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Wood formation is a complicated process under the control of a large set of
transcription factors. NAC transcription factors are considered “master switches” in
this process. However, few NAC members have been cloned and characterized in
Eucalyptus, which is one of the most economically important woody plants. Here, we
reported an NAC transcription factor from Eucalyptus grandis, EgNAC141, which has
no Arabidopsis orthologs associated with xylogenesis-related processes. EgNAC141
was predominantly expressed in lignin-rich tissues, such as the stem and xylem.
Overexpression of EgNAC141 in Arabidopsis resulted in stronger lignification, larger
xylem, and higher lignin content. The expression of lignin biosynthetic genes in
transgenic plants was significantly higher compared with wild-type plants. The transient
expression of EgNAC141 activated the expression of Arabidopsis lignin biosynthetic
genes in a dual-luciferase assay. Overall, these results showed that EgNAC141 is a
positive regulator of lignin biosynthesis and may help us understand the regulatory
mechanism of wood formation.
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INTRODUCTION

Woody plants have a rich vascular structure and provide valuable renewable resources for pulp,
paper, and bioenergy production (Zhong et al., 2019). In angiosperms, two principle sclerenchyma
cell types, xylem vessels and xylary fibers, comprise the secondary xylem, which facilitate the
transport of water and nutrients and provide mechanical strength, respectively (Plomion et al.,
2001). Various factors including wood density and chemical composition, fiber and vessel length,
and cell wall thickness affect pulp yield, digestibility, and quality; however, the relative importance
of each of these factors varies among species (Ona et al., 2001; Ramírez et al., 2009). During
xylem formation, the cells of secondary xylem differentiated from vascular cambium elongate
and deposit a lignified secondary cell wall (SCW). The SCW is primarily composed of lignin,
cellulose, and hemicellulose. Various genes involved in the biosynthesis of lignin and cellulose
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have been identified (Meents et al., 2018), and the transcriptional
network underlying SCW biosynthesis has been well studied,
especially in the model plant Arabidopsis. Kubo et al. (2005)
showed that the plant-specific NAM, ATAF1,2, and CUC2
(NAC) transcription factors (TFs) VASCULAR-RELATED NAC-
DOMAIN 6 and 7 (VND6 and VND7) are the master regulators
of proto- and metaxylem vessel cell differentiation. Subsequent
studies have shown that certain NAC domain TFs are master
switches controlling SCW formation, including VND1–VND7,
NST1–NST3, and SND1 (Zhong et al., 2006; Mitsuda et al.,
2007; Yamaguchi et al., 2008), that directly or indirectly regulate
the expression of numerous MYB genes. Thus, MYB TFs
are the second-layer master regulators of SCW formation,
such as AtMYB58/63/85, which are lignin-specific TFs, and
AtMYB26/32/41/44/46/61/83/103, which participate in SCW
biosynthesis (Zhong and Ye, 2009, 2014; Camargo et al., 2019).

Over the past decade, studies of the function of NAC TFs
in regulating SCW formation have shown that NAC TFs are
first-layer master switches in both herbaceous plants, such as
Arabidopsis (Kubo et al., 2005; Zhong et al., 2006; Mitsuda
et al., 2007; Yamaguchi et al., 2008), and in woody plants, such
as poplar (Zhong and Ye, 2010; Ohtani et al., 2011; Zhong
et al., 2011; Yang et al., 2019). Eucalyptus trees are economically
important, fast-growing hardwoods that are primarily used
for the pulp and paper industries and cover ca. 20 million
hectares worldwide (Forest Genetic Resources, 2000, Food and
Agriculture Organization of the United Nations). The fast
growth, high yield, and ease of cultivation of Eucalyptus make this
genus an important feedstock in the forestry sector as well as a
producer of second-generation biofuel (Salazar et al., 2016). Aside
from providing mechanical support and being used as feedstock,
lignin also affects biofuel conversion. Consequently, studying
SCW formation in Eucalyptus, especially the biosynthesis of
lignin, has become a major focus of forestry science research.
Studies of the regulation of SCW synthesis by MYB TFs have
also been conducted in Eucalyptus. EgMYB1 inhibits lignin
biosynthesis (Legay et al., 2010), whereas EgMYB2 positively
regulates lignin biosynthesis (Goicoechea et al., 2005). Recently,
Ployet et al. (2019) identified a new SCW regulator, EgMYB137,
using an integrated network-based approach. NAC TFs play a key
role in regulating lignin biosynthesis; however, few studies have
examined the regulatory roles of NAC TFs in lignin biosynthesis
in Eucalyptus (Hussey et al., 2015).

The number of NAC TFs varies widely among plant species:
105 in Arabidopsis thaliana, 177 in soybean (Glycine max), 115 in
maize (Zea mays), and 138 in rice (Oryza sativa) (Hu et al., 2019).
A total of 189 NAC TFs have been documented in Eucalyptus, 7
of which (EgNAC24, EgNAC32, EgNAC58, EgNAC59, EgNAC90,
EgNAC141, and EgNAC157) are encoded by genes that have
no Arabidopsis orthologs associated with xylogenesis-related
processes, such as VND1–VND7, SND1–SND3, and NST2–
NST3. Combined with their increased expression in vascular
tissues, Hussey et al. (2015) speculated that EgNAC24, EgNAC32,
EgNAC90, EgNAC141, and EgNAC157 might play a role in the
regulation of xylogenesis-related processes. In this study, we
characterized the phylogenetic relationships between these novel
candidate TFs and other NAC TFs and analyzed their relative

expression levels in different tissues. We then conducted an in-
depth study of EgNAC141, which was specifically expressed in the
xylem of Eucalyptus.

MATERIALS AND METHODS

Plant Materials and Growth Conditions
The surface-sterilized Arabidopsis thaliana seeds were planted
on MS medium containing 30 g/L sucrose and 10 g/L agar
for 15 days. After germination, the seedlings were transferred
to nutrient soil and were cultivated in an illumination
incubator (20–23◦C, 16/8 h light/dark cycle, 10,000 LUX light,
and 75% humidity). Tobacco (Nicotiana benthamiana) was
planted under the same conditions as Arabidopsis; however, a
higher temperature (24–28◦C) was used for the dual-luciferase
assay in tobacco.

Sterile seedlings of Eucalyptus grandis (genotypes Hook) were
provided by Dr. Xiaojian Qu (Kunming Institute of Botany,
Chinese Academy of Sciences) in June 2016. The seedlings were
then transferred to 10-L pots with mixed substrate (volume ratio
humus/vermiculite/perlite: 5/3/2) and grown in a greenhouse.
The seedlings were cultured for 6 months in the greenhouse at
25◦C (light/16 h), 20◦C (dark/8 h), and 60% humidity before
treatment and RNA extraction.

Cloning of Full-Length EgNAC141 and
Vector Construction
Total RNA was extracted with Trizol regent (Invitrogen) and
used as a template to synthesize first-strand cDNA by reverse
transcription PCR. The coding sequences of EgNAC141 were
amplified with gene-specific primers based on the sequence of
EgNAC141 in the E. grandis genome database (Eucgr.I00583)
(Supplementary Table 1) and were inserted into the pMD19-T
(TaKaRa) vector. After confirmation by sequencing, the fragment
was subcloned into the binary vector pBI121, generating
construct pBI121-EgNAC141, which was then transformed into
Agrobacterium tumefaciens strain GV3101 via the freeze–
thaw method.

Bioinformatics Analysis
The Phytozome1 databases were used to retrieve sequence
information for genes in the evolutionary analysis. To identify
the NAC family members of E. grandis, v2.0 annotated protein
sequences of the E. grandis genome were downloaded from
Phytozome v12.02. Protein sequences with a Pfam NAM domain
(PF02365) were recognized by HMMER program version 3.2.
All but the longest splice variants were removed. The multiple
sequence alignment was carried out using MAFFT program
version 7.455 (Katoh and Standley, 2013) with default settings.
The maximum likelihood (ML) trees were inferred from
concatenated gene sequences using IQ-TREE v.1.6.12 (Nguyen
et al., 2015), and the best-fit substitution model was automatically
selected using ModelFinder (Kalyaanamoorthy et al., 2017).

1https://phytozome.jgi.doe.gov/pz/portal.html
2http://www.phytozome.net
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Bootstrap support was estimated using the ultrafast bootstrap
approximation with 1,000 replicates (Hoang et al., 2018) (-bb
1,000 -m MFP). The accession numbers of NAC family members
identified in this study using the E. grandis genome V2.0 and in
the study of Hussey et al. (2015) in which v1.0 annotations were
used, as well as the accession numbers of genes of poplar and
Arabidopsis, are listed in Supplementary Table 2.

Generation of EgNAC141
Overexpression Lines
The pBI121-EgNAC141 overexpression construct was
transformed into Arabidopsis (Col-0) using the A. tumefaciens-
mediated floral dipping method. Transgenic plants (T1)
were screened on MS medium (supplemented with 50 mg/L
hygromycin and 400 mg/L cefotaxime). Homozygous transgenic
lines were selected for further research.

RNA Extraction and RT-qPCR
Trizol reagent (Invitrogen) was used for RNA extraction from
Arabidopsis stems and Eucalyptus tissues. Genomic DNA was
removed by DNase I (Takara) treatment. First-strand cDNA was
synthesized using a PrimeScriptTM RT MasterMix kit (Takara).
Real-time quantitative PCR (RT-qPCR) was performed using
Novostar-SYBR Supermix (Novoprotein, Shanghai, China) with
the Thermal Cycler Dice Real Time System TP950 (TaKaRa,
Japan). The Actin gene of Arabidopsis and Eucalyptus was used
as an internal control. All primer sequences for RT-qPCR analysis
are listed in Supplementary Table 1.

Histochemical Assay
The internode stems were collected from the 30-day-old wild
and transgenic Arabidopsis lines for histochemical assays.
The internode cross-sections were stained with 0.05% (w/v)
toluidine blue reagent (TBO) for lignin characterization
as described previously (Li et al., 2018). The micrographs
were taken under an Olympus microscope (SZX10, Japan).
To quantitatively analyze the changes in xylem area of
EgNAC141-overexpressing transgenic Arabidopsis, the 4th and
5th internodes of inflorescence stems of 30-day-old Arabidopsis
were sliced, and paraffin sections (12 mm) were made with
an ultra-thin semiautomatic microtome (KD-3368AM, Kedee,
Zhejiang, China) per the manufacturer’s instructions. The
paraffin sections were then immediately stained with 0.05% (w/v)
TBO for 30 s; temporary slides were observed, and pictures were
taken with an optical microscope system. ImageJ was used to
calculate the radial width of xylem. There were four biological
replicates (25–35 slides per replicate) for both WT (WT) and
EgNAC141-overexpressing Arabidopsis (L1, L4, and L5).

Chemical Analysis of Lignin Components
Samples (40 mesh) were screened using a mill and were extracted
with benzene/ethanol (2:1, v/v) for 8 h. The resulting meals were
used for lignin content determination via the Klason method
(Dence, 1992). The components of lignin were measured as
previously described (Li et al., 2015).

Subcellular Localization of EgNAC141
The coding sequence of EgNAC141 was amplified with gene-
specific primers (Supplementary Table 1) and inserted into the
binary vector pBI121-GFP to generate the construct pBI121-
EgNAC141-GFP, in which EgNAC141 was fused with a GFP gene
under the control of the 35S promoter. The resulting construct
was infiltrated into the tobacco leaves as described previously (Xu
et al., 2014) and cultured in the dark. After 48 h, the GFP signal in
the infected tobacco leaves was detected using a ZEISS LSM 900
confocal microscope at a wavelength of 488 nm.

Self-Activation Assay in Yeast
To study the self-activation of EgNAC141, the coding sequence
of EgNAC141 was cloned into the vector pGBKT7, generating
plasmid pGBKT7-EgNAC141, and was transformed into the
yeast strain Saccharomyces cerevisiae Gold2 by the PEG-LiAc
method (Zaragoza et al., 2004). Positive yeast transformants
were screened on SD medium lacking Trp (tryptophan) and
were transferred to SD medium lacking Trp, His (histidine), and
Ade (adenine) for the transactivation assay. The self-activation
of EgNAC141 was also confirmed by adding X-α-gal into SD
medium lacking Trp, His, and Ade.

Transient Expression Activity Assay
Dual-luciferase (dual-LUC) assays were performed as previously
described (Zhang et al., 2015). Briefly, the promoter regions
of lignin biosynthesis genes (CCOAOMT1, CCR1, CSE, COMT,
and CAD1) from Arabidopsis were amplified using the primers
listed in Supplementary Table 1. Subsequently, these promoters
were inserted into pGREEN0800 (kindly provided by Fangyuan
Zhang, Southwest University) to generate reporter constructs.
The pBI121-EgNAC141 construct was used as the effector. Each
pair of effector and reporter constructs was co-infiltrated into
the leaves of N. benthamiana, and the relative LUC expression
assay was performed after 48 h per the instructions of the Dual-
Luciferase Kit (Promega).

Statistical Analysis
Data were analyzed using Student’s t tests and one-way ANOVAs.
Microsoft Excel 2016 (Microsoft Corporation) and Graphpad
Prism 8 (Mestrelab Research) were used to conduct statistical
analyses and create graphs.

RESULTS

EgNAC24/141/157 Were Located in a
Eucalyptus Expansion Subfamily
NAC TFs are the master switches of lignin biosynthesis, and
lignin is the main component of wood in woody plants.
Although some NAC TFs that regulate lignin biosynthesis in
angiosperm plants, such as VND1–VND7, SND1–SND3, and
NST2–NST3, are conserved, some species-specific or tree-specific
NAC TFs might also participate in this process (Hussey et al.,
2015). Using both comparative phylogenetics and large-scale
expression profiling, Hussey et al. (2015) identified seven NAC

Frontiers in Plant Science | www.frontiersin.org 3 April 2021 | Volume 12 | Article 642090

https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles


fpls-12-642090 April 8, 2021 Time: 14:5 # 4

Sun et al. EgNAC141 Positively Regulates Lignin Biosynthesis

FIGURE 1 | Maximum-likelihood phylogeny of the IVc subfamily of NAC TFs in Arabidopsis, Populus, and Eucalyptus grandis. Trees were rooted at the midpoint. The
values on the nodes were given by ultrafast bootstrap approximation (UFBoot) with 1,000 replicates.

TFs (EgrNAC24, EgrNAC32, EgrNAC58, EgrNAC59, EgrNAC90,
EgrNAC141, and EgrNAC157) that might play a role in the
regulation of xylogenesis-related processes given that they are
preferentially expressed in the xylem and have no Arabidopsis
orthologs associated with these processes (Hussey et al., 2015).
However, in the new version of the E. grandis genome annotation
(v2.0), the accession numbers of EgrNAC58 and EgrNAC59 were
not available. Consequently, we could not amplify these two
genes through PCR. To obtain experimental data to test their
hypothesis, we retrieved NAC family protein sequences and
reconstructed a phylogenetic tree using NAC family members of
E. grandis, poplar, and Arabidopsis. Consistent with the results of
Hussey et al. (2015), EgNAC24, EgNAC141, and EgNAC157 were
clustered into the IVc subfamily; EgNAC32 and EgNAC90 were
located in the Va(1) and IVa subfamily, respectively. As shown
in Figure 1, the Eucalyptus NAC TF genes exhibited notable
expansion in the IVc subfamily. Only two Arabidopsis NAC TFs
(ANAC061 and ANAC090) but more than 20 Eucalyptus TFs
existed in that subfamily. In addition, few evidence showed that
the Arabidopsis orthologs of Eucalyptus NAC TF genes of IVc

subfamily, ANAC061 and ANAC090, were involved in regulating
SCW biosynthesis so far.

Tissue Expression Pattern of
EgNAC24/32/90/141/157
Tissue- or cell-specific expression is one of the most important
characteristics of NAC TFs involved in the regulation of
lignin biosynthesis. Real-time quantitative PCR (qRT-
PCR) was used to analyze the spatial expression patterns of
EgNAC24/32/90/141/157. The expression of EgNAC90 was higher
in xylem, old leaf, stem, and phloem (Figure 2), suggesting that
EgNAC90 may be involved in multiple biological processes in
addition to wood formation. Nevertheless, EgNAC24/32/141/157
were primarily expressed in xylem; expression levels were
markedly higher in the xylem and stem compared with other
tissues, including young leaf, old leaf, root, phloem, and
petiole tissues, suggesting that EgNAC23/32/141/157 might be
involved in the regulation of lignin biosynthesis. In addition, the
expression levels of EgNAC23/32/157 were extremely low in all
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FIGURE 2 | The relative expression levels of EgNAC24/32/90/141/157 in different tissues of Eucalyptus grandis; data represent means ± SD of three replicates.

tissues with the exception of stem and xylem, and the expression
level of EgNAC141 was 1,000 times higher in xylem than in stem.
We investigated the function of EgNAC141 further given its
xylem-specific expression.

EgNAC141 Is a Transcriptional Activator
That Is Localized in the Nucleus
Determining the subcellular localization of EgNAC141 in plant
cells is important; given that it is a TF, it is likely localized
in the nucleus. We conducted transient expression assays of
EgNAC141 fused to GFP protein in onion leaf using gene gun
bombardment. The expression of EgNAC141-GFP resulted in a
robust green fluorescence colocalized with the blue fluorescence
of DAPI staining (Figure 3A). EgNAC141 was localized in the
nucleus, consistent with EgNAC141 being a TF. To determine
whether EgNAC141 was a transcriptional activator, we fused it
with the GAL4-DNA binding domain for transactivation analysis
in yeast. Yeast with EgNAC141 was able to grow on a medium
lacking tryptophan, leucine, and histidine and turned blue after
X-α-Gal application (Figure 3B), indicating that EgNAC141 is a
transcriptional activator.

Overexpression of EgNAC141 in
Arabidopsis-Induced Lignin Biosynthesis
To further investigate the function of EgNAC141 in plants,
an EgNAC141 overexpression construct was generated and
transformed into Arabidopsis by the floral dipping method.
After antibiotic screening, 10 independent lines were obtained.

PCR of genomic DNA was carried out to confirm the
positive transgenic lines. All 10 lines except line 9 were
positive transgenic plants (Supplementary Figure 1A). Three

FIGURE 3 | Subcellular localization of EgNAC141 and transcriptional activity
assay of EgNAC141. (A) Nuclear localization of EgNAC141 detected via
transient expression in onion bulb epidermal cells. The nucleus was indicated
by DAPI staining. Blank vector 35S-GFP was used as the control.
(B) Transactivation capability of EgNAC141 tested in yeast cells. The yeast
cells expressing GAL4BD-EgNAC141 fusion protein were transferred to a
selective medium lacking adenine, histidine, and tryptophan (SD/-AHT) and
turned blue after the X-α-gal overlay.
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FIGURE 4 | Microscopic analyses of stems from the control and EgNAC141-overexpressing Arabidopsis plants. General view of the stem vascular tissues stained
by TBO in the 4th and 5th internode of 2-month-old inflorescence stem transverse sections: WT and EgNAC141-overexpressing plants (L1, L4, and L5). Each
independent line has four replicates, and the micrographs are from biological replicate 1 (R1). The other biological replicates are shown in Supplementary Figure 3.
Bars: 500 µm.

homozygous transgenic plants (lines 1, 4, and 5) with higher
relative expression were selected by qRT-PCR and used for
further study (Supplementary Figure 1B).

There was no significant difference in the phenotypes between
the WT and EgNAC141-overexpressing transgenic Arabidopsis
during the 30-day growth period (Supplementary Figure 2 and
Supplementary Table 3). Microscopic observations of hand-
sliced sections between sections 4 and 5 of the inflorescence
stem stained with TBO showed that the number of xylem cells
in EgNAC141 overexpression lines was significantly increased,
resulting in thicker xylem (Figure 4 and Supplementary
Figure 8). The lignified area of the transgenic plants increased
by 41.32–55.21% in the 4th section and 37.62–67.23% in the
5th section compared with the WT (Table 1). Consistent
with histological staining, significantly increased lignin content
was observed in EgNAC141 overexpression lines. All three
lines exhibited significant (between 1.2- and 1.5-fold) increases
in acid-insoluble lignin content. By contrast, only line 1
had a significantly increased (ca. 1.3-fold) acid-soluble lignin
content compared with the WT (Table 2). Finally, the
total lignin content that was calculated by adding the acid-
soluble and acid-insoluble lignin together significantly increased
by approximately 1.2- to 1.4-fold. Overall, these results
indicated that EgNAC141 overexpression positively affected the
biosynthesis of lignin, primarily through the increase in acid-
insoluble lignin.

To assess the role of EgNAC141 in regulating lignin
biosynthesis at the transcriptional level, the relative expression
levels of 11 genes involved in lignin biosynthesis were quantified
by qRT-PCR. Significant increases in the transcript abundances
of the genes in all three EgNAC141 overexpression lines were
observed, especially CCOAMT1, COMT, CSE, CCR1, and CAD1
(Figure 5). The observed increase in the expression levels of
lignin biosynthesis genes was consistent with the increase in

lignin content, suggesting that EgNAC141 transactivates the
expression of the lignin biosynthesis pathway in Arabidopsis.

EgNAC141 Transactivates the
Expression of Lignin Biosynthetic Genes
We tested the ability of EgNAC141 to directly activate the
expression of these genes using a dual-LUC assay. Specifically,
the promoters of CCOAMT1, COMT, CSE, CCR1, and CAD1
(the most up-regulated genes) were cloned and inserted into
pGreen0800 to drive the expression of luciferase, which generated
reporter constructs; the EgNAC141-overexpression construct
was used as the effector (Figure 6A). The LUC/REN ratio of
tobacco leaves expressing EgNAC141 was dramatically increased
compared with the control in which the construct of YFP
under 35S promoter was used as the effector (Figure 6B).
The LUC/REN ratio increased 16-fold for pCCOAOMT1::LUC,
10-fold for pCCR1::LUC, 8-fold for pCSE::LUC, 7-fold for
pCOMT::LUC, and 5-fold for pCAD1::LUC when EgNAC141
was expressed. This indicates that the effect of EgNAC141 on
lignin synthesis is achieved by directly activating the expression
of downstream genes.

TABLE 1 | Radial width of xylem in inflorescence stems of WT and
EgNAC141-overexpressing transgenic Arabidopsis plants (*P < 0.05; **P < 0.01).

Samples Radial width of xylem (µm)

4th internode 5th internode

WT 317.45 ± 9.36 412.36 ± 11.42

L1 492.12 ± 30.32** 689.33 ± 45.26**

EgNAC141 L4 468.77 ± 24.53* 611.28 ± 39.19**

L5 447.45 ± 21.38* 567.48 ± 35.46*
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TABLE 2 | Lignin content of WT and EgNAC141-overexpressing transgenic plants in the inflorescence stems of Arabidopsis (µg/mg dry weight).

WT EgNAC141

Line 1 Line 4 Line 5

Acid-soluble 48.33 ± 3.52 63.72 ± 5.79* 59.01 ± 5.71* 55.42 ± 4.87

Acid-insoluble 78.39 ± 8.06 127.72 ± 11.55** 114.27 ± 11.02** 104.90 ± 9.57*

Total lignin 126.72 ± 11.58 194.44 ± 17.34** 173.28 ± 16.73** 160.32 ± 14.44*

The results are given as means ± SD of four independent replicates (*P < 0.05; **P < 0.01).

FIGURE 5 | The relative expression levels of Arabidopsis lignin biosynthesis genes in WT and EgNAC141-overexpressing Arabidopsis plants. Data are means ± SD
of three replicates. Significant differences between means were determined using Student’s t tests (*P < 0.05; **P < 0.01).

DISCUSSION

SCW formation is a complex process that requires the
coordinated expression of a series of biosynthetic genes (Wang
and Dixon, 2012) and thus a complicated transcriptional
regulatory network that can activate or inactivate the expression
of enzyme genes (Camargo et al., 2019). Over the past decades,
a transcriptional regulatory model has been established by
primarily using Arabidopsis, in which the NAC and MYB TF
families play leading and secondary roles, respectively (Zhong
and Ye, 2014). However, the TFs involved in the formation of
wood, which is mainly composed of SCW, are poorly known.

Indeed, the transcriptional regulatory mechanism of SCW in
wood is more complex. The xylem-associated NAC family in
Eucalyptus and poplar has expanded at the genome level through
duplication (Mitsuda et al., 2007; Hu et al., 2010; Hussey
et al., 2015). Specifically, seven NAC TFs in Eucalyptus without
Arabidopsis homologs might be involved in xylogenesis-related
processes based on their increased expression in vascular tissue
and phylogenetic analysis (Hussey et al., 2015). Consistent with
Hussey et al. (2015), the five novel candidates were clearly
separated from other NAC TFs. EgNAC24/141/157 were nested
within a single clade, suggesting that they are more similar to
each other than to EgNAC32 and EgNAC90 (Figure 1). We
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FIGURE 6 | Dual-luciferase assays in leaves of Nicotiana benthamiana to
study the ability of EgNAC141 to transactivate lignin biosynthesis genes.
(A) Diagrams of effector and reporter constructs. (B) Results of EgNAC141
dual-luciferase assays using the promoters of lignin biosynthesis genes. Data
are means (±SE), n = 3. Significant differences between means were
determined using Student’s t tests (**P < 0.01).

also performed qRT-PCR analysis to investigate the relative
expression levels of candidate NAC TFs. Similar to the results
of Hussey et al. (2015), which were based on RNA-seq data,
expression was highest in lignin-rich tissues, with the exception
of EgNAC90. Transcripts of EgNAC24/32/141/157 were most
abundant in xylem and stem compared with the other tissues that
were tested; EgNAC90 had similar expression levels in old leaf,
stem, and xylem. The consistency in the expression patterns of
EgNAC24/32/141/157 between our study and Hussey et al. (2015)
confirm that these are Eucalyptus NAC TFs that merit further
study. The expression of EgNAC141 was 1,000 times higher in
xylem and stem compared with other tissues (Figure 2). This was
the main reason why EgNAC141 was selected for further study.

Furthermore, our data indicated that EgNAC141 is a
transcriptional activator that is localized in the nucleus. When
EgNAC141 was overexpressed in Arabidopsis, the lignin content
and lignified area of the transgenic plant increased. This
demonstrated that EgNAC141 played a role in xylem formation.
To verify the morphologies and anatomical observation of
ectopic expression of EgNAC141, we inspected the relative
expression of lignin biosynthetic genes in transgenic Arabidopsis

by qRT-PCR. The expression levels of 11 genes belonging to
the lignin biosynthetic pathway were up-regulated compared
with the WT, suggesting that EgNAC141 could transactivate
the expression of these genes. The transactivation effect of
EgNAC141 on Arabidopsis lignin biosynthetic genes was also
confirmed by the dual-LUC assay. Our data have shown that
EgNAC141 is a functional NAC TF that positively regulates lignin
biosynthesis via transactivation of lignin biosynthetic genes.
Most studies have used ectopic expression in Arabidopsis to
study Eucalyptus TFs using orthologs in other plants given that
transgenic protocols for Eucalyptus are lacking. For example,
Legay et al. (2010) reported that overexpression of EgMYB1
in Arabidopsis altered vascular development and reduced SCW
thickening; Soler et al. (2017) showed that EgMYB1 interacted
with EgH1.3, a linker histone variant, which limited the lignin
deposited in xylem cell walls in Arabidopsis. Navarrete-Campos
et al. found that overexpression of Arabidopsis CBF homologous
genes in Eucalyptus, EgCBFs, and Arabidopsis improved the
freezing tolerance of transgenic Arabidopsis (Navarrete-Campos
et al., 2017). Hence, our results indicated that EgNAC141
positively regulates lignin biosynthesis in plants; however,
whether EgNAC141 has a similar positive regulatory function
in Eucalyptus and Arabidopsis remains unclear. Although there
is little information on the differences between the regulatory
networks underlying xylem development in herbaceous and
woody plants, the little evidence that has been obtained to date
has suggested that these networks can vary. For example, the
overexpression of AtSND2 in Arabidopsis increased xylem fiber
wall thickness (Zhong et al., 2008), whereas the overexpression of
an SND2 ortholog in poplar, PopNAC154, resulted in an increase
in the proportion of bark versus xylem in poplar tree and did not
affect SCW thickness (Grant et al., 2010).

One issue requiring clarification is why the overexpression
of some E. grandis genes lacking Arabidopsis orthologs
associated with xylogenesis-related processes led to induced
lignin accumulation in Arabidopsis. Legay et al. (2010) reported
that the overexpression of EgMYB1, an R2R3 MYB from
Eucalyptus, produces similar phenotypes in Arabidopsis and
poplar, including fewer lignified fibers, reduced SCW thickening,
and lower Klason lignin content. However, the protein sequence
identity between EgMYB1 and AtMYB4, the closest ortholog in
Arabidopsis, was 58%, which is similar to the identity between
EgNAC141 and AtMYB90 (54%). EgMYB1 is a close ortholog of
AtMYB4; however, AtMYB4 has never been reported to regulate
SCW synthesis but is known to regulate the accumulation of
sinapate esters through its direct target cinnamate 4-hydroxylase.
Recently, Agarwal et al. (2020) showed that AtMYB4 also
regulates cadmium tolerance by directly binding to the promoters
of phytochelatin synthase 1 (PCS1) and metallothionein 1C
(MT1C) genes (Agarwal et al., 2020). Few studies have examined
the function of AtNAC90, the closest ortholog of EgNAC141
in Arabidopsis, and this work has revealed that AtNAC90
negatively regulates leaf senescence by suppressing the SA and
ROS responses (Kim et al., 2018). The evolution of NAC90 and
EgNAC141 might reflect the retention of an ancestral function
of regulating lignin biosynthesis; however, AtNAC90 has not
yet been observed to be involved in this process. Alternatively,
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the different functions might reflect a rapid expansion of this
family/clade that has caused paralogs in Myrtaceae to acquire new
functions via neofunctionalization.

In sum, this study shows that EgNAC141 acts as a
transcriptional activator to promote lignin biosynthesis by
activating the expression of biosynthesis genes. Overexpression
of EgNAC141 increased the number of layers of xylem vessels and
the xylem region in transgenic Arabidopsis stems. Our results
supported the hypothesis of Hussey et al. (2015) and contributed
new insight into the similarities and differences in the molecular
mechanisms underlying lignin biosynthesis between Arabidopsis
and Eucalyptus.
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