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Micronutrient malnutrition is one of the main public health problems in many parts of the
world. This problem raises the attention of all valuable sources of micronutrients for the
human diet, such as common bean (Phaseolus vulgaris L.). In this research, a panel of
174 accessions representing Croatian common bean landraces was phenotyped for
seed content of eight nutrients (N, P, K, Ca, Mg, Fe, Zn, and Mn), and genotyped
using 6,311 high-quality DArTseq-derived SNP markers. A genome-wide association
study (GWAS) was then performed to identify new genetic sources for improving seed
mineral content. Twenty-two quantitative trait nucleotides (QTN) associated with seed
nitrogen content were discovered on chromosomes Pv01, Pv02, Pv03, Pv05, Pv07,
Pv08, and Pv10. Five QTNs were associated with seed phosphorus content, four on
chromosome Pv07, and one on Pv08. A single significant QTN was found for seed
calcium content on chromosome Pv09 and for seed magnesium content on Pv08.
Finally, two QTNs associated with seed zinc content were identified on Pv06 while no
QTNs were found to be associated with seed potassium, iron, or manganese content.
Our results demonstrate the utility of GWAS for understanding the genetic architecture
of seed nutritional traits in common bean and have utility for future enrichment of seed
with macro– and micronutrients through genomics-assisted breeding.
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INTRODUCTION

Micronutrient malnutrition, known as “hidden hunger,” particularly the lack of minerals such as
Fe and Zn, is the main global nutritional problem (Hirschi, 2009; Diepenbrock and Gore, 2015;
Semba, 2016; Yeken et al., 2018), due to great importance of micronutrients in fundamental
biological functions (Tapiero et al., 2003). Common bean (Phaseolus vulgaris L.) is a species of
great interest for human diet worldwide, gaining attention as functional food offering benefits for
human health (Câmara et al., 2013). It provides macro- and micronutrients (especially Fe and

Abbreviations: ALK, anaplastic lymphoma kinase; FDR, false discovery rate; GWAS, genome-wide association study;
IBS, identity-by-state; LD, linkage disequilibrium; MAF, minor allele frequency; MLMM, multilocus mixed model; P3D,
“population parameters previously determined”; SNP, single nucleotide polymorphism; QTL, quantitative trait locus; QTN,
quantitative trait nucleotide.
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Zn) and because of high protein content, together with other
pulses common bean is known as poor man’s meat (Gouveia
et al., 2014; Mahajan et al., 2017; Nwadike et al., 2018). The
nutritional composition of common bean landraces depends
on factors like origin, genotype and environmental conditions
(Gouveia et al., 2014). Moreover, researches that have analyzed
the genetic control of seed composition were mainly focused on
minerals such as iron, phosphorus and zinc (Blair et al., 2009;
Cichy et al., 2009), since they are among the most important
nutritional deficiencies in humans.

The availability of molecular markers has enabled the
determination of the origin and diversity of populations, as well
as the elucidation of the genetic basis of important complex
agronomic traits with increased resolution (Gioia et al., 2013;
Chávez-Servia et al., 2016; Valdisser et al., 2017). For this
purpose, microsatellite markers have been the most widely used
markers over the past decade (Razvi et al., 2017; Valdisser
et al., 2017). In recent years, single nucleotide polymorphism
(SNP) markers have been developed and increasingly used for
genetic and evolutionary studies, analysis of genome structure,
genetic diversity analysis, genome-wide association mapping
and integration of genetic maps representing a useful tool for
plant breeding purposes (Goretti et al., 2014; Villordo-Pineda
et al., 2015; Nemli et al., 2017; Valdisser et al., 2017). Diversity
Arrays Technology (DArTseq), based on genome complexity
reduction and SNP detection through hybridization of PCR
fragments (Jaccoud et al., 2001), has been successfully used for
the construction of dense linkage maps and quantitative trait
locus QTL analysis, genome-wide association studies (GWAS)
and genetic diversity studies (Valdisser et al., 2017).

Over the last decade, genome-wide association study (GWAS)
has become a popular approach for studying traits of agricultural
importance and has gained popularity particularly for screening
a great number of accessions to gain insight into understanding
the genetic basis of complex traits (Yu et al., 2006). In common
bean, GWAS has been used to identify genes controlling traits
such as disease resistance (Shi et al., 2011; Perseguini et al.,
2016; Zuiderveen et al., 2016; Tock et al., 2017, Fritsche-Neto
et al., 2019), drought-tolerance related traits (Galeano et al., 2012;
Hoyos-Villegas et al., 2017), agronomic traits in general (Nemli
et al., 2014; Kamfwa et al., 2015b; Moghaddam et al., 2016; Ates
et al., 2018; Nascimento et al., 2018; Resende et al., 2018), nitrogen
fixation (Kamfwa et al., 2015a), cooking time (Cichy et al., 2015),
flooding tolerance (Soltani et al., 2017; Soltani et al., 2018),
content of micronutrients (Mahajan et al., 2017; Katuuramu et al.,
2018; Myers et al., 2019; Diaz et al., 2020; Erdogmus et al., 2020),
and pod shattering (Rau et al., 2019).

The basic goal of GWAS is to detect markers that are
either associated with a trait of interest directly or are in
linkage disequilibrium (LD: non-random association of alleles
at different loci in a given population) with a quantitative trait
locus (QTL) that controls it. Cited GWAS studies on content of
micronutrients detected numerous QTLs associated with Fe, Ca,
Zn and Mn content, located an all chromosomes. Most of them
represent minor genes, usually explaining around 10% or less of
total phenotypic variation, with only a few exceptions. Earlier
studies employing classical QTL analysis summarily detected

a large number of QTLs; some of them were associated with
major genes, but they were usually population or environment
specific (Blair et al., 2009; Cichy et al., 2009; Blair et al., 2010,
2011). Pooling together the populations from different studies,
meta-analysis resulted in the reduction of the original set of 87
detected QTLs into a set of 12 meta-QTLs, two specific for iron
and zinc, and eight common for both minerals (Izquierdo et al.,
2018). All discovered QTLs provide promising potential for use
in plant breeding programs targeted at mineral biofortification,
such as HarvestPlus (Pfeiffer and McClafferty, 2007). Newly
developed biofortified cultivars exhibit potential for improving
the iron status in iron-deficient individuals (Tako et al., 2015;
Haas et al., 2016).

Reviewing the GWAS studies in common bean, it is possible
to notice that many differences exist in applied strategy, regards
the methodology in general, as well as in choices made at
the different steps of the process. The markers which are
in LD with QTLs controlling the analyzed trait cannot be
straightforwardly identified because besides the physical linkage,
LD can also be created by the genetic relatedness between
individuals and/or population structure. These factors can extend
LD over larger chromosomal regions, thus increasing the number
of spurious associations that are most likely just false positives.
This can be illustrated by the difference between uncorrected
and kinship/structure corrected measures of LD (r2). While
uncorrected r2 indicates strong LD even for the SNPs located
on the opposite ends of the chromosome (Valdisser et al., 2017;
Resende et al., 2018; Diniz et al., 2019), bias-corrected measures
indicate LD decay of r2 to 0.1 at distances of approximately
250 kbp (Diaz et al., 2020), 400 kbp (Valdisser et al., 2017),
700 kbp (Resende et al., 2018), or up to 1 Mbp (Diniz et al.,
2019). Therefore, the prevailing method of detecting marker-
trait associations is based on a mixed linear model (MLM)
proposed by Yu et al. (2006). It is also known as K + Q
model because includes the fixed effect of population structure
(Q) and random effect of kinship (K), and it is implemented
in software packages such as TASSEL (Bradbury et al., 2007)
and GAPIT (Lipka et al., 2012), providing different options for
kinship/structure correction. In the next step, raw p-values were
subjected to multiple testing adjustment in order to remove
false positives. Some authors prefer the most stringent method
of Bonferroni (Galeano et al., 2012; Kamfwa et al., 2015b;
Zuiderveen et al., 2016), the others more relaxed variants of false
discovery rate (FDR) adjustment (Cichy et al., 2009; Ates et al.,
2018; Katuuramu et al., 2018) or using empirical distribution
created by bootstrap to determine the cutoff point (Moghaddam
et al., 2016; Soltani et al., 2018). Two studies (Moghaddam et al.,
2016; Rau et al., 2019) combined described single-locus approach
with the multilocus mixed model (MLMM) of Segura et al.
(2012). MLMM is based on the same Q + K model but fitted in
the stepwise procedure, adding or excluding a marker as a fixed
effect (cofactor) in the model at each step.

In the present study, a panel of 174 accessions representing
Croatian common bean landraces was used for GWAS based
on DArTseq-derived SNP markers with the aim of identifying
quantitative trait nucleotides (QTNs) associated with variation
in seed content of eight nutrients (N, P, K, Ca, Mg, Fe, Zn,
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and Mn). The secondary aim of the study was to compare
different methodology options and identify their possible pitfalls
and shortcomings.

MATERIALS AND METHODS

Plant Material and Mineral Content
Assessment
The study was performed using 174 accessions representing
the most commonly used Croatian landraces of common
bean (Carović-Stanko et al., 2017) held at the University of
Zagreb Faculty of Agriculture, Department of Seed Science
and Technology. The list of accessions with their passport
data, phaseolin type and cluster membership is given in
Supplementary Table 1. Phenotypic data on mineral content
were drawn from an earlier study (Palèić et al., 2018) analyzing
nitrogen (N), phosphorus (K), potassium (K), calcium (Ca),
magnesium (Mg), iron (Fe), zinc (Zn), and manganese (Mn)
variability in a broader panel of 226 accessions of the collection.

Genotyping and Data Preparation
Genotyping was carried out using microsatellite and DArTseq-
derived SNP markers. Twenty-six microsatellite markers yielding
a total of 135 alleles in the panel consisting of 174 common
bean accessions were used to infer the population structure using
STRUCTURE 2.3.3 software (Pritchard et al., 2000) as described
in Carović-Stanko et al. (2017). Phaseolin type of each accession
was determined by amplification of phaseolin sequences (Kami
et al., 1995) as described in Carović-Stanko et al. (2017). DArTseq
analysis was performed by Diversity Arrays Technology Pty Ltd.,
Bruce, Australia1. The quality of DArTseq-derived SNP markers
was determined by the parameters ‘reproducibility’ (percentage
of technical replicate pairs scoring identically for a given marker),
‘call-rate’ (percentage of samples for which a given marker was
scored) and ‘MAF’ (minor-allele frequency) (Wenzl et al., 2004).
Marker sequences were aligned against the reference genome of
Phaseolus vulgaris (Schmutz et al., 2014) using BLASTN (Zhang
et al., 2000). Final SNP data quality control was performed by
excluding all SNPs with MAF < 0.05 and all SNPs with >0.05
heterozygotes, resulting in the final set of 6,311 high-quality
DArTseq-derived SNPs. The missing SNP data were imputed by
using Beagle 5.1 genotype imputation method (Browning et al.,
2018). The imputed data set was then used to construct a kinship
matrix by applying four methods implemented in TASSEL 5
software (Bradbury et al., 2007): (1) centered IBS (Endelman
and Jannink, 2012), (2) normalized IBS (Yang et al., 2011), (3)
dominance centered IBS (Muñoz et al., 2014), and (4) dominance
normalized IBS (Zhu et al., 2015). Additionally, we used the
corrected relatedness matrix as proposed by Diniz et al. (2019).

Linkage Disequilibrium
Non-random association between alleles at different loci was
measured by r2. Besides straightforward r2, corrected measures
designed to remove the bias caused by population structure

1https://www.diversityarrays.com/

(rS
2), kinship (rV

2) and both (rVS
2) were also estimated

(Mangin et al., 2012). Both measures involving kinship correction
were estimated using five different kinship matrices described
above. In order to visualize LD decay as a function of
distance, all measures were fitted to Hill and Weir model
(Hill and Weir, 1988).

Genome-Wide Association Study (GWAS)
Before carrying out the GWAS, missing phenotypic data
were imputed using PHENIX method as implemented in the
eponymous R package (Dahl et al., 2016). Prior to imputation,
outliers were removed using the “trim” option in “phenix”
(trim.sds = 1.96). GWAS was performed using both single
(Yu et al., 2006) and multi-locus model approaches (Segura
et al., 2012). Mixed linear models fitted in both cases included
corrections for population structure and genetic relatedness (Q
and K matrices). Population membership estimates were derived
from microsatellite data using STRUCTURE (Pritchard et al.,
2000) and the centered IBS method was used for adjustment of
genetic relatedness. Single locus models were fitted in TASSEL
5 while the multi-locus models were employed in R package
MLMM (Segura et al., 2012). After fitting single-locus models
in TASSEL, the resulting raw p-values were subjected to multiple
testing adjustment. In order to score for more potential marker-
trait associations, Storey’s FDR approach was used instead of
frequently applied Bonferroni correction (which tends to be too
conservative). Row p-values from TASSEL were converted into
Storey’s q-values using R package “qvalue” (Storey et al., 2020),
and q-value of 0.2 was selected as the significance threshold.
Distributions of p-values from TASSEL fits across the genome
were visualized by Manhattan plots created using R package
“CMplot” (Yin et al., 2020). Before creating Manhattan plots for
all traits with significant SNPs, for each trait, an approximate
threshold was calculated as p-value of a hypothetical SNP that
would have a q-value of 0.2. A similar approximate significance
threshold was created for MLMM – p-values from step zero
were used to estimate p-value of hypothetic SNP that would
have a q-value of approximately 0.2. The distribution of alleles
across subpopulations for QTNs was visually inspected by
creating violin plots.

RESULTS

Genotyping and Data Preparation
In concordance with the results described by Carović-Stanko
et al. (2017), the STRUCTURE analysis based on 26 microsatellite
loci identified K = 2 as the most likely number of clusters
(1K = 20,533.24) assigning the accessions of Mesoamerican
origin (phaseolin type I; “S”) to cluster A, while the accessions
of Andean origin (phaseolin type II or III) formed the cluster
B. At K = 3 (1K = 1,935.93), cluster B defined for K = 2 split
up into two clusters separating the great majority of accessions
of phaseolin type II (“H” or “C”) from those having phaseolin
type III (“T”). At K = 3, 48 accessions (27.59%) belonged to
cluster A, 29 (16.67%) to cluster B1, and 80 (45.96%) to cluster
B2. For 17 accessions (9.77%), membership probabilities were
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lower than 75% in any of the clusters and were thus considered as
“mixed origin.” Phaseolin type and cluster membership of each
accession are given in Supplementary Table 1. The Q-values of
each accession obtained at K = 3 were used for the control of
genetic background in GWAS.

Out of 17,514 polymorphic markers 8,092 (46%) had high
scoring reproducibility (>0.95), high call-rate (>0.90) and minor
allele frequency (MAF) higher than 5%. From 8,092 SNP
sequences, 6,599 (82%) high-quality SNPs were aligned to 11
chromosomes of common bean. The average number of SNPs
per chromosome was 599.91, ranging from 403 on chromosome
4 to 834 on chromosome 2. The mean number of SNPs per
Mbp was 12.85 or, on average, one SNP every 77,828 base pairs.
Two hundred and eighty-eight SNPs for which more than 5% of
accessions were heterozygous were removed for further analysis,
and missing data were imputed for the remaining 6,311 SNPs
(Supplementary Table 2).

Linkage Disequilibrium
Linkage disequilibrium, non-independence of alleles at different
loci was assessed as the squared correlation between loci (r2). Bias
caused by relatedness and/or population structure was removed
by adjusting r2: (a) using kinship estimates (rv

2), (b) using
Q-values obtained by STRUCTURE (rs

2), or (c) using both (rvs
2).

Fitted model for non-adjusted estimate r2 (Figure 1A) showed
that LD decay was barely visible within 0–10 Mbp distance range,
remaining above 0.3 even for pairs of loci at the opposite ends
of a chromosome. On the contrary, when adjusted for population
structure, LD decayed to 0.1 at an approximate distance of 4 Mbp.
The r2 value of 0.1 could then be taken as an arbitrary threshold
for comparison of different measures. Bias caused by relatedness
was even stronger, and there was almost no difference between
adjustment for kinship only and for kinship and population
structure, both reaching LD decay threshold (r2 = 0.1) at
approximately 1 Mbp. Both measures, rv

2 and rvs
2, shown on

Figure 1A were based on a centered identity-by-state (IBS)
kinship matrix. The rvs

2 based on centered IBS was also shown
in Figure 1B, in which it was compared to rvs

2 values based on

TABLE 1 | Descriptive statistics for seed mineral content in 174 Croatian common
bean accessions.

Trait Unita Mean Standard
deviation

Range

Nitrogen (N) % DW 3.46 0.35 2.79–4.19

Phosphorus (P) % DW 0.52 0.05 0.41–0.64

Potassium (K) % DW 1.43 0.12 1.20–1.83

Calcium (Ca) % DW 0.34 0.09 0.20–0.65

Magnesium (Mg) % DW 0.18 0.02 0.13–0.24

Iron (Fe) mg·kg−1 DW 71.53 8.43 49.93–93.28

Zinc (Zn) mg·kg−1 DW 27.23 3.49 19.32–35.65

Manganese (Mn) mg·kg−1 DW 15.98 2.34 10.94–21.48

aDW, dry weight.

four other kinship matrices. Estimation curves for normalized
IBS and distance-based kinships were completely overlapped, and
the difference between them in comparison to centralized IBS
was visible only due to magnification achieved by reducing both
axes to approximately 1/10 of their total range. Two dominance-
based kinship curves were completely overlapped as well, but
characterized with lower decay rate, reaching 0.1 threshold at
the distance of approximately 3 Mbp. The results suggested that
adjustment for relatedness preferably using a centralized IBS
kinship matrix was a necessary requirement for GWAS.

Genome-Wide Association Study (GWAS)
Before carrying out the GWAS, missing phenotypic data
were imputed using a centered IBS kinship matrix. Prior to
imputation, outliers (>1.96 standard deviations) were trimmed,
thus removing from one to ten the most extreme data points per
trait. Descriptive statistics for all minerals based on imputed data
set are given in Table 1.

The largest number of significant SNPs considered as QTN
was discovered for N (Figure 2A); in total there were 22
significant QTNs on seven chromosomes. Among them, the
highest observed -log10(p) peaks were observed at two pairs of
QTNs located on chromosome 3 (Pv03) and chromosome 10

FIGURE 1 | Linkage disequilibrium (LD) decay as a function of distance between SNPs within a chromosome: (A) comparison of four r2 measures – rv2 and rvs
2 are

based on centered IBS kinship: (1) r2 = unadj, (2) rs
2 = stru, (3) rv

2 = kin, (4) rvs
2 = kin + stru); (B) comparison of rvs

2 based on five different kinship matrices:
(1) dominance normalized, (2) dominance centered, (3) distance, (4) normalized, (5) centered.
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FIGURE 2 | Manhattan plots for significant markers detected by TASSEL: (A) N; (B) P; (C) Ca; (D) Mg; (E) Zn.

(Pv10), both explaining 7% of total phenotypic variation. Five
QTNs were associated with P: four on chromosome 7 (Pv07)
and one on chromosome 8 (Pv08) (Figure 2B), explaining 8–
9% of variation. A single significant QTN was found for Ca on
chromosome 9 (Pv09) (Figure 2C) and Mg on Pv08 (Figure 2D),
explaining 9 and 13% of variation, respectively. Finally, two
QTNs associated with Zn were located 1.4 Mbp apart from each
other on Pv06 (Figure 2E), explaining 8 and 10% of variation. No
QTNs were found to be associated with K, Fe, and Mn.

As expected, a multi-locus model fitting in MLMM resulted
in much less marker-trait association discoveries. Out of 22
QTNs associated with N by TASSEL, only two were confirmed
by MLMM: one out of four on Pv01 and the first of the two
QTNs on Pv10. Similarly, only one QTN out of four found by
TASSEL on Pv07 was associated with P. An additional discovery
by MLMM is QTN associated with N on the Pv05, not previously
detected by TASSEL.

Regarding the relationships between sizes of different variance
components estimates obtained by MLMM, comparison of the
residual sum of squares (RSS) plots for N and P (Figure 3)
could be summarized in two key points: (1) population structure
explained 40% of total N variation and 0% of total P variation; (2)
error variation was of similar size as genetic variation in N and

twice as large in P. Consequentially, despite similar relative size
of genetic variation for N and P, MLMM detected three QTNs
with p-values below the threshold for N, and only one for P.

The summary of all marker-trait associations detected either
by TASSEL or MLMM is given in Table 2. The highest overall
explanatory power was recorded for the QTN Mg_8, explaining
13% of the total phenotypic variability for Mg. Instead of an
individual R2 value for each marker, only a cumulative value
for the full set of markers could be extracted from MLMM
output. The associated markers were distributed over the whole
genome, except for the chromosomes Pv04 and Pv11; N was
the trait with the largest number of discovered associations, but
individual effects of markers were lower than for other traits.
When the TASSEL discovered a sequence of QTNs within up
to 0.3 Mbp distance range, MLMM would likely retain just
one of them. Finally, most of the markers were positioned
closer to the chromosome ends, and just a few closer to the
centromeric region.

Strong effect of population structure in N, clearly visible on
Figure 3, deserve to be further elucidated in conjunction with
the effect of allele substitution at QTN sites. Figure 4 shows N
content distribution in different allele classes for QTNs N_1.4
(a-b), N_3.1 (c-d), and N_5.1 (e-f), across whole population
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FIGURE 3 | Variability breakdown at different MLMM steps for (A) N; (B) P. Structure (blue), SNPs (green), kinship (red), and error (white). Solid vertical line
designates optimal step.

TABLE 2 | Positions of the quantitative trait nucleotides (QTNs) associated with seed mineral content in common been.

Trait QTN Chr. Position (bp) Method of detection −log10(p)a R2 MAFb SNPc Additivityd

N N_1.1 Pv01 436,239 TASSEL 3.66 0.05 0.11 G/T 0.15

N_1.2 Pv01 436,255 TASSEL/MLMM 3.16 0.06 0.12 A/G 0.15

N_1.3 Pv01 459,311 TASSEL 3.29 0.06 0.12 C/T 0.15

N_1.4 Pv01 49,116,667 TASSEL 3.83 0.06 0.24 A/T 0.06

N_2 Pv02 45,348,786 TASSEL 3.69 0.07 0.17 G/A −0.31

N_3.1 Pv03 38,974,600 TASSEL 4.95 0.07 0.07 A/T 0.23

N_3.2 Pv03 39,046,040 TASSEL 3.34 0.05 0.22 T/C −0.20

N_3.3 Pv03 39,187,621 TASSEL 3.17 0.04 0.21 A/G −0.20

N_3.4 Pv03 39,194,457 TASSEL 3.17 0.04 0.21 G/T −0.20

N_3.5 Pv03 39,225,372 TASSEL 3.74 0.06 0.08 A/T 0.23

N_3.6 Pv03 39,225,437 TASSEL 3.17 0.04 0.21 G/A −0.20

N_3.7 Pv03 39,235,479 TASSEL 3.17 0.04 0.21 C/T −0.20

N_3.8 Pv03 39,249,094 TASSEL 3.17 0.04 0.21 T/G −0.20

N_3.9 Pv03 39,252,941 TASSEL 4.61 0.06 0.07 A/G 0.21

N_5.1 Pv05 877,194 MLMM 4.64 −e 0.40 C/T 0.06

N_5.2 Pv05 36,788,205 TASSEL 3.37 0.05 0.28 C/T 0.06

N_7 Pv07 1,605,873 TASSEL 3.86 0.06 0.07 G/A 0.25

N_8.1 Pv08 11,652,741 TASSEL 3.43 0.06 0.26 T/C −0.23

N_8.2 Pv08 11,773,516 TASSEL 3.44 0.05 0.09 A/T −0.02

N_8.3 Pv08 11,864,133 TASSEL 3.62 0.05 0.25 T/A −0.22

N_8.4 Pv08 11,977,715 TASSEL 3.44 0.05 0.09 C/T −0.02

N_10.1 Pv10 7,465,267 TASSEL/MLMM 4.81 0.07 0.15 A/T −0.24

N_10.2 Pv10 10,200,728 TASSEL 4.28 0.06 0.15 A/T −0.28

P P_7.1 Pv07 3,864,210 TASSEL/MLMM 4.30 0.09f 0.19 G/C 0.05

P_7.2 Pv07 3,888,203 TASSEL 4.30 0.09 0.19 C/A 0.05

P_7.3 Pv07 3,894,237 TASSEL 4.30 0.09 0.19 T/C 0.05

P_7.4 Pv07 4,076,469 TASSEL 4.30 0.09 0.19 G/A 0.05

P_8 Pv08 58,013,431 TASSEL 4.12 0.08 0.22 C/G −0.02

Ca Ca_9 Pv09 9,978,327 TASSEL 4.50 0.09 0.05 C/G −0.13

Mg Mg_8 Pv08 50,916,423 TASSEL 5.02 0.13 0.15 G/T 0.02

Zn Zn_6.1 Pv06 21,113,843 TASSEL 4.93 0.10 0.45 A/G 2.43

Zn_6.2 Pv06 22,539,825 TASSEL 4.16 0.08 0.41 A/T −2.17

aAll p-values are reported from F-test from TASSEL, except for N_5.1 (t-test from MLMM). bMinor allele frequency. cAllelic substitution at SNP locus. dThe effect of allelic
substitution at SNP locus (difference between two homozygote classes). eR2 value for optimal MLMM model including N_1.2, N_5.1 and N_10.1 is equal to 0.25. f R2

value for P_7.1 in MLMM is equal to 0.11.
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FIGURE 4 | N seed content distribution for different allele classes across the whole population (left) and within subpopulations (right; A Mesoamerican; B1 Andean;
B2 Andean) for: (A,B) N_1.4; (C,D) N_3.1; (E,F) N_5.1. Diamonds designate population/subpopulation means for reference allele homozygotes (gray), SNP
homozygotes (yellow), and heterozygotes (blue).

(a, c, e) and within subpopulations (b, d, f). Reference allele
for all QTNs was always present in all subpopulations and
mean N content of individuals carrying reference allele in the
subpopulation A (Mesoamerican origin) is always somewhere
in between means of the subpopulations B1 and B2 (Andean
origin). There are the three possible scenarios for the distribution

of the SNP allele. It could be present only in subpopulations
of Andean origin (Figure 4B), but its positive effect observable
in both B1 and B2 almost disappeared at whole population
level, being masked by the effect of population structure
(Figure 4A). In the second scenario, SNP allele is present
only in subpopulation A (Mesoamerican) expressing a clear
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negative effect (Figure 4D), that gets shrunken by the effect
of the population structure (Figure 4C). Finally, if the SNP
allele is present in all subpopulations, its effect varies from one
subpopulation to another (Figure 4F), to became almost invisible
at the level of whole population (Figure 4E).

DISCUSSION

Genetic Structure and Seed Mineral
Content in Common Bean
Concerning the origin of analyzed common bean accessions, we
performed a model-based cluster analysis based on microsatellite
markers which revealed the presence of three clusters in nearly
complete congruence with the results of phaseolin type analysis.
The results are consistent with previous studies showing that the
European germplasm originates also from Mesoamerican and
Andean gene pools, where the Andean is more prevalent (Bellucci
et al., 2014). Similar results were obtained for Portuguese
germplasm (Leitão et al., 2017) and the germplasm originating
from countries neighboring Croatia (Bosnia and Herzegovina:
60% of the accessions of Andean origin; Serbia: 63%; Slovenia:
67%) (Maras et al., 2015).

As one of the requirements for successful GWAS, the
presence of a reasonable amount of phenotypic diversity amongst
genotypes in the study panel was already established in an earlier
study (Palèić et al., 2018). For most of the analyzed traits, the
amount of present phenotypic variability was either comparable
or slightly narrower (especially if they were comprised of the
accessions from regions located close to the center of origin) than
variability reported for other collections. Furthermore, Croatian
accessions of Mesoamerican origin had superior seed mineral
content compared to those of Andean origin which was in
congruence with the research of Ribeiro et al. (2012), except for
iron, which is congruent to results reported by Beebe et al. (2000)
and Islam et al. (2002).

Linkage Disequilibrium
The major issue in GWAS is to separate the true signal of
marker-gene association from a plethora of false signals created
by population structure and relatedness of individuals. The
impact of kinship and population structure on LD estimates in
common beans has been extensively discussed in a recent study
by Diniz et al. (2019) that served as a model for designing the
methodology of the present study. Despite all the differences in
genetic composition and origin of studied populations (Croatian
landraces vs. composite panel consisting of commercial cultivars,
breeding lines, recombinant inbred lines and landraces) LD
estimates from the present study have all the hallmarks of results
reported by Diniz et al. (2019). The extent of bias caused by
kinship and structure on LD estimates is quite similar: both
studies reveal that more bias is introduced by kinship than
by structure as there is only a negligible difference between
rv

2 and rvs
2, and finally, as estimated by rvs

2, LD decayed to
0.1 at a distance of approximately 1 Mbp. In addition to the
conclusions of Diniz et al. (2019), the present study revealed
that there is no essential difference between distance-based and

centered or normalized IBS kinship estimate, as well as that
all three of them outperformed both dominance-based kinship
estimates. Almost identical performance of rv

2 and rvs
2 measures

support Astle and Balding (2009) opinion that adjustment for
kinship already contains the adjustment for population structure
as well. Several authors have tried to resolve this issue through
different modifications of the kinship matrix in order to remove
information already contained in the model as fixed effects of
population structure. So far, there is no consensus regards this
matter, and as Gianola et al. (2016) concluded, “it is impossible to
answer unambiguously the question of which approach is best.”

GWAS Methodology
There are two possible reasons for the discrepancy in the
number of marker-trait associations identified by TASSEL and
MLMM: (1) stepwise reduction of available genetic variability in
MLMM; (2) the use of different methods for estimation of genetic
and error variance.

Stepwise reduction of available genetic variability in MLMM:
Single locus model used in TASSEL explores the entire genetic
variability for fitting each SNP, while the multilocus model
(MLMM) reduces available genetic variability for the next step
by fixing selected SNP at each fitting step. At the final forward
step, the genetic variability is completely exhausted; MLMM
stops and runs the backward part of the stepwise fitting, as
illustrated by RSS plots in Figure 3. The largest potential number
of discoveries is equal to the number of steps, but the number of
actual discoveries is equal to the ordinal number of the optimal
step. Search for the optimal step is based on the selected threshold
value, and it is aimed at finding the last (i.e., first) step in which
all p-values for fixed markers are below the threshold.

The use of different methods for estimation of genetic and
error variance in TASSEL and MLMM: Stepwise reduction of
available genetic variability in MLMM: it is not possible to make a
straightforward comparison of variance estimates from TASSEL
and MLMM, because MLMM output provides only relative
values of genetic and error variance, used to create RSS plots
on Figure 3. At each step MLMM reports the value of “pseudo-
heritability,” the ratio between genetic and sum of genetic and
error variance. E.g., this estimate at step 0 for N is equal to 0.548,
thus substantially larger than 0.377, the value of equivalent ratio
calculated using the TASSEL null model variance estimates.

Furthermore, as the results of the TASSEL analysis were
obtained by using the option to re-estimate variance estimates
for each marker fit, the analysis was redone using the timesaving
P3D (“population parameters previously determined”) option.
P3D approach uses null model estimates for all marker fits (Zhang
et al., 2010). Despite the perfect correlation between the p values
obtained by the two options (“re-estimate” vs. P3D), the results
were in disagreement in terms of the number of discoveries.
Namely, using the selected threshold of q = 0.2, the analysis using
P3D option detected no significant SNPs, because the smallest
estimated q-value was as high as 0.25. It is likely that this outcome
is related to panel size as well as the number of markers.

Application of stringent methods for multiple testing
adjustment in the present study would result in no potential QTN
finding, thus turning all of them into false negatives. Using a
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more relaxed approach by selecting Storey’s q-value of 0.2 as the
cutoff point yielded the reported set of QTNs. It comes with the
cost of 20% false positives, i.e., when the analysis of N content
in TASSEL detected 22 marker-trait associations, 5 of them were
actually false. Although other common bean studies used lower
FDR cutoff values of 0.01–0.10 (Hoyos-Villegas et al., 2017; Ates
et al., 2018; Katuuramu et al., 2018), it is not unusual to find
recently published GWAS analyses in some other crops with
q-value threshold of 0.2 (e.g., Muqaddasi et al., 2017; Novakazi
et al., 2019). As Storey and Tibshirani (2003) have pointed out:
“because significant features will likely undergo some subsequent
biological verification, a q-value threshold can be phrased in
practical terms as the proportion of significant features that turn
out to be false leads”; significant QTNs can be treated as merely
input values for further evaluation such as functional annotation.

QTN Discoveries
There are only few published GWAS analyses of nutrient content
in common bean seed (that we are aware of) Two QTNs
associated with seed iron content found on chromosome 6 by
Diaz et al. (2020) are different from three QTNs associated with
bioavailable iron found on the same chromosome by Katuuramu
et al. (2018), along with two others on chromosomes 7 and 11.
Zinc QTNs were found on chromosomes 6 (present study), 7
(Katuuramu et al., 2018), and 8 (Diaz et al., 2020); manganese
QTNs on chromosomes 2, 3, 5, 8, and 11 (Erdogmus et al., 2020).
The most abundant were calcium and nitrogen QTNs: for Ca
they were found on chromosomes 1, 2, 3, 4, 8, 9, 10, and 11
(Katuuramu et al., 2018; Erdogmus et al., 2020, present study);
for N on chromosomes 1, 2, 3, 5, 7, 8, 9, and 10 (Kamfwa et al.,
2015a; present study). In addition to this, five phosphorus and
a single magnesium QTN were discovered in the present study.
According to the available information for their positions, there
are no common QTNs detected in more than one study. It could
be added, more as a curiosity, that QTN for nitrogen derived from
atmosphere detected on chromosome 7 (at 4,048 kbp) by Kamfwa
et al. (2015a) is positioned between the last two in series of four
phosphorus QTNs stretching between 3,864 and 4,076 kbp on
the same chromosome from the present study. The explanatory
power of QTNs from all studies is relatively low; there are just a
few of them that could explain more than 10% of total phenotypic
variability. The single exception is the study of Mahajan et al.
(2017), who reported much higher explanatory power of the
discovered QTLs, but is not comparable with the others, because
it was based on different type of markers (SSRs).

Classical QTL analyses also yielded numerous marker-trait
associations, which can also be used for comparison with GWAS
findings, knowing the approximate positions of the QTLs. This
is at least possible for meta-QTLs, thanks to their physical
positions provided by Izquierdo et al. (2018). Three iron and
zinc QTNs found by Katuuramu et al. (2018) fall into meta-
QTL intervals on chromosomes 6 and 7, but for none of them
there seem to be any candidate genes (reported by either group
of authors). The explanatory power of meta-QTLs is stronger
than for QTNs; they explain from 10 to 27% of total phenotypic
variation probably because the mapping populations are derived
from crosses between two homozygous parents.

The important aggravating factor for the detection and use
of marker-trait associations is the fact that a lot of them
are either environment or population specific. In studies that
collected phenotypic data from more than one environment,
most of the QTNs were environment-specific; for example, two
iron QTNs detected in two different seasons by Diaz et al.
(2020), or 3/7 (Ca) and 2/10 (Mn) QTNs detected in both
years on both locations by Erdogmus et al. (2020). European
collections of landraces (such as this Croatian collection)
usually represent a mixture of genotypes of Andean and
Mesoamerican origin and some inter-genepool hybrids. The
strong effect of population structure can alter the effect of
allele substitution to such proportion that it can be completely
hidden at the whole population level, which can somehow be
related to Blair and Izquierdo (2012) conclusion that QTLs
can be genepool specific and therefore not detectable in inter-
genepool crosses.

Biofortification
Among the various possible strategies for use of QTNs in
the biofortification breeding programs, Izquierdo et al. (2018)
consider gene pyramidizing through marker-assisted selection
too challenging, illustrating it by the example of stacking eight
meta-QTL regions associated with both Fe and Zn in a single
breeding line that has a probability of one in 256. They,
therefore, suggest the genomic selection as the most promising
strategy. Gains that could be achieved by allele substitution in
the present study are smaller or larger than gains reported by
other authors, depending on the mineral. Zn gains are larger
than in Diaz et al. (2020) who reported a gain of 0.85 ppm,
or Cichy et al. (2009) who reported gains of 0.6–1.5 ppm,
and closer to Blair et al. (2009) who reported gains of 1.02–
2.53 ppm. Ca and Mg gains are smaller than in Casañas et al.
(2013) who reported gains of 0.85–11.40 g kg−1 for Ca and
0.33–0.40 g kg−1 for Mg, but for the dry weight of seed coat
(in contrast to whole seed in present study). Blair et al. (2013)
discuss the differences in concentrations of nutrients in seed
coat and cotyledon, and conclude that they are due to different
genes involved in mineral accumulation, as well as that through
domestication accumulation of some nutrients shifted from
seed coat to cotyledons. The achieved gains will not be fully
utilized in human consumption, due to the presence of anti-
nutrients, as well as due to losses during storage, processing
and cooking. Besides the expected diminishing effect on the
total content of nutrients, pre-soaking and cooking can as
well increase the amount of bioavailable nutrients, due to a
parallel decrease of the content of anti-nutrients (Fernandes
et al., 2010). This is confirmed by Katuuramu et al. (2018),
who analyzed mineral content of cooked beans and concluded
that the results are in agreement with the studies on raw
beans. Initial studies with already developed biofortified cultivars
with twofold increased iron content (approximately from 50
to 100 ppm) showed only moderate increase in absorbed
iron quantity, due to presence of higher levels of phytate
(Petry et al., 2014; Tako et al., 2015). However, the consumption
of biofortified beans can still significantly improve the iron
status, as demonstrated in feeding trial (Haas et al., 2016).
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An alternative strategy for increasing the bioavailability of
nutrients can be therefore the breeding for decreased anti-
nutrient content, but just for areas with prevalent micronutrient
deficiencies, while in others increased amounts of anti-nutrients
like phytate might have beneficial effects on human health,
reducing the risk of cancer and obesity (Blair et al., 2012).
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Establishing the bases for introducing the unexplored portuguese common
bean germplasm into the breeding world. Front. Plant Sci. 8:1296. doi: 10.3389/
fpls.2017.01296

Lipka, A. E., Tian, F., Wang, Q., Peiffer, J., Li, M., Bradbury, P. J., et al. (2012).
GAPIT: Genome association and prediction integrated tool. Bioinformatics 28,
2397–2399. doi: 10.1093/bioinformatics/bts444

Mahajan, R., Zargar, S. M., Salgotra, R. K., Singh, R., Wani, A. A., Nazir, M., et al.
(2017). Linkage disequilibrium based association mapping of micronutrients in
common bean (Phaseolus vulgaris L.): a collection of Jammu & Kashmir. India.
3 Biotech 7:295. doi: 10.1007/s13205-017-0928-x

Mangin, B., Siberchicot, A., Nicolas, S., Doligez, A., This, P., and Cierco-Ayrolles,
C. (2012). Novel measures of linkage disequilibrium that correct the bias due
to population structure and relatedness. Heredity (Edinb) 108, 285–291. doi:
10.1038/hdy.2011.73

Maras, M., Pipan, B., Šuštar-Vozliè, J., Todorović, V., Ðurić, G., Vasić, M.,
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(2018). Relationship between origin and nutrient content of croatian common
bean landraces. J. Cent. Eur. Agric. 19, 490–502. doi: 10.5513/JCEA01/19.3.2103

Perseguini, J. M. K. C., Oblessuc, P. R., Rosa, J. R. B. F., Gomes, K. A., Chiorato,
A. F., Carbonell, S. A. M., et al. (2016). Genome-wide association studies
of anthracnose and angular leaf spot resistance in common bean (Phaseolus
vulgaris L.). PLoS One 11:e150506. doi: 10.1371/journal.pone.0150506

Petry, N., Egli, I., Gahutu, J. B., Tugirimana, P. L., Boy, E., and Hurrell, R. (2014).
Phytic acid concentration influences iron bioavailability from biofortified beans
in rwandese women with low iron status. J. Nutr. 144, 1681–1687. doi: 10.3945/
jn.114.192989

Pfeiffer, W. H., and McClafferty, B. (2007). HarvestPlus: breeding crops
for better nutrition. Crop Sci. 47, 88–105. doi: 10.2135/cropsci2007.09.00
20IPBS

Pritchard, J. K., Stephens, M., and Donnelly, P. (2000). Inference of
population structure using multilocus genotype data. Genetics 155,
945–959.

Rau, D., Murgia, M. L., Rodriguez, M., Bitocchi, E., Bellucci, E., Fois, D., et al.
(2019). Genomic dissection of pod shattering in common bean: mutations at
non-orthologous loci at the basis of convergent phenotypic evolution under
domestication of leguminous species. Plant J. 97, 693–714. doi: 10.1111/tpj.
14155

Razvi, S. M., Dar, M. H., Groach, R., and Bhat, A. (2017). Molecular diversity and
gene pool structure in common bean (Phaseolus vulgaris L .): a review. Int. J.
Curr. Trends Sci. Technol. 7, 20185–20202. doi: 10.15520/ctst.v7i11.93

Resende, R. T., de Resende, M. D. V., Azevedo, C. F., Silva, F. F. E., Melo, L. C.,
Pereira, H. S., et al. (2018). Genome-wide association and Regional Heritability
Mapping of plant architecture, lodging and productivity in phaseolus vulgaris.
G3 Genes Genomes Genet. 8, 2841–2854. doi: 10.1534/g3.118.200493

Ribeiro, N. D., Maziero, S. M., Prigol, M., Nogueira, C. W., Rosa, D. P., and
Possobom, M. T. D. F. (2012). Mineral concentrations in the embryo and
seed coat of common bean cultivars. J. Food Compos. Anal. 26, 89–95. doi:
10.1016/j.jfca.2012.03.003

Schmutz, J., McClean, P. E., Mamidi, S., Wu, G. A., Cannon, S. B., Grimwood, J.,
et al. (2014). A reference genome for common bean and genome-wide analysis
of dual domestications. Nat. Genet. 46, 707–713. doi: 10.1038/ng.3008

Segura, V., Vilhjálmsson, B. J., Platt, A., Korte, A., Seren, Ü, Long, Q., et al. (2012).
An efficient multi-locus mixed-model approach for genome-wide association
studies in structured populations. Nat. Genet. 44, 825–830. doi: 10.1038/ng.
2314

Semba, R. D. (2016). The rise and fall of protein malnutrition in global health. Ann.
Nutr. Metab. 69, 79–88. doi: 10.1159/000449175

Shi, C., Navabi, A., and Yu, K. (2011). Association mapping of common bacterial
blight resistance QTL in Ontario bean breeding populations. BMC Plant Biol.
11:52. doi: 10.1186/1471-2229-11-52

Soltani, A., Mafimoghaddam, S., Oladzad-Abbasabadi, A., Walter, K., Kearns, P. J.,
Vasquez-Guzman, J., et al. (2018). Genetic analysis of flooding tolerance in an
andean diversity panel of dry bean (Phaseolus vulgaris L.). Front. Plant Sci.
9:767. doi: 10.3389/fpls.2018.00767

Soltani, A., MafiMoghaddam, S., Walter, K., Restrepo-Montoya, D., Mamidi, S.,
Schroder, S., et al. (2017). Genetic architecture of flooding tolerance in the dry
bean middle-American diversity panel. Front. Plant Sci. 8:1183. doi: 10.3389/
fpls.2017.01183

Storey, J. D., Bass, A. J., Dabney, A., and Robinson, D. (2020). qvalue: Q-Value
Estimation for False Discovery Rate Control Version 2.22.0 from Bioconductor.
Available online at: https://rdrr.io/bioc/qvalue/ (accessed November 25, 2020).

Storey, J. D., and Tibshirani, R. (2003). Statistical significance for genomewide
studies. Proc. Natl. Acad. Sci. U.S.A. 100, 9440–9445. doi: 10.1073/pnas.
1530509100

Tako, E., Reed, S., Anandaraman, A., Beebe, S. E., Hart, J. J., and Glahn, R. P. (2015).
Studies of cream seeded carioca beans (Phaseolus vulgaris L.) from a Rwandan
efficacy trial: In Vitro and In Vivo screening tools reflect human studies and
predict beneficial results from iron biofortified beans. PLoS One 10:e138479.

Tapiero, H., Townsend, D. M., and Tew, K. D. (2003). Trace elements in human
physiology and pathology. Copper. Biomed. Pharmacother. 57, 386–398. doi:
10.1016/S0753-3322(03)00012-X

Tock, A. J., Fourie, D., Walley, P. G., Holub, E. B., Soler, A., Cichy, K. A., et al.
(2017). Genome-wide linkage and association mapping of halo blight resistance
in common bean to race 6 of the globally important bacterial pathogen. Front.
Plant Sci. 8:1170. doi: 10.3389/fpls.2017.01170

Valdisser, P. A. M. R., Pereira, W. J., Almeida Filho, J. E., Müller, B. S. F., Coelho,
G. R. C., de Menezes, I. P. P., et al. (2017). In-depth genome characterization
of a Brazilian common bean core collection using DArTseq high-density SNP
genotyping. BMC Genomics 18:423. doi: 10.1186/s12864-017-3805-4

Villordo-Pineda, E., González-Chavira, M. M., Giraldo-Carbajo, P., Acosta-
Gallegos, J. A., and Caballero-Pérez, J. (2015). Identification of novel drought-
tolerant-associated SNPs in common bean (Phaseolus vulgaris). Front. Plant Sci.
6:546. doi: 10.3389/fpls.2015.00546

Wenzl, P., Carling, J., Kudrna, D., Jaccoud, D., Huttner, E., Kleinhofs, A., et al.
(2004). Diversity Arrays Technology (DArT) for whole-genome profiling
of barley. Proc. Natl. Acad. Sci. U.S.A. 101, 9915–9920. doi: 10.1073/pnas.
0401076101

Yang, J., Lee, S. H., Goddard, M. E., and Visscher, P. M. (2011). GCTA: a tool
for genome-wide complex trait analysis. Am. J. Hum. Genet. 88, 76–82. doi:
10.1016/j.ajhg.2010.11.011

Yeken, M. Z., Akpolat, H., Karaköy, T., and Çiftçi, V. (2018). Assessment of mineral
content variations for biofortification of the bean seed. Uluslararası Tarım ve
Yaban Hayatı Bilim. Derg. 4, 261–269. doi: 10.24180/ijaws.455311

Yin, L., Zhang, H., Tang, Z., Xu, J., Yin, D., Yuan, X., et al. (2020). rMVP: a
memory-efficient, Visualization-enhanced, and parallel-1 accelerated tool for
genome-wide association study. bioRxiv [Preprint] doi: 10.1101/2020.08.20.
258491

Yu, J., Pressoir, G., Briggs, W. H., Bi, I. V., Yamasaki, M., Doebley, J. F., et al.
(2006). A unified mixed-model method for association mapping that accounts
for multiple levels of relatedness. Nat. Genet. 38, 203–208. doi: 10.1038/ng1702

Zhang, Z., Ersoz, E., Lai, C. Q., Todhunter, R. J., Tiwari, H. K., Gore, M. A., et al.
(2010). Mixed linear model approach adapted for genome-wide association
studies. Nat. Genet. 42, 355–360. doi: 10.1038/ng.546

Zhang, Z., Schwartz, S., Wagner, L., and Miller, W. (2000). A greedy algorithm
for aligning DNA sequences. J. Comput. Biol. 7, 203–214. doi: 10.1089/
10665270050081478

Zhu, Z., Bakshi, A., Vinkhuyzen, A. A. E., Hemani, G., Lee, S. H., Nolte, I. M.,
et al. (2015). Dominance genetic variation contributes little to the missing
heritability for human complex traits. Am. J. Hum. Genet. 96, 377–385. doi:
10.1016/j.ajhg.2015.01.001

Zuiderveen, G. H., Padder, B. A., Kamfwa, K., Song, Q., and Kelly, J. D. (2016).
Genome-Wide association study of anthracnose resistance in andean beans
(Phaseolus vulgaris). PLoS One 11:e156391. doi: 10.1371/journal.pone.0156391

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.
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Šatović. This is an open-access article distributed under the terms of the Creative
Commons Attribution License (CC BY). The use, distribution or reproduction in
other forums is permitted, provided the original author(s) and the copyright owner(s)
are credited and that the original publication in this journal is cited, in accordance
with accepted academic practice. No use, distribution or reproduction is permitted
which does not comply with these terms.

Frontiers in Plant Science | www.frontiersin.org 12 March 2021 | Volume 12 | Article 636484

https://doi.org/10.9734/jaeri/2018/42138
https://doi.org/10.5513/JCEA01/19.3.2103
https://doi.org/10.1371/journal.pone.0150506
https://doi.org/10.3945/jn.114.192989
https://doi.org/10.3945/jn.114.192989
https://doi.org/10.2135/cropsci2007.09.0020IPBS
https://doi.org/10.2135/cropsci2007.09.0020IPBS
https://doi.org/10.1111/tpj.14155
https://doi.org/10.1111/tpj.14155
https://doi.org/10.15520/ctst.v7i11.93
https://doi.org/10.1534/g3.118.200493
https://doi.org/10.1016/j.jfca.2012.03.003
https://doi.org/10.1016/j.jfca.2012.03.003
https://doi.org/10.1038/ng.3008
https://doi.org/10.1038/ng.2314
https://doi.org/10.1038/ng.2314
https://doi.org/10.1159/000449175
https://doi.org/10.1186/1471-2229-11-52
https://doi.org/10.3389/fpls.2018.00767
https://doi.org/10.3389/fpls.2017.01183
https://doi.org/10.3389/fpls.2017.01183
https://rdrr.io/bioc/qvalue/
https://doi.org/10.1073/pnas.1530509100
https://doi.org/10.1073/pnas.1530509100
https://doi.org/10.1016/S0753-3322(03)00012-X
https://doi.org/10.1016/S0753-3322(03)00012-X
https://doi.org/10.3389/fpls.2017.01170
https://doi.org/10.1186/s12864-017-3805-4
https://doi.org/10.3389/fpls.2015.00546
https://doi.org/10.1073/pnas.0401076101
https://doi.org/10.1073/pnas.0401076101
https://doi.org/10.1016/j.ajhg.2010.11.011
https://doi.org/10.1016/j.ajhg.2010.11.011
https://doi.org/10.24180/ijaws.455311
https://doi.org/10.1101/2020.08.20.258491
https://doi.org/10.1101/2020.08.20.258491
https://doi.org/10.1038/ng1702
https://doi.org/10.1038/ng.546
https://doi.org/10.1089/10665270050081478
https://doi.org/10.1089/10665270050081478
https://doi.org/10.1016/j.ajhg.2015.01.001
https://doi.org/10.1016/j.ajhg.2015.01.001
https://doi.org/10.1371/journal.pone.0156391
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles

	Genome-Wide Association Studies of Mineral Content in Common Bean
	Introduction
	Materials and Methods
	Plant Material and Mineral Content Assessment
	Genotyping and Data Preparation
	Linkage Disequilibrium
	Genome-Wide Association Study (GWAS)

	Results
	Genotyping and Data Preparation
	Linkage Disequilibrium
	Genome-Wide Association Study (GWAS)

	Discussion
	Genetic Structure and Seed Mineral Content in Common Bean
	Linkage Disequilibrium
	GWAS Methodology
	QTN Discoveries
	Biofortification

	Data Availability Statement
	Author Contributions
	Funding
	Acknowledgments
	Supplementary Material
	References


