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Seed priming can circumvent poor germination rate and uniformity, frequently reported
in eggplant (Solanum melongena L.) and its crop wild relatives (CWRs). However,
there is still a gap of knowledge on how these treatments impact the pre-germinative
metabolism in a genotype- and/or species-dependent manner. The CWR Solanum
villosum Miller (hairy nightshade) investigated in this study showed a quite unique
profile of fast germination. Although this accelerated germination profile would not
apparently require further improvement, we wanted to test whether priming would
still be able to impact the pre-germinative metabolism, eventually disclosing the
predominant contribution of specific antioxidant components. Hydropriming followed
by dry-back resulted in synchronized germination, as revealed by the lowest MGR
(Mean Germination Rate) and U (Uncertainty) values, compared to unprimed seeds.
No significant changes in ROS (reactive oxygen species) were observed throughout the
treatment. Increased tocopherols levels were detected at 2 h of hydropriming whereas,
overall, a low lipid peroxidation was evidenced by the malondialdehyde (MDA) assay.
Hydropriming resulted in enhanced accumulation of the naturally occurring antioxidant
phenolic compounds chlorogenic acid and iso-orientin, found in the dry seeds and ex
novo accumulation of rutin. The dynamic changes of the pre-germinative metabolism
induced by hydropriming are discussed in view of future applications that might boost
the use of eggplant CWRs for breeding, upon upgrade mediated by seed technology.

Keywords: crop wild relative, Solanum villosum, hydropriming, pre-germinative metabolism, reactive oxygen
species, antioxidant response

INTRODUCTION

The limited genetic diversity of cultivated eggplant (Solanum melongena L.) is in contrast with
the huge gene pool found in wild relatives (Meyer et al., 2012; Taher et al., 2017), a promising
source of high-quality traits (Knapp et al., 2013; Rotino et al., 2014). Improved eggplant varieties
will contribute to sustainable production under changing climate, since eggplant requires a long
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growth period during which it is exposed to pathogens,
pests, and weeds. Reports describing the use of Crop Wild
Relatives (CWRs) and allied species in eggplant breeding
are only increasing in the last years (Rotino et al., 2014;
Liu et al., 2015; Plazas et al., 2016). Production of healthy
seedlings is often compromised by uneven ripening of seeds
and fruits, resulting in low quality seeds (Carvalho Martins
et al., 2012). Seed vigor and germination profiles are among
the standardized descriptors used to recommend genotypes
for breeding (Taher et al., 2017). Dormancy, low seed
germination rate and uniformity, documented in eggplant CWRs
(Demir et al., 1994; Adebola and Afolayan, 2006; Taab and
Andersson, 2009), strongly delay or prevent their exploitation
in breeding programs or their use as rootstocks. Low-cost, pre-
sowing treatments (“seed priming”) can be used to improve
germination. These techniques allow to carry out imbibition
under controlled conditions, boosting the antioxidant and
DNA repair responses when the pregerminative metabolism
starts, while avoiding radicle protrusion and loss of desiccation
tolerance (Heydecker et al., 1973; Burgass and Powell, 1984;
Ashraf and Bray, 1993; Bailly et al., 1998; Paparella et al., 2015).
Enhanced crop yields resulting from primed seeds are due
to increased tolerance to biotic/abiotic stresses and individual
plant performance. Due to these benefits, priming is gaining
momentum as a strategy to address the current and future
issues of sustainable crop production in adverse environments
(Ibrahim, 2016; Wojtyla et al., 2016; Farooq et al., 2017;
Macovei et al., 2017).

The empirical features of current priming protocols and
the genotype- and seed lot-dependent variability delay the
work of seed technologists, breeders, and seed bank operators.
Molecular hallmarks (genes, proteins, and metabolites) are
required to predict and/or monitor the effectiveness of
novel pre-sowing treatments. Several reports have already
highlighted the positive correlation between the antioxidant
response and increased seed vigor (Gallardo et al., 2001;
Bailly, 2004) and the impact of effective DNA repair on seed
quality (Waterworth et al., 2019). A progressive increase in
oxidative DNA damage occurring during seed imbibition
was measured in terms of 7,8-dihydro-8-oxoguanine (8-
oxodG) levels, in the model legume Medicago truncatula
(Balestrazzi et al., 2011). The concomitant up-regulation
of key BER (base excision repair) genes including OGG1
(8-oxoguanine glycosylase/lyase) and Tdp1a (tyrosyl-DNA
phosphodiesterase) was also described (Macovei et al., 2010,
2011; Balestrazzi et al., 2011; Pagano et al., 2017, 2019;
Forti et al., 2020a,b).

To date, there are reports describing the benefits and
drawbacks of this technology applied to eggplant (Demir et al.,
1994; Gomes et al., 2012; Gonzales, 2015; Neto et al., 2017;
Ali et al., 2019) and its CWRs, S. torvum Swartz 1788 (turkey
berry) (Ranil et al., 2015; Cutti and Kulckzynski, 2016; Ozden
and Demit, 2016; Sarathkumar et al., 2017), S. macrocarpon,
S. aethiopicum, and S. incanum (Gisbert et al., 2011). However,
much more studies are still necessary to cover the huge
biodiversity of this horticultural crop and its wild relatives.
In this work, we focus on the CWR S. villosum Miller (hairy

nightshade) which is consumed as leafy vegetable crop in Africa
and it is part of the S. nigrum complex (African nightshade)
including African indigenous vegetables with high nutritional
content (Ojiewo et al., 2013), medicinal properties and secondary
metabolites with potential insecticidal activity (Yuan et al.,
2018). S. villosum, cultivated in Nyanza and Western Kenya,
is appreciated for high adaptability, fast growth and easy seed
production, however, low-quality seeds are currently used, thus
affecting production (Gaya et al., 2007; Kimaru et al., 2019).
The S. villosum seeds used in the present work were selected
based on their fast germination profile, unique within a group
of 14 eggplant CWR accessions available at CREA-GB in
Montanaso Lombardo (Italy). The underpinning idea was to
test to what extent priming would still be able to impact the
pre-germinative metabolism, possibly highlighting some peculiar
profile of specific components. To this purpose, an optimized
hydropriming protocol was set and used to establish a working
system for the study of the seed pre-germinative metabolism in
this CWR, in order to find out changes in the seed antioxidant
profile imposed by the treatment and select parameters that
might be used in a larger screening of the available eggplant CWR
accessions. Reactive Oxygen Species (ROS), lipid peroxidation
and tocopherols, as well as polyphenols were investigated and
results integrated to provide an original multilevel profile of the
seed antioxidant environment.

MATERIALS AND METHODS

Germination Tests and Hydropriming
Solanum villosum Miller (hairy nightshade) seeds of the accession
CGN23849 (obtained from Center for Genetic Resources -
Netherlands) were extracted from physiologically ripe fruits
produced by plants cultivated in greenhouse at CREA-GB
in Montanaso Lombardo (Italy). The seed lots hereby tested
were collected in 2015 and 2018, respectively, each one
consisting of seeds from approximately 100 fruits. Germination
tests were performed as described (Forti et al., 2020a).
Germination parameters are listed in Supplementary Table 1.
For hydropriming, 45 seeds (15 seeds for each replicate) were
soaked at 24◦C for 2, 4, 12, and 24 h, hereby named HP2, HP4,
HP12, and HP24) in 400 ml H2O under aeration produced by
a Wave Air Pump Mouse 2 Beta aerator (De Jong Marinelife
B.V., Netherlands) with the following parameters: 220–240 V,
50 Hz, 2.3 W, output 1.8 l min−1, pressure 0.012 MPa. At the end
of the treatment, imbibed seeds were collected and transferred
into glass tubes, placed between two cotton disks, covered
with silica beads (disidry R© Orange Silica Gel, The Aerodyne,
Florence, Italy) with a seed: silica ratio of 1:10 (w/w), and kept
at 24–25◦C for 0.5 h to reach the weight of dry seed. Such
dehydration step is known as “dry-back”. For each hydropriming
treatment and for the untreated control, seedlings were harvested
at 7 days after the start of imbibition, and the fresh weight was
measured. As for the selected hydropriming treatment HP24,
the experimental design hereby used to study the seed response
is shown in Figure 1C. Seeds were harvested at the indicated
timepoints (2, 4, 8, 16, and 24 h of hydropriming, and after
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FIGURE 1 | (A) Germination curve of the S. villosum seed lots collected in 2015 and 2018. Values are expressed as mean ± SD of three independent replicates with
15 seeds for each replicate. Statistical analysis was carried out using Two-way ANOVA (see Table 1B). (B) Results from germination tests carried out with S. villosum
seeds (collected in 2015) and treated with hydropriming for 2, 4, 12, and 24 h and with unprimed (UP) seeds. Values are expressed as mean ± SD of three
independent replications with 15 seeds for each replication. Statistical analysis was carried out using Two-way ANOVA (see Table 2B). (C) Experimental design for
the study of the seed response to the hydropriming treatment HP24 in S. villosum. DS, dry seed. HP, hydropriming. DB, dry-back. UP, unprimed. RD, radicle
protrusion.

TABLE 1 | (A) Germination parameters calculated based on results of germination tests carried out on the S. villosum seed lots collected in 2015 and 2018, respectively.
(B) Results of Two-way ANOVA analysis comparing germination parameters of the S. villosum seed lots collected in 2015 and 2018, respectively, carried out using the
post hoc Tukey’s HSD test. Values are expressed as means ± SD from three independent replicates. Asterisks indicate statistically significant differences between the
two seed lots determined using Student’s t test (P < 0.05). G, germinability; MGT, mean germination time; CVG, coefficient of velocity of germination; MGR, mean
germination rate; U, uncertainty; Z, synchronization index. *P < 0.05, **P < 0.01, ***P < 0.001, and ****P < 0.0001.

(A)

Seed lot G (%) MGT (days) CVG (%) MGR (day−1) U (bit) Z (unit less)

2015 100.0 ± 0.00 2.49 ± 0.10 521.42 ± 25.26 5.0 × 10−3
± 9.2 × 10−5 0.98 ± 0.02 0.48 ± 0.01

2018 100.0 ± 0.00 2.10 ± 0.05 875.01 ± 23.22**** 1.2 × 10−3
± 15.0 × 10−5 *** 0.46 ± 0.16** 0.81 ± 0.01**

(B)

Comparison q DF P value Significance

2015–2018 204.6 4 0.0001 ****

0.5 h of dry-back). All samples we stored in in liquid N2 for
molecular analyses.

ROS Detection
The fluorogenic dye 2′,7′-dichlorofluorescein diacetate (DCFH-
DA; Sigma-Aldrich, Milan, Italy) was used to quantify ROS
levels as described (Macovei et al., 2016; Forti et al., 2020a).
S. villosum seeds were collected (three seeds per time point),
dried on filter paper and incubated for 15 min with 50 ml of
10 mM DCFH-DA. Fluorescence was determined at 517 nm
using a Rotor-Gene 6000 PCR apparatus (Corbett Robotics,
Brisbane, Australia), setting the program for one cycle of 30 s
at 25◦C. A sample containing only DCFH-DA was used to

subtract the baseline fluorescence. Relative fluorescence was
calculated by normalizing samples to controls and expressed
as Relative Fluorescence Units (R.F.U.). The experiment was
conducted in triplicate.

MDA Determination
Malondialdehyde was quantified according to Sari et al. (2012)
and Zeb and Ullah (2016), with the following modifications.
Seeds were grounded to a fine powdery flour (granulometry from
20 to 200 mm)in a mixer mill type MM200 (Retch, Germany)
for 30 s with the frequency set at 1/30. The resulting powder
(200 mg) was mixed with 5 ml of H2O:0.5 M HClO4 solution
(4:1) and few drops of 2% BHT (butylated hydroxytoluene,
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TABLE 2 | (A) Germination parameters calculated based on results of germination tests carried out on S. villosum seeds (seed lot collected in 2018) treated with
hydropriming (HP) for increasing time (2 h, 4 h, 12 h, and 24 h) and unprimed (UP) seeds. (B) Results of Two-way ANOVA analysis comparing germination parameters of
the unprimed (UP) S. villosum seeds versus primed seeds (HP2, HP4, HP12, and HP24 treatments) carried out using the post hoc Tukey’s HSD test (P ≤ 0.05). Values
are expressed as means ± SD from three independent replicates. Asterisks indicate statistically significant differences between primed and unprimed seeds determined
using Student’s t test (P < 0.05). G, Germinability. MGT, Mean germination time. CVG, Coefficient of velocity of germination. MGR, Mean germination rate. U,
Uncertainty. Z, Synchronization index. *P < 0.05, **P < 0.01, ***P < 0.001, and ****P < 0.0001.

(A)

Treatment G (%) MGT (days) CVG (%) MGR (day−1) U (bit) Z (unit less)

UP 100.0 ± 0.00 2.49 ± 0.10 521.42 ± 25.26 5.0 × 10−3
± 9.2 × 10−5 0.98 ± 0.02 0.48 ± 0.01

HP2 100.0 ± 0.00 2.69 ± 0.10 474.79 ± 21.72 0.021 ± 9.8 × 10−5 0.87 ± 0.13 0.56 ± 0.09

HP4 100.0 ± 0.00 2.73 ± 0.07* 465.06 ± 13.92* 2.2 × 10−3
± 6.4 × 10−5 0.83 ± 0.1 0.58 ± 0.07

HP12 100.0 ± 0.00 2.00 ± 0.00* 672.81 ± 0.00** 1.5 × 10−3
± 0.00* 0.00 ± 0.00*** 1.00 ± 0.00***

HP24 100.0 ± 0.00 1.89 ± 0.04** 718.91 ± 16.63* 1.4 × 10−3
± 3.38 × 10−5** 0.50 ± 0.12 * 0.78 ± 0.07*

(B)

Comparison q DF P value Significance

UP vs HP2 4.744 10 0.0453 *

UP vs HP4 5.798 10 0.0144 *

UP vs HP12 11.6 10 <0.0001 ****

UP vs HP24 14.23 10 <0.0001 ****

Sigma-Aldrich) in ethanol, to precipitate proteins. Samples
were centrifuged (4◦C, 10 min) and filtered with Whatman
No. 1 paper (Whatman Limited, United Kingdom). MDA
was determined as a thiobarbituric acid reactive substance
(TBARS) following reaction with thiobarbituric acid (TBA)
at high temperature. For each sample, an aliquot (100 µl)
was mixed with 100 µl of TBA in 1 ml H2O and the
mixture was heated at 95◦C for 60 min. Samples were cooled
at room temperature and absorbance measured at 254 nm
using an UV-visible spectrophotometer (UV-1800, Shimadzu,
United Kingdom). The standard MDA solution (Sigma-Aldrich;
100 µl, in a range of 0.025–0.1 mg ml−1) was added
in a 1 ml test tube and mixed with TBA (100 µl), as
previously described (Supplementary Figure 1A). Analyses were
performed in triplicates.

Analysis of Tocopherols and Phenolic
Compounds
Extraction of tocopherols was performed as described (Kurilich
and Juvik, 1999; Doria et al., 2009) with the following
modifications. Seed powder (300 mg) was added to 5 ml of
ethanol containing 0.1% butylated hydroxytoluene (BHT) and
the mixture was incubated for 10 min at 85◦C. Subsequently,
samples were subjected to saponification by adding 150 µl of
80% KOH and incubating for 10 min. After adding 3 ml of
H2O, samples were placed in ice bath for 3 min and 3 ml
of pure hexane were added. After shaking for 10 min at
800 rpm and centrifuging at 12,000 rpm, the upper layer was
transferred into a separate test tube, and the pellet (together
with the remained layer of water) was re-extracted twice
using 2 ml of hexane. The combined hexane fractions were
washed with 3 ml of deionized H2O, vortexed, centrifuged
for 10 min, and transferred into another test tube. Hexane
fractions were dried using a vacuum evaporator and the

residue dissolved in 200 µl acetonitrile:methanol:methylene
chloride (45:20:35 v/v/v) prior to injection into the HPLC
system (Kontron Instrument 420 system; Kontron Instruments,
Munich, Germany) equipped with a C18 column (Zorbax ODS
column 250 mm × 4.6 mm, 5 µ, Agilent Technologies).
The isocratic mobile phase consisted of acetonitrile:methanol
(60:40 v/v), the flow rate was 1.0 ml min−1 at room
temperature, and absorbance was measured at 220 nm.
As standard, γ-tocopherol (Sigma-Aldrich) was used for a
calibration curve (Supplementary Figure 1B). Polyphenol
content was assayed as described (Sadiq et al., 2014) by an HPLC
system (Kontron Instrument 420 system) (Kontron Instruments,
Munich, Germany) equipped with a reverse phase C18 column
(SepaChrom R© —Robusta, 100 A, 5 µ, 250 mm × 4.6 mm)
and UV detector. The mobile phase, fluxed at a rate of
0.8 ml min−1, consisted of 4% acetic acid (solvent A) and
pure methanol (solvent B) according to the gradient shown in
Supplementary Table 2.

Statistical Analysis
The effects of priming versus unprimed control in terms
of germination percentage, days, and their interaction were
analyzed using Two-way ANOVA (Analysis of Variance)
(∗P < 0.05; ∗∗P < 0.01; ∗∗∗P < 0.001; ∗∗∗∗P < 0.0001) carried
out with the statistical software GraphPad Prism 8 (GraphPad
Software Inc., San Diego, CA, United States). Comparison
between unprimed control and different priming treatments
were carried out using the post hoc Tukey’s HSD (Honest
Significant Difference) test. Means with a significance value
lower than 0.05 (P ≤ 0.05) were considered statistically different.
Statistical analysis of phenotyping data, MDA, tocopherols,
and polyphenols data was performed using the Student’s t-test
(∗P < 0.05; ∗∗P < 0.01; ∗∗∗P < 0.001).
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RESULTS

Impact of Hydropriming on Fast
Germinating Solanum villosum Seeds
Two S. villosum seed lots collected in 2015 and 2018, respectively,
were first analyzed to assess germination performance. Each lot
included seeds from approximately 100 fruits (15–20 seeds per
fruit, as reported by Haque et al., 2018) covering the genetic
variability within this CWR. As shown in Figure 1A, the seed
lot of year 2015 started germination between the 2nd and
3rd day following imbibition, reaching 100% at the 4th day.
Germination of seeds collected in 2018 started earlier that the
seed lot of year 2015 between the 1st and 2nd day following
imbibition, reaching 100% at the 3rd day. Thus, both the
S. villosum seed lots were characterized by a fast germination
profile, compared to domesticated eggplant seeds previously
characterized (Forti et al., 2020a). The detailed list of germination
parameters shown in Table 1A reflects the observed differences
between seed lots, e.g., the CVG (coefficient of velocity of
germination) value increased from 521.42 ± 25.26% (2015) up
to 875.01± 23.22% (2018). Statistical analysis of data is shown in
Table 1B.

Based on the reported data, the oldest seed lot (year 2015)
was selected for hydropriming treatment. Although such an
accelerated germination phenotype would not apparently require
further improvement, we wanted to test whether priming
would be able to impact the pre-germinative metabolism of
S. villosum seeds, eventually disclosing significant changes and/or
strengthening the role of specific antioxidant components.
Results from germination tests performed with unprimed
(UP) seeds and seeds treated for increasing time are shown
in Figure 1B whereas germination parameters are listed in
Table 2A. S. villosum seeds were soaked in H2O for 2, 4, 12,
and 24 h (hereby named hydropriming treatments HP2, HP4,

HP12, and HP24), subjected to dry-back (DB, 0.5 h) and then
used for germination tests. According to germination parameters
reported in Table 2A, the HP12 and HP24 treatments were
able to accelerate germination. The MGT (mean germination
time) values decreased from 2.49 ± 0.10 days (UP) to
2.00 ± 0.00 days (HP12) and 1.89 ± 0.04 days (HP24). The
positive impact of hydropriming on the S. villosum seeds was
also evident when considering the CVG (coefficient of velocity
of germination) value, that increased from 521.42 ± 25.26%
(UP) up to 672.81 ± 0.00% (HP12) and 718.91 ± 16.63%
(HP24). Statistical analysis of data is shown in Table 2B.
In order to assess the impact of hydropriming treatments at
the seedling level, biometric parameters were measured on
S. villosum seedlings collected 7 days following imbibition.
Results are shown in Table 3. Statistical analysis highlighted
significant changes in root length of seedlings resulting from
the HP24 treatment, compared to those from UP seeds.
Based on the germination profile and phenotyping analysis,
the HP24 hydropriming protocol was selected for subsequent
molecular analyses.

Hydropriming on Fast Germinating
Solanum villosum Seeds Enhances
Tocopherols Accumulation
The experimental design set for S. villosum seeds is shown in
Figure 1C. No significant changes (P = 0.08) in ROS levels were
observed at 2 h of treatment (0.80 ± 0.16 R.F.U.), compared
to DS (dry seed, 1.45 ± 0.37 R.F.U.). ROS were maintained at
similar levels at the subsequent timepoints until the dry-back
was completed (Figure 2A). In order to evaluate the level of
oxidative damage, lipid peroxidation was assessed by measuring
malondialdehyde (MDA) (Figure 2B). The estimated amount of
MDA in the DS was 38.88 ± 0.88 µg/gFW whereas no significant
(P = 0.07) changes were detected after 2 h of treatment. At

FIGURE 2 | (A) ROS levels measured during hydropriming as well as at the end of dry-back, using the DCF-DA fluorescent dye. (B) Quantification of lipid
peroxidation levels by MDA assay carried out during hydropriming as well as at the end of dry-back. (C) Total tocopherol content assessed during hydropriming as
well as at the end of dry-back. Values are expressed as mean ± SD of three independent replicates with 15 seeds for each replicate. Asterisks indicate statistically
significant differences determined using Student’s t-test (P < 0.01). DB, dry-back; DCF-DA, dye 2′,7′-dichlorofluorescein diacetate; DS, dry seed; FW, fresh weight;
HP, hydropriming; MDA, malondialdehyde; R.F.U., relative fluorescence unit; ROS, reactive oxygen species.
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TABLE 3 | Results of phenotyping analyses performed on S. villosum seven-day old seedlings developed from seeds treated with hydropriming (HP2, HP4, HP12, and
HP24) and unprimed (UP) seeds.

Parameter UP HP2 HP4 HP12 HP24

Fresh weight(mg/15 seedlings) 13.20 ± 0.002 13.70 ± 0.003 12.20 ± 0.0007 14.00 ± 0.002 9.30 ± 0.002*

Dry weight(mg/15 seedlings) 0.80 ± 0.003 1.90 ± 0.001 0.90 ± 0.0002 1.10 ± 0.0002 0.90 ± 0.0002

Radicle length(mm) 62.00 ± 2.870 64.00 ± 4.36 66.00 ± 2.33 74.00 ± 1.23* 69.00 ± 5.87*

Values are expressed as mean ± SD of three independent replications with 15 seedlings for each replication. Asterisks indicate statistically significant differences
determined using Student’s t-test. *P < 0.05.

the subsequent timepoints, and then following dry-back, the
estimated MDA levels were still significantly lower than DS
(Figure 2B). Thus, the S. villosum seeds did not undergo relevant
changes in lipid peroxidation along hydropriming, possibly due
to enhanced antioxidant response. To investigate this aspect,
tocopherols were also measured. The estimated tocopherol
content in S. villosum dry seeds was 28.00 ± 2.60 mg/gFW
(Figure 2C). After 2 h of treatment, tocopherol levels were
significantly (P = 0.04) increased (88.60 ± 12.50 µg/gFW). The
highest levels (133.00 ± 0.00 µg/gFW) were recorded after dry-
back (P = 0.046) (Figure 2C). Based on these results, both
accumulation of tocopherols triggered during the hydropriming
treatment as well as limited lipid peroxidation can be envisaged
as beneficial effects associated with this treatment.

Hydropriming Applied to Solanum
villosum Seeds Resulted in the
Accumulation of Phenolic Compounds
The profiles of phenolics in S. villosum seeds subjected to
hydropriming are shown in Figure 3. In the dry seed, chlorogenic
acid [(1S,3R,4R,5R)-3-{[(2E)-3-(3,4-dihydroxyphenyl)prop-2-
enoyl]oxy}-1,4,5-trihydroxycyclohexanecarboxylic acid],
an ester of caffeic acid and (-)-quinic acid) was the main
component detected (0.305 mg ml−1), followed by iso-orientin
[2-(3,4-dihydroxyphenyl)-5,7-dihydroxy-6-[(2S,3R,4R,5S,6R)-
3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]chromen-4-one],
a 6-C-glucoside of luteolin (0.023 mg ml−1), and coumaric
acid [(2E)-3-(4-Hydroxyphenyl)prop-2-enoic acid], a phenolic
derivative of cinnamic acid (0.012 mg ml−1) (Figure 3,
DS). Hydropriming stimulated accumulation of chlorogenic
acid in S. villosum seeds at 2 h, with maximum levels
at 4–8 h (0.804 and 0.777 mg ml−1, respectively). The
flavone iso-orientin increased significantly (P = 0.01) at
2 h of hydropriming (0.134 mg ml−1, 5.8-fold, compared
to DS) (Figure 3). The level of coumaric acid was not
significantly affected by hydropriming whereas ex novo
accumulation of rutin {2-(3,4-dihydroxyphenyl)-5,7-dihydroxy-
3-[α-L-rhamnopyranosyl-(1→6)-β-D-glucopyranosyloxy]-
4H-chromen-4-one} occurred at 2 h (0.169 mg ml−1)
and significantly increased during the treatment (up to
0.345 mg ml−1; 8 h) (Figure 3). Hydropriming also induced
ex novo accumulation of other phenolic compounds,
although at very low levels, namely quercetin [2-(3,4-
dihydroxyphenyl)-3,5,7-trihydroxy-4H-chromen-4-one]
and luteolin [2-(3,4-dihydroxyphenyl)-5,7-dihydroxy-4-
chromenone] (0.01 and 0.02 mg ml−1, respectively; 8 h)

(Figure 3). It is worth noting that the phenolic compounds
chlorogenic acid and iso-orientin were significantly enriched
following dry-back, whereas rutin appeared as a novel
component, compared to DS. At the moment, we can only
speculate about the possible role of these compounds in the
protection of S. villosum seeds against desiccation-associated
oxidative damage.

DISCUSSION

In this work, we explore for the first time the seed
response to hydropriming in the eggplant CWR S. villosum.
A preliminary screening of germination profiles, carried
out with unprimed seeds from two different lots, revealed

FIGURE 3 | Accumulation of phenolic compounds occurring in S. villosum
seeds during hydropriming as well as at the end of dry-back. Values are
expressed as mean ± SD of three independent replicates with 15 seeds for
each replicate. Asterisks indicate statistically significant differences determined
using Student’s t-test (P < 0.01). DB, dry-back; DS, dry seed; FW, fresh
weight; HP, hydropriming; RD, radicle protrusion; UP, unprimed.
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that the process was faster in S. villosum, compared
to other CWRs available at the CREA-GB germplasm
collection. The current literature on S. villosum is still scanty,
particularly as concerns seed traits. It has been reported
that S. villosum seed can germinate within 7 days and
seedlings show fast growth (Fern, 2021). Although priming
usually targets low-quality seeds, we were wondering whether
stimulation of the pre-germinative metabolism could be
used as another strategy to disclose changes in the tested
parameters and indicators.

Hydropriming applied to the fast germinating S. villosum
seeds (namely the HP24 treatment, adapted from a previous
protocol designed for the S. melongena inbred line “67/3” by
Forti et al., 2020a), was associated with limited lipid peroxidation
and significant tocopherols enhancement, suggesting that the
treatment provides protection against membrane oxidative
damage, in line with the observations made in other plant species
(Zhang et al., 2007; Zheng et al., 2015). To date, there are studies
describing the profiles of bioactive compounds, including g and
a tocopherols in S. villosum leaves extract (Venkatesh et al.,
2014), shoots and roots (Okello et al., 2017), fresh and dry stems
and leaves (Louh et al., 2014) but, to our knowledge, this is
the first investigation describing the profiles of tocopherols in
S. villosum seeds.

Accumulation of phenolic compounds triggered by seed
priming has been reported for other species (Farooq et al.,
2017). It is possible that the observed polyphenols profiles
might provide beneficial effects also in the eggplant CWR. These
secondary plant metabolites, synthesized during growth and
reproduction as well as in response to biotic and abiotic stress,
contribute to the nutritional value of eggplant and its CWRs, and
particularly has made possible to classify eggplant as a functional
food (Niño-Medina et al., 2017). Chlorogenic acid, known for
its beneficial properties, is currently the target of eggplant
breeders for the development of new cultivars with increased
content (Plazas et al., 2013). The flavone iso-orientin shows anti-
cancer activities whereas rutin is a flavonoid with antiallergic,
anti-inflammatory, and antiproliferative activities. Data hereby
reported show that hydropriming impacts the phenolics profile
of this CWR, enhancing accumulation and even promoting ex
novo synthesis of specific compounds. As previously discussed
for tocopherols, the occurrence of polyphenols in S. villosum
has been so far assessed only in tissues other than seeds,
such as in seedlings challenged with salinity stress (Ben-
Abdallah et al., 2019), and leaf extracts (Venkatesh et al., 2014;
Yuan et al., 2018).

It is generally acknowledged that the seed response to
priming is strictly genotype-dependent and this divergence is
expressed through significant changes of metabolic indicators
(Carrillo-Reche et al., 2018). In compliance with this observation,
Forti et al. (2020a) demonstrated that hydropriming carried
out for 24 h in the eggplant line “67/3” caused a significant
increase in ROS amounts. The oxidative window model states
germination release by ROS through protein oxidation (Bailly
et al., 2008), as a result of a delicate balance between the free
radicals amount and cellular antioxidant systems. It is also
worth noting that seed lots of another eggplant CWR, S. torvum

Swartz 1788 revealed decreased ROS levels when treated with
hydropriming (Forti, 2020). It could be hypothesized that the
different responses occurring during hydropriming might reflect
different ROS contents in the dry seed, determined by maternal
and environmental factors (Sano et al., 2016). Deciphering the
biological bases of hydropriming is still an open question.
Soaking seeds with water might in some way resemble the
environmental condition of flooding stress. Indeed, it has been
reported that hydropriming can improve the ability of rice seeds
to withstand the deleterious effects of flooding, by shortening
the emergence time (Mulbah and Adjetey, 2018; Sarkar, 2020).
Flooding-tolerant seeds are also desirable products for breeding
in legumes (Sayama et al., 2009). Among Solanaceae, this is an
appreciated trait in eggplant germplasm collections (Bhatt et al.,
2014) as Latifah et al. (2019) showed that tomato plants grafted
on eggplant rootstocks display enhanced water logging tolerance.
However, the correlation between flooding stress tolerance and
hydropriming has still to be established in terms of physiological
and molecular mechanisms.

The timing and conditions of the dry-back step are crucial
for a successful priming protocol (Chen and Arora, 2011). No
significant impact on ROS content was observed in the primed
S. villosum seeds subjected to dehydration, differently from what
reported for the “67/3” line and S. torvum (Forti et al., 2020a;
Forti, 2020). This puzzling scenario is evident in other case
studies, e.g., Kubala et al. (2015) found decreased ROS levels in
rape (Brassica napus L.) primed seeds during dry-back. Taken
together, this information suggests that the treatment impacts the
redox environment, bringing the seed toward a genotype-specific
set of the pre-germinative metabolism compatible with improved
germination performance.

The impressive biodiversity of eggplant CWRs brings novel
opportunities and challenges to plant scientists and breeders
in their race against time to find out sustainable strategies for
fighting global climate change. This work explores for the first
time the molecular dynamics of the pre-germinative metabolism
in the CWR S. villosum that is part of a huge germplasm
collection currently under evaluation for breeding purposes.
The molecular profile of the response to priming, hereby
provided for S. villosum, highlights the inherent complexity of
this issue. Translating such knowledge to other CWRs might
be a difficult task, however, there are some promising hints
that deserve further investigation. The successful hydropriming
treatment will be used to shape germination in other accessions
of the germplasm collection for research purposes and/or made
available to horticultural breeders specialized in Solanaceae.
Indicators (ROS, tocopherols, phenolics) will be tested in a
more representative set of different CWR genotypes to figure
out a reliability threshold for their use as predictive hallmarks
of seed quality.
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