embothrium coccineum (Ec), Lomatia hirsuta (Lh), L. dentata (Ld), and L. ferruginea (Lf) grown in three volcanic materials:
ESAA, Choshuenco and Ensenada. Different letters in (A) indicate significant differences in total (sum of mature and senesced) number and biomass of CR among
species on the same volcanic material (P ≤ 0.05). Different letters in (B) indicate significant differences in total (sum of carboxylates) carboxylate exudation rate
among species on the same volcanic material (P ≤ 0.05).

roots of G. avellana was succinate, whereas Lomatia species
exuded only oxalate. Embothrium coccineum had similar or more
CR biomass than Lomatia species, but exuded carboxylates at a
slower rate than these species (Figure 3A).

Foliar Nutrient Concentrations
Foliar nutrient concentrations varied significantly (P ≤ 0.05)
among species and volcanic material they were grown in
(Figure 4). Due to the fact that the mineral N concentration
in the Choshuenco and Ensenada substrates is about half that
in the ESAA soil (Table 1), we found that all species grown
in nutrient-poor substrates showed significantly (P ≤ 0.05)
lower leaf N concentrations than when grown in ESAA
soil (Figure 4). In addition, leaf P concentrations were also
significantly (P ≤ 0.05) higher in plants grown in ESAA soil
(Figure 4). Interestingly, the only exception was G. avellana,
which had similar foliar P concentrations in the three volcanic
materials, independent of the basal P concentration in them.
Embothrium coccineum was the species showing the significantly
(P ≤ 0.05) highest leaf P concentration when grown in the ESSA
soil. Similarly, this species along with G. avellana, presented
significantly (P ≤ 0.05) higher leaf P concentrations than the
Lomatia species when grown in Choshuenco and Ensenada

substrates. In these nutrient-poor volcanic substrates, L. hirsuta
and L. dentata showed similar foliar P concentrations, but
significantly (P ≤ 0.05) higher values than those found in
L. ferruginea (Figure 4). Interestingly, leaf N:P ratios in Lomatia
species was greater than 16 when grown on the poorest substrate,
in contrast to G. avellana and E. coccineum, in which it was
around 10 (Figure 5).

In general, the plants that grew on the ESAA soil presented
higher values of leaf Mn concentration than those on the
Choshuenco and Ensenada substrates. Lomatia dentata was the
species that had the highest Mn concentration in its leaves,
while G. avellana was the species that had the lowest leaf Mn
concentration on all substrates (Figure 4).

Except for L. ferruginea, leaf Cu concentration varied
significantly (P ≤ 0.05) among the volcanic materials. In general,
plants grown on Ensenada substrate showed the highest values
of leaf Cu concentration, especially in L. hirsuta and L. dentata
(Figure 4). Lomatia ferruginea was the species with the highest
leaf concentrations of Fe and Zn, especially on ESAA soil
and Ensenada substrate. In the other species, the leaf Fe and
Zn concentration was variable and depending on the volcanic
material. For example, the leaf Fe concentrations in G. avellana
and E. coccineum were higher in ESAA soil, while in L. hirsuta
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FIGURE 4 | Foliar nitrogen (N), phosphorus (P), manganese (Mn), iron (Fe), copper (Cu), and zinc (Zn) concentrations in Gevuina avellana (Ga), Embothrium
coccineum (Ec), Lomatia hirsuta (Lh), L. dentata (Ld), and L. ferruginea (Lf) grown in three volcanic materials: ESAA, Choshuenco, and Ensenada. Each bar
corresponds to the average per plant (n = 6) ± standard error (SE). Different letters indicate significant differences among species and volcanic materials (P ≤ 0.05).

and L. dentata the concentrations were higher in the nutrient-
poor substrates, Choshuenco and Ensenada. With respect to leaf
Zn concentration, the general tendency was to find lower values
in plants grown in the Choshueco substrate, except for L. dentata,
where a higher leaf Zn concentration was found than in plants
grown in ESAA soil and Ensenada substrate.

Seed Nutrient Concentrations
and Contents
Gevuina avellana had the lowest macro- and micronutrient
concentrations in its seeds compared with the other Proteaceae

(Supplementary Table 1). However, due to the larger size of
its seeds, the total nutrient content was significantly (P ≤ 0.05)
greater (Table 2). Thus, the values of N and P content were, on
average, nine times greater in G. avellana than in E. coccineum,
while, values of N and P content were on average 26 and
17 times greater in G. avellana than in Lomatia species,
respectively. The micronutrient contents varied among species,
but in general the trend was that G. avellana had the highest
micronutrient content, followed by E. coccineum and then
Lomatia species. The regression analyses revealed a relationship
between total plant biomass and nutrient content in seeds
(Supplementary Figure 4).
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FIGURE 5 | Leaf nitrogen:phosphorus (N:P) ratio (n = 6) in Gevuina avellana,
Embothrium coccineum, Lomatia hirsuta, L. dentata, and L. ferruginea grown
in three volcanic materials: ESAA, Choshuenco, and Ensenada. Horizontal
lines indicate N limitation (values < 10), P limitation (values > 16) or both N
and P limitation (values 10–16) according to Koerselman and Meuleman
(1996).

Volcanic Materials and Plant Traits
From the PCA performed on volcanic materials and plant
traits, we found clear separations across the horizontal axe
between groups of plants that were grown on the nutrient-
rich volcanic soil (EEAA) versus those grown on young and
nutrient-poor volcanic substrates (Choshuenco and Ensenada)
(Figure 6). Likely, species grown on EEAA were joined because
they presented, in general, higher leaf macronutrient (N and
P) concentrations, total height and shoot:root ratio than those
grown on Choshuenco and Ensenada substrates. In addition,
among species grown on young and nutrient-poor volcanic
substrates, E. coccineum was separated from Lomatia species,
mainly explained by their differences in the foliar N:P ratio.
Finally, the PCA also revealed that G. avellana plants were
separated from the rest of the species (lower quadrant), probably
because it presented the highest N and P content in the seeds,
leaf Al concentration, total biomass and CR:total plant biomass
ratio (Figure 6).

DISCUSSION

In general, G. avellana showed greater total dry biomass
and E. coccineum presented greater height in all substrates
compared with the other species (Figures 1A,B). Most likely,
the reason why G. avellana, in its early stages, produced more
biomass than the other Proteaceae species is its larger seeds
(Delgado et al., 2014) and higher nutrient content compared
with those of the other species (Table 2), favoring its initial
growth (Supplementary Figure 4). This trend was maintained
in E. coccineum, which is the species that has the second-
largest seed nutrient content (Table 2). Even though there is
clear evidence that seed size and nutrient content play an

important role in early stablisment of species on nutrient-
poor soils (Milberg and Lamont, 1997; Denton et al., 2007),
the greater growth of G. avellana and E. coccineum in poor
soils cannot be explained by the nutrient content in their
seeds alone, since in the case of G. avellana, almost all the
plants (88%) had shed their cotyledons 2 months after starting
the experiment (data not shown). Thus, these plants must
have additional strategies to sustain growth and development
under nutrient deprivation. For example, plants tend to allocate
a greater proportion to root biomass and thus increase the
chance to acquire nutrients (Bloom et al., 1985; Chapin et al.,
1987; Gedroc et al., 1996). Our study supports this idea,
because shoot/root ratios of all species (with the exception of
L. ferruginea) were significantly lower in plants grown on the
poorest substrates than on EEAA soil (Figure 2A). Likewise,
the CR/total plant dry biomass ratio was higher in plants
grown on recent volcanic substrates than in those grown in
the nutrient-rich soil (Figure 2B), showing that, as reported
in Hakea prostrata R. Br. (Proteaceae) (Shane et al., 2003), the
biomass allocation to CR is greater when plants grow under
nutrient deprivation. Interestingly, L. ferruginea was the only
species that did not adjust its relative biomass distribution (e.g.,
shoot/root ratio, CR/total plant dry biomass ratio) in response
to nutrient availability, suggesting a constitutive biomass-
distribution pattern in this species.

In combination with root morphological traits as a strategy
to explore the soil for nutrients, species bearing CR modify
their metabolism and enhance the biosynthesis and release of
carboxylates (Neumann et al., 1999; Shane et al., 2004, 2013),
which play an important role in nutrient mobilization from
the soil. Carboxylate composition of root exudates depends on
the soil/substrate and species (Lambers et al., 2002; Veneklaas
et al., 2003; Shi et al., 2019). In our study, a mixture of
carboxylates (succinate, malate, citrate and malate) was found
in root exudates of G. avellana and E. coccineum, while
in Lomatia species only oxalate was detected (Figure 3B).
Succinate was the main carboxylate exuded by the roots of
G. avellana, which is the species with the highest total CR
biomass (Figures 3A,B). This carboxylate is unusual in other
species bearing CR, where citrate or malate are usually the
major carboxylates exuded (Roelofs et al., 2001; Shane et al.,
2004; Delgado et al., 2014; Ávila-Valdés et al., 2019), although
it has been detected in the root exudates of Medicago sativa
L. seedlings (Lipton et al., 1987) and two Phaseolus vulgaris L.
genotypes (Atemkeng et al., 2011) when plants were subjected
to low-P stress. Interestingly, Lomatia species only exuded
oxalate. Zúñiga-Feest et al. (2020) reported similar results in
root exudates of L. dentata. These authors suggest that oxalate
could play an important role in P mobilization, because this
organic anion has effects similar to citrate in P mobilization
(Gerke et al., 2000). On the other hand, E. coccineum had more
CR biomass than Lomatia species, but exuded carboxylates at
a slower rate than Lomatia species, probably because at the
time of the plant harvest (autumn), most CR had senesced in
E. coccineum, as reported by Donoso-Ñanculao et al. (2010).
These authors observed that there is a seasonal variation in
CR formation in E. coccineum, with a greater proportion of
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TABLE 2 | Nitrogen (N), phosphorus (P), manganese (Mn), iron (Fe), copper (Cu), zinc (Zn), and aluminum (Al) content in seeds of Gevuina avellana, Embothrium
coccineum, Lomatia hirsuta, L. dentata, and L. ferruginea.

Species G. avellana E. coccineum L. hirsuta L. dentata L. ferruginea

N (µg seed−1) 4,482 (372)a 486 (9.0)b 185 (20)c 152 (8.5)c 182 (7.2)c

P (µg seed−1) 642 (28)a 71 (2.6)b 30.2 (1.1)e 37 (2.0)d 47 (1.7)c

Mn (µg seed−1) 8.6 (1.0)a 4.86 (0.2)b 2.06 (0.1)c 5.90 (0.1)a,b 2.45 (0.1)c

Fe (µg seed−1) 12.8 (1.5)a 0.82 (0.02)b 0.48 (0.02)c 0.31 (0.01)d 0.52 (0.02)c

Zn (µg seed−1) 5.0 (0.3)a 0.81 (0.04)b 0.24 (0.00)e 0.28 (0.00)d 0.33 (0.00)c

Cu (µg seed−1) 2.6 (0.2)a 0.20 (0.00)b 0.08 (0.00)d 0.07 (0.00)e 0.10 (0.00)c

Al (µg seed−1) 1,371 (122)a 1.22 (0.01)b 0.09 (0.06)d 0.34 (0.03)c 0.32 (0.03)c

The nutrient and Al content data were calculated using the dry weight of seeds of each species determined by Delgado et al. (2014). Each value corresponds to the
average of three batches of seed ± standard error (SE). Different letters indicate significant differences among species (P ≤ 0.05).

FIGURE 6 | Principal component analysis representing different plant traits of five southern South American Proteaceae [e.g., leaf nitrogen (N), phosphorus (P),
manganese (Mn), iron (Fe), zinc (Zn), copper (Cu), and aluminum (Al) concentrations (mg g-1), leaf N:P ratio, seed nitrogen (N) and phosphorus (P) concentration,
total height, total biomass, shoot:root ratio, cluster root:total plant biomass ratio (cluster root: TP biomass)] and soil variables [e.g., soil mineral N concentration (soil
(N), mg kg-1), available P soil (soil P, mg kg-1), soil pH (pH), sum of cations (cations), Al saturation (%) and total P (mg kg-1)] of three volcanic materials (ESAA,
Choshuenco, and Ensenada) where these species were grown.

mature CR relative to total root biomass in spring than in
autumn. Seasonal variation of CR formation in Lomatia species
has not been assessed, but apparently these species can maintain
or produce mature CR for longer than the other species,
especially L. dentata and L. ferruginea (Figure 3A). Although
in the present study E. coccineum did not exude large amounts
of carboxylates, Delgado et al. (2014) reported that CR of
E. coccineum can exude large amounts of citrate and malate, even
more than CR of H. prostrata (Shane et al., 2004), a species that

occurs in extremely nutrient-poor soils, when grown in similar
hydroponic conditions. Therefore, the composition and quantity
of exudates depend on the time exudates are collected and on
experimental conditions.

In order to avoid misinterpretation of the roots exudates
collected in a single moment, some authors have suggested
using other techniques as a proxy of the cumulative effect
of carboxylates. Thus, leaf Mn concentration can be used as
a proxy for carboxylate exudation or P-acquisition potential
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(Shane and Lambers, 2005b; Hayes et al., 2014; Lambers et al.,
2015b, 2021; Pang et al., 2018; Shi et al., 2019). This is
because carboxylates exuded by roots simultaneously mobilize
P and other nutrients from the rhizosphere, especially Mn. The
measurement of leaf Mn concentration is a valuable indicator
of the cumulative effect of carboxylate exudation (Shane and
Lambers, 2005b; Pang et al., 2018). Our results show that
Lomatia species grown on the ESAA soil, had higher leaf Mn
concentrations than G. avellana and E. coccineum (Figure 4),
indicating that Lomatia roots released more carboxylates when
grown in a nutrient-rich soil. These results are consistent with
the fact that L. dentata and L. ferruginea produced a greater
number and more biomass of CR (Figure 3A) when plants
were grown on ESAA soil. Therefore, our findings suggest that
the non-colonizing species, L. dentata and L. ferruginea, when
grown on nutrient-richer soils responded rapidly forming CR
and, presumably, maintained rapid rates of carboxylate exudation
over time, as evidenced by their high leaf Mn concentration.
Among Proteaceae that grew in the young and nutrient-poor
substrates, E. coccineum was the species that presented the
highest leaf Mn concentration. This species is commonly found
colonizing volcanic substrates/soils (Donoso, 2006) which might
be explained by its high capacity to exude carboxylates (in this
study supported by its high leaf Mn concentration). In contrast,
Gevuina avellana is a species that also can colonize and thrive
on recent volcanic substrates. However, the relatively low Mn
concentration in its leaves (Figure 4) suggests a relatively low
carboxylate-exudation capacity. Recently, Delgado et al. (2019)
reported that G. avellana hyperaccumulates aluminum (Al) in
its leaves. That study was carried out at various sites along the
natural geographical distribution of Proteaceae species (37.23◦–
51.22◦S), and showed that leaf Mn concentration of G. avellana
was much lower than that of non-Al hyperaccumulator species
of the Proteaceae family from the same region. A similar
trend was found in the present study, where G. avellana plants
hyperaccumulated Al in its leaves (Supplementary Figure 2),
but had the lowest leaf Mn concentrations compared with the
other species (Figure 4). In this context, several studies have
shown negative correlations between Mn and Al concentrations
in leaves (Foy et al., 1973; Blair and Taylor, 1997; Fernando
et al., 2009). However, the antagonistic uptake of these two
metal ions remains unclear, because the two metals are taken
up by different transport systems (Nevo and Nelson, 2006;
Xia et al., 2010).

Interestingly, the Proteaceae species we studied differed in
their leaf nutrient concentrations. For example, G. avellana was
the species with the lowest leaf N concentration, especially in
ESAA soil. This might be related to its nutrient-conservation
strategy, since species with long leaf lifespan, such as G. avellana
(4.3–5.4 years; Lusk and Corcuera (2011), tend to produce
thicker leaves (Wright et al., 2004) with low N concentration
on a weight basis (Reich et al., 1991; Reich et al., 1998),
which enhances their robustness and decreases their palatability.
Another trait revealing its nutrient-conservation strategy is the
similar P concentrations found in leaves of G. avellana seedlings
grown on the three volcanic materials evaluated (Figure 4).
These results suggest that this species has a low P requirement

and tightly down-regulates its P-uptake capacity when grow
in soil with higher P availability (ESAA). Similar results have
been found in other species bearing CR (e.g., Viminaria juncea
(Schrad.) Hoffmanns (Fabaceae) (De Campos et al., 2013b),
Euplassa cantareirae Sleumer (Proteaceae) (De Britto Costa et al.,
2015), and this trait might be related to the ability of those
species to avoid toxicity caused by excess soil P (Shane and
Lambers, 2005c; De Campos et al., 2013a). We suggest that this
ability allows G. avellana to develop well in a wide range of
soil conditions, from deep soils with high fertility to volcanic
substrates such as lava and slag (Donoso, 2006; Delgado et al.,
2018). Some of the other studied Proteaceae can also grow in
a wide range of soil conditions, but they probably use the P
to grow faster when they occur in more fertile soils. Thus,
G. avellana was the species that presented minor changes (four-
fold) in plant biomass when grown in recent volcanic substrates
versus nutrient-rich soil. Conversely, E. coccineum, L. ferruginea,
L. hirsuta, and L. dentata produced, on average, up to 7, 10, 16,
and 18 times more biomass, respectively, in fertile soil than in
recent volcanic substrates (Figure 1B, Supplementary Figure 3).
Zúñiga-Feest et al. (2020) also found that G. avellana has a more
conservative relative growth rate when it grows in sand watered
with different nutrient concentrations (full nutrient solution,
without P, without N, water), while L. dentata grows faster
when watered with complete nutrient solution. These results
support the idea that Lomatia species maximize their growth
under nutrient-rich soils, probably to compete in more fertile and
diverse plant communities.

On the poorest substrates, Choshuenco and Ensenada, the
leaf N:P ratio in Lomatia species was greater than 16, whereas
in G. avellana and E. coccineum the N:P ratio was less
than or close to 10 (Figure 5). According to the N:P ratios
for vegetation representing the nature of nutrient limitation
(Koerselman and Meuleman, 1996), our finding indicate P
limitation in the leaves of Lomatia species and N limitation
in the leaves of G. avellana and E. coccineum. These results
contrast with those previously reported by Delgado et al. (2018),
who determined the N:P ratios in the same species of this
study, finding that adult plants growing in a wide variety
of climatic and edaphic conditions are mainly limited by P.
We postulate that newly emerged seedlings of Lomatia species
have higher P requirements for triggering CR formation than
G. avellana and E. coccineum. These results were more evident
for L. dentata and L. ferruginea, which were limited by P even
in the nutrient-richest soil (Figure 5), where they also produced
more total CR biomass (Figure 3A). Alternatively, these results
suggest that CR of E. coccineum and G. avellana could be
more effective at acquiring P than the CR of Lomatia species
which is evidenced by the fact that leaves of G. avellana and
E. coccineum showed the highest leaf P concentration, even on
the poorest substrates.

With respect to micronutrient concentrations, these were
highly variable depending on species and volcanic material,
especially in Lomatia species, which presented greater differences
in their foliar copper (L. hirsuta and L. dentata) and
zinc (L. ferruginea) concentrations than G. avellana and
E. coccineum. Additionally, L. ferruginea showed the widest
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range of foliar iron (Fe) concentrations, reaching the highest
Fe concentrations when grown on ESAA soil. This is consistent
with Delgado et al. (2019), who found a wide variation in
leaf Fe concentration under natural conditions. According
to Delgado et al. (2019), this high variation in leaf Fe
concentration is not correlated with soil Fe availability,
and, therefore, it would be interesting to study the factors
that influence the different Fe-uptake rates in these species,
which apparently show the same trend as those of zinc
uptake (Figure 4).

In summary, our study reveals that, although Proteaceae
is a family widely known to produce carboxylate-releasing
CR (Lambers et al., 2021), there are great differences among
species in relation to their ability to thrive on soil/substrates
with different nutrient availability (Figure 6). Probably, species
that are better adapted to grow on relatively more fertile
soils (e.g., Lomatia species), have decreased and/or lost the
functionality of their CR when they grow in extremely nutrient-
poor soils, perhaps because they are not able to recover the
costs associated with the formation and functioning of these
root structures. In fact, it has recently been reported that
Xylomelum occidentale, a Proteaceae growing on soil that is
moderately less P-impoverished than those in representative
Proteaceae habitats in south-western Australia, do not produce
functional CR (Zhong et al., 2021). In this context, it is
necessary to mention that the better performance of these
species under different soil nutrient conditions cannot be fully
explained by a single trait. In fact, the plant adaptations to
certain environmental conditions involve a complex network
of physiological, biochemical and molecular responses, which,
until now, are far from being fully understood in native
plants. In our study, we contributed to the understanding
of the autoecology of southern South American Proteaceae
through the identification of some traits, such as seed nutrient
content, nutrient requirements and ability to mobilize nutrients,
that help us to explain – at least in part – the differential
colonization capacities and performance under field conditions
of these species.

CONCLUSION

We conclude that Proteaceae species vary widely in their ability to
grow and acquire nutrients in young and nutrient-poor volcanic
substrates. Gevuina avellana and E. coccineum performed better
on young nutrient-poor volcanic substrates than Lomatia species.
On the one hand, the seedling growth of larger-seeded G. avellana
was less affected by nutrient availability of the soil/substrate,
probably because it had a greater nutrient content in its seeds
and produced CR exuding a large amount of carboxylates that
supported their initial growth. On the other hand, E. coccineum
exhibited greater total plant height and leaf P concentration
than Lomatia species, presumably due to greater carboxylate
exudation over time, as evidenced by their higher leaf Mn
concentration (used as a proxy for carboxylate exudation) in
one of the nutrient-poor volcanic substrates. Understanding the
ecophysiology and functioning of these species in nutrient-poor

soils can provide valuable tools to be used in restoration with
these native species or other species with similar traits.
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