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Fatty acids in crop seeds are a major source for both vegetable oils and industrial
applications. Genetic improvement of fatty acid composition and oil content is critical to
meet the current and future demands of plant-based renewable seed oils. Addressing
this challenge can be approached by network modeling to capture key contributors
of seed metabolism and to identify underpinning genetic targets for engineering the
traits associated with seed oil composition and content. Here, we present a dynamic
model, using an Ordinary Differential Equations model and integrated time-course gene
expression data, to describe metabolic networks during Arabidopsis thaliana seed
development. Through in silico perturbation of genes, targets were predicted in seed oil
traits. Validation and supporting evidence were obtained for several of these predictions
using published reports in the scientific literature. Furthermore, we investigated two
predicted targets using omics datasets for both gene expression and metabolites from
the seed embryo, and demonstrated the applicability of this network-based model.
This work highlights that integration of dynamic gene expression atlases generates
informative models which can be explored to dissect metabolic pathways and lead to
the identification of causal genes associated with seed oil traits.

Keywords: fatty acids, plant embryo, dynamic modeling, gene expression, metabolic networks

INTRODUCTION

Fatty acids (FAs) in crop seeds are a major source for human nutrition and potential
biodiesel fuels (Tang et al., 2015; Kumar et al., 2016). During seed development, various lipid
compounds are synthesized and finally stored in the embryo as energy and nutritional reserves
(Wang et al., 2007; Acket et al., 2020). Traditionally, to understand the biochemical processes
associated with fatty acid synthesis and metabolism in seeds, single pathway-based approaches
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have been employed. However, recent evidence presented in
multiple studies suggests that the amounts of the storage
compounds in plant seeds are affected by multiple interacting
pathways, and their associated metabolic networks (Baud et al.,
2008; Xu et al., 2014; Allen et al., 2015; Omranian et al.,
2015; Ravikrishnan et al., 2018). Therefore, it is important
to apply multi-disciplinary approaches including metabolic
network engineering to improve the FA contents and their
quality in crop seeds.

To guide metabolic engineering, it is critical to understand
and develop analytical tools for the complex metabolic systems
that operate in seeds (Koch et al., 2017). Metabolic Flux Analysis
(MFA) has been used in the developing embryo (Schwender
et al., 2003, 2004; Schwender, 2008; Kruger and Ratcliffe, 2012)
to quantify metabolic fluxes in the major pathways of carbon
metabolism, and these studies showed the contributions of
different pathways (e.g., glycolysis and Rubisco C fixation) in
producing the building blocs for FA synthesis (Schwender et al.,
2004). Metabolic Control Analysis (MCA) (Kacser and Burns,
1973; Moreno-Sánchez et al., 2008), which is used to quantify
the amount of control a specific step exerts on a pathway, has
shown that the control of oil accumulation in seeds occurs both
through FA synthesis (e.g., the FA synthase complex) and through
triacylglyceride (TAG) assembly (Ramli et al., 2002). Combined
network analysis for prediction of metabolic pathways based on
metabolomics data, in silico analysis and machine learning was
recently conducted in tomato, displaying the potential of artificial
intelligence in model simulation of metabolic networks (Beckers
et al., 2016; de Luis Balaguer and Sozzani, 2017; Toubiana et al.,
2019). However, these modeling efforts are either limited to
steady-state conditions or conducted in the context of a single
pathway. Thus far, dynamic modeling (i.e., by integrating gene
expression data into the modeling) of seed metabolic networks
has not been explored in-depth or in great detail.

Dynamic expression of genes and metabolic enzymes in seed
development determines seed FA contents (Xu et al., 2014; Acket
et al., 2020). In fact, significant phenotypic variation has been
observed in seed FA contents (Hobbs et al., 2004; Wang et al.,
2007) with, for example, FA content varying from 20 to 45%
of the seed weight in Arabidopsis. Although it is feasible to
obtain gene expression profiles in seeds (Baud and Lepiniec,
2009; Xiang et al., 2011; Gao et al., 2019), their dynamic and
quantitative effects on seed FA content is not well defined, and it
is thus extremely challenging to identify key genes that accurately
determine seed FA content directly from gene expression data.
Therefore, to better understand the seed metabolic networks and
develop more realistic predictive models for guiding metabolic
engineering, it is necessary to model dynamic seed metabolic
networks by integrating gene expression profiles (for genes
encoding enzymes involved in FA metabolism) during embryo
and seed development.

In this study, we present a mathematical modeling approach
that integrates the dynamics of gene expression into an
Ordinary Differential Equations (ODE) model of the metabolic
networks representing the major seed development biochemical
pathways in the embryo. Toward this end, we first calibrated

the model using the quantitative profiles of the major seed
storage compounds (i.e., FA, proteins, and starch) from global
metabolomics and gene expression profiles of Arabidopsis
embryo and seed development. We then systemically perturbed
the key network genes to predict the FA contents in Arabidopsis
seeds. Finally, the predictions have been validated by published
work and new experimental data.

MATERIALS AND METHODS

Plant Materials and Growth Conditions
Arabidopsis thaliana wild type (Col-0) and mutants (acc –
SALK_017342 and epi – SALK_145945) were grown under
16 h light/8 h dark photoperiod with constant temperature
of 22◦C at 120 µE m−2 s−1 light intensity. The insertion
positions of SALK T-DNA lines were confirmed by PCR using the
following primers. acc : LP-TTCAAGCAAGTTCAGGGTGAG,
RP-AGAAGTACGCCCACACATTTG; epi : LP-GTTCATCAA
CCCAGGTCAATG, RP-CCTTCTCTGCACACATTTTCC.

Embryo Dissection and Microarray
Experiments
Embryo isolations, RNA extractions, microarray experiments,
microarray normalization and bioinformatics analysis were
performed as described previously (Xiang et al., 2011). In
this study, seven stages of Arabidopsis embryo were isolated,
including zygote, octant, globular, heart, torpedo, bent, and
mature stages. The mean gene expression matrix for the
microarray data was based on our previous published report
presented in Supplementary Table 1 of Xiang et al. (2011),
Plant Physiology.

Metabolite Profiling of Embryos
The embryo samples from the same seven stages as the samples
used for microarray analysis in Xiang et al. (2011) were isolated
for metabolic analysis. Dissected embryos of the same stage
were pooled in tubes on dry ice and kept in −80 refrigerators.
Tissue samples were ground in liquid nitrogen and freeze dried
for 6 days under vacuum. Four biological replicates for each of
these samples were further processed and analyzed by Metabolon
(Morrisville, NC, United States) for global unbiased metabolic
profiling involving a combination of three platforms: ultra-HPLC
(UHPLC)-tandem mass spectrometry (MS/MS) optimized for
basic species, UHPLC/MS/MS optimized for acidic species, and
gas chromatography-MS. The methods used were the same as
described previously (Evans et al., 2009; Oliver et al., 2011). For
acc and epi mutants, there is no significant difference between
the two mutants and wildtype plants before the heart stage. The
seeds of homozygous acc mutants turn white and become smaller
than wildtype after the heart embryo stage, and the seeds of
homozygous epi mutants turn white and become smaller than
wildtype after the bent embryo stage. Thus, we used the samples
of the two mutants at the heart stage for metabolite profiling.
Fatty acid content was calculated based on all compounds in the
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fatty acid sub-pathway. The fatty acid content of the samples from
the two mutants and wildtype at the heart stage were compared.

Mathematical Treatment of Gene
Expression Profiles
Some hypotheses and simplifications were necessary in order
to integrate the gene expression profiles in the plant embryo
metabolic network (c.f. Figure 1A). First, relative mRNA and
enzyme levels (i.e., scaled around a value of 1 for the first
data point) were used in order to circumvent the absence of
correlation between mRNA and protein concentration across
the genome (Greenbaum et al., 2003). An integrated study
of 319 transcript/protein pairs in Arabidopsis seeds revealed
a poor correlation as well (Hajduch et al., 2010). It is thus
important to highlight that our modeling framework does not
imply a direct correlation between mRNA and protein (i.e.,
because we consider the dynamics). In the published dataset
previously mentioned (Hajduch et al., 2010), we identified 16
genes that are present in our model and we observe that post-
translational modifications are not significant for 72% of the
genes in our model. This is higher than the average of 56% for
the Arabidopsis genome (Hajduch et al., 2010). However, it is
clear that the consideration of posttranslational modifications
could be a further improvement to the model when sufficient
quantitative information is available. Regarding the dynamics
of the gene expression model, the turnover rates for the
enzymes are simplified into three groups (fast, average and
slow turnover rates), based on literature data, when available
(Piques et al., 2009).

Model Implementation and Calibration
The model was implemented using the Systems Biology toolbox
(Schmidt and Jirstrand, 2006) for Matlab (The Mathworks Inc.,
Natick, MA, United States). The ODE’s and kinetic equations for
fluxes were implemented in the toolbox with first estimates for
parameters taken from an extensive review of enzyme kinetics
literature1 (Chang et al., 2009). The Michaelis–Menten equation
was used to describe enzyme activity with regard to substrate
concentrations and the Hill equation was used to describe
biochemical feedback inhibition. Modeling approaches such as
the log-linear approximation were used to reduce the number
of parameters in large models (Visser et al., 2004). However,
this method involves the linearization of the kinetics around
a certain reference point, usually at steady-state. This is not
automatically applicable in seeds because the large changes in
seed gene expression can induce large changes at the metabolic
level (i.e., some enzymes, substrate concentrations or fluxes can
vary 5-10-fold).

The calibration of the model’s parameters was done through
an iterative process consisting of three major steps:

(1) A round of rough tuning of the parameters to produce a
numerically stable and realistic model, with concentrations
and fluxes within physiological ranges from reported
datasets (Schwender et al., 2003, 2004; Schwender, 2008).

1www.brenda-enzymes.org

(2) The parameter estimation routines in the SBtoolbox are
then used to optimize the parameters of the model in order
to fit quantitative experimental data (Baud et al., 2002).

(3) If step #2 cannot yield satisfactory results, we consider
changing the structure of the model either by
implementing metabolic reactions or feedback regulation
mechanisms that were previously not included. New
regulatory mechanisms are always verified against the
most recent literature and databases (Chang et al., 2009).

These steps were repeated multiple times and the final result
was a robust model that can be simulated over the complete
time course of development (0–21 days after fertilization,
DAF) and very good agreement was achieved with regard to
available data. The following is a complete description of the
ordinary differential equations (ODE) model, which includes
the differential equations and kinetic equations for fluxes and
parameters, with further discussion on parameter estimation and
the problem of model under-determination.

Complete Description of the ODE Model
for Arabidopsis thaliana Seed Dynamic
Metabolic Network
Gene Expression Model
The model for gene expression consists of one differential
equation per enzyme, in the following form:

dEi

dt
= ksyn,i ·mRNAi · Rb− (kdeg,i + µ) · Ei (S1)

Where Ei is the amount of the ith enzyme in the pathways,
for which the synthesis and degradation are determined by the
following parameters:

• mRNAi: the amount of mRNA that encodes for the enzyme
(dimensionless);
• Rb: the amount of ribosomes in the cell (dimensionless);
• ksyn,i: the rate constant for enzyme synthesis (hr−1);
• kdeg,i: the rate constant for enzyme degradation (hr−1),

which = LN(2)/t1/2;
• µ: the growth rate of the cell (hr−1).

Thus, the enzyme synthesis rate (first term on the right
hand side) is proportional to the amount of mRNA, Rb and
the rate constant for synthesis (ksyn). The enzyme concentration
can be reduced by two phenomena. First, the enzyme can be
degraded (kdeg·E) or the enzyme pool can be diluted by cell
division (µ·E). Note that the protein degradation rate constant
is inversely proportional to protein half-life (t1/2). Thus, the
problem here is to determine realistic parameters so that we
can solve the differential equation for each Ei. The following
subsections will detail the hypotheses and development of this
gene expression model.

Units
In this framework, the parameter’s time units will be given in
hours. Given that the enzyme levels are not used in absolute terms
for direct comparison with experimental data, it was decided
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FIGURE 1 | Modeling framework and model calibration. (A) The modeling approach to map gene expression dynamics onto the metabolic network. The kinetic
equations (left part of A) for modeling the gene expression system and metabolic system were developed based on data for mRNA profiles from microarray and
metabolite content from global metabolic analysis for the seven embryo developmental stages. mRNA (red) modulates enzyme synthesis (E1, blue) which in turn
catalyzes the production of a product metabolite (M2, green) from a substrate metabolite (M1, black). A sample simulation is shown with a transient mRNA profile
(red stars) used as an input (right part of A). The symbol legend for the kinetic equations: k, enzyme reaction constant; ksyn, the rate constant for enzyme synthesis
(hr−1); kdeg, the rate constant for enzyme degradation (hr−1). µ, the growth rate of the cell (hr−1). (B) Overview of the metabolic pathways important for Arabidopsis
embryo physiological development; a complete set of differential equations and further details for this model are presented in Supplementary Figure 2. Substrates,
metabolites and end products are in bold font, cofactors are in gray font, and enzymes and reactions are in white ellipses. Full names of enzymes and metabolites
are provided in the Supplementary Tables 3–12. (C) Model calibration using wild-type Arabidopsis physiological data, including seed growth (top row of graphs),
carbohydrate metabolism (middle rows of graphs), and FA and storage protein accumulation (bottom rows of graphs). In each row graphs presenting data on
carbohydrate metabolism and FA and storage protein accumulation, the first and second columns of graphs depict mRNA data from the seven embryo
developmental stages (squares) and simulated enzymes levels (dotted lines), which are used for simulation of content for starch (STA), sucrose (SUC), glucose (GLU),
total fatty acids (total FA), storage proteins (SPrt), short-chain fatty acids (SCFA) and triacylglycerides (TAG). The simulation results (solid lines) are shown in the third
column. Circles in the simulation graphs in the 3rd column of graphs are experimental data from Baud et al. (2002) to show the simulations are close to
experimentally derived results. Key for other abbreviations used in (C): STA syn., genes and enzymes involved in starch synthesis; STA deg., genes and enzymes
involved in starch degradation; SUC syn., genes and enzymes involved in sucrose synthesis; GLC trans., genes and enzymes involved in glucose transport; FA syn.,
genes and enzymes involved in fatty acid synthesis; SPrt genes, genes and enzymes involved in storage protein synthesis; FA elong., genes and enzymes involved in
fatty acid elongation; and FA - TAGs, genes and enzymes involved in triacylglyceride formation.

to use dimensionless (i.e., relative) concentrations for mRNA, E
and Rb. Justification for this approach is given below. Also, the
model implementation was performed so as to circumvent the

use of relative concentrations for these variables. Specifically, the
enzyme level (Ei) is the only variable to be connected to the rest
of the metabolic network (i.e., it increases the maximal rate of
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its reaction) and we will scale the enzyme levels by using a rate
constant (kcat). For example, the maximal reaction rate of the ith
reaction in our metabolic network is:

Vmax,i = Ei · Ki (S2)

In that equation, the maximal enzyme activity (Vmax,i) will
be proportional to the enzyme level (Ei) and enzyme reaction
constant (ki). As we have to determine parameters for each
reaction (i.e., the ki), the absolute value for Ei is not critical
because it is multiplied by ki. Thus, finding a value for ki (with
a relative amount of Ei) or finding a value for both ki and Ei
is the same problem in terms of curve fitting (i.e., considering
absolute concentrations for Ei cannot improve the fit). In terms
of model development, we thus ‘lump’ the absolute enzyme level
in the parameter ki. What is important, though, is that if the
mRNA level doubles (for example), we would like to have twice
the enzyme concentration and twice the maximal reaction rate
for the corresponding reaction (after a steady-state is reached).
In that regard, equations S1 and S2 will achieve this.

mRNA levels (mRNAi)
mRNA levels were taken from our gene expression map of
Arabidopsis embryo development2 (Xiang et al., 2011). The data
set for mRNA covers the whole development of the seed, with
early stages included. Supplementary Table 1 presents the seed
developmental stages for which mRNA data was acquired.

Most enzymes in metabolism are encoded by more than
one gene and some enzymes are localized in more than one
cellular compartment (i.e., cytosol, mitochondria, and plastids).
To classify the enzymes in the model, we used the information
available in KEGG (Kyoto Encyclopedia of Genes and Genomes3)
and BRENDA4 (Chang et al., 2009). Thus, for each enzyme, we
sum the mRNA of genes that are expressed (see details below).

One important point to consider here is that there is no
absolute and quantitative correlation between mRNA levels and
protein concentrations across the genome (Greenbaum et al.,
2003). Protein A might be present in higher concentration
than protein B, even though, for example, mRNAB > mRNAA.
We thus circumvent this problem by using normalized (i.e.,
dimensionless) amounts. We will thus normalize all of our
mRNA profiles with regard to the initial value (i.e., mRNA at stage
Z) in order to scale all the initial mRNA levels to around 1:

mRNAi(t) =

∑
jmRNAi,j(t)∑

jmRNAi,j(t = 0)

with ‘j′ = number of genes for enzyme ‘i′ (S3)

where mRNAi(t) is the normalized sum of mRNAs for enzyme ‘i’
at time ‘t’ in the metabolic network.

Ribosome (Rb)
Genes that encode for ribosomal subunits are known for
Arabidopsis (Barakat, 2001) and we identified these (n ≈ 200)

2www2.bri.nrc.ca/plantembryo
3www.genome.jp/kegg/
4www.brenda-enzymes.com

in our gene expression database. Among the 200 genes, ≈150
were expressed at an average intensity of 2,000 or more and
≈100 were highly expressed (intensity > 10,000). Since little
information is available on the half-life of ribosomal proteins in
Arabidopsis, we simply assumed that the amount of ribosome is
proportional to the weighted sum of mRNAs for the ribosomal
genes (mRNARb). Research with Chlamydomonas reinhardtii
suggests such a correlation exists (Martin et al., 1976). As for the
other mRNAs, the scaling was done so as to have Rb(t = 0) = 1.

Growth rate (µ) and enzyme degradation (kdeg) and
synthesis (ksyn)
In many circumstances, the dilution by growth (µ·E) can be
disregarded, especially in non-dividing cells and tissues or for
enzymes that have a very high turnover rate (i.e., kdeg >> µ). As it
is, the case of plant embryos is an interesting situation where the
growth rate and enzyme degradation are on a similar timescale
and we must thus consider both phenomena.

Growth rate (µ) was estimated from published data (Baud
et al., 2002), with an average rate of 0.015 hr−1 (doubling time
of ≈48 h). A similar value of 0.014 hr−1 was also reported
in research on plant metabolic flux analysis (Schwender et al.,
2003). The growth rate will, however, change during embryo
development, with a value of 0.025 hr−1 in the early stages and
a much lower growth rate (0.0025 hr−1) for the mature embryo.
In the modeling, this is reproduced by using a logistic growth
equation (Figure 1).

Measurement of overall protein turnover in seeds by labeling
techniques (Holleman and Key, 1967) yielded an average protein
turnover rate (kdeg) of 0.025 h−1, which is on the same order
of magnitude as the growth rate. This is much faster than
turnover rates in other plant tissues, as values in the range 0.001–
0.005 hr−1 are reported for leaves (Huffaker and Peterson, 1974),
with the suggestion that a correlation exists between protein
turnover and tissue growth. Specific values of kdeg for enzymes
in Arabidopsis metabolism are also reported (Piques et al., 2009),
but significant variability is mentioned as a major problem in
estimating turnover rates for each protein. Given this variability,
and in order to reduce the number of parameters, we will only
consider three ‘groups’ for the turnover rates of enzymes in
our model:

(1) Enzymes with a relatively fast turnover rate
(kdeg = 0.03 hr−1).

(2) Enzymes with an average turnover rate (kdeg = 0.02 hr−1).
(3) Enzymes with a slow turnover rate (kdeg = 0.01 hr−1).

This simplification is of course arbitrary, but it does reduce the
number of parameters in the model, while keeping the turnover
rates of enzymes in physiological ranges. Enzymes in our model
were classified according to reported results (Piques et al., 2009).
If no information on a specific enzyme was available, the default
option is to use the average turnover rate.

Finally, the rate constant for protein synthesis (ksyn,i) needs
to be determined. Again, limited information is available in
the literature, but we can use the same approach as for
protein degradation, with a classification in three groups (low,
average, and fast turnover). Data from an integrative study
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(Baud et al., 2002) show that, on a mass basis (i.e., gr. protein
per gr. seeds), the amount of protein (i.e., non-storage protein)
does not change during most of the embryo development. This
implies that protein production and removal (because of growth
and degradation) are mostly at equilibrium. As we estimated
degradation and growth, we can balance equation S1 so that,
initially (i.e., at t = 0, when µ = 0.025 hr−1), protein synthesis
will match the turnover because of growth and degradation
(ksyn = kdeg + µ). This gives us the following parameters for the
three groups:

(1) Enzymes with a relatively fast turnover rate
(ksyn = 0.055 hr−1)

(2) Enzymes with an average turnover rate (ksyn = 0.045 hr−1)
(3) Enzymes with a slow turnover rate (ksyn = 0.035 hr−1)

Thus, even though this modeling of enzyme level is based on
some simplifying assumptions and scaling to have dimensionless
enzyme levels, it does have significant advantages, namely: (a)
limited number of parameters (ksyn and kdeg); (b) mRNA, Rb
and µ are based on reliable data; and (c) the dynamics of gene
expression are described in a physiologically realistic framework.

This framework for the modeling of enzyme levels will thus
be integrated (c.f. Figure 1A) in a metabolic model for the
major pathways of carbon storage and energy metabolism in
the developing Arabidopsis embryo. The metabolic layer of this
model is presented in the manuscript and detailed equations are
given in Section “Metabolic Model” below.

Data and simulation for mRNA and enzyme levels
As detailed previously, the mRNA data was acquired at 7
stages during embryo/seed development (Xiang et al., 2011).
Supplementary Table 1 gives a list of these developmental stages.
Supplementary Table 2 gives a list of the genes used for each
enzyme of the model, with its corresponding turnover rate
(i.e., fast, average, or low). Supplementary Figure 1 presents
normalized time profiles for mRNAs (i.e., equation S3) and
corresponding enzyme dynamic profiles (i.e., equation S1 solved
for each enzyme).

Transcript/enzyme and posttranslational modifications
Finally, it can be argued that even for a single transcript/protein
combination, a correlation is not fully guaranteed, mostly
because of posttranslational modifications. A study of 319
transcript/protein pairs in Arabidopsis showed that the
correlation is observed only in 56% of the cases (Hajduch
et al., 2010). However, 16 genes from our model are present
in this dataset and among these, 12 had a good correlation
for the slope and 11 for the curvature [as defined in Hajduch
et al. (2010)], for an overall agreement of 72% (23/32). We thus
assume that not considering posttranslational modifications is a
reasonable hypothesis at this point, especially as little information
is available to correctly implement this phenomenon.

Moreover, and as discussed in the manuscript, our modeling
framework does not assume a direct correlation between
transcript and enzyme, mostly because we consider the dynamics
of the system and changes in ribosome amount. As can be
seen from Supplementary Figure 1, the correlation between

mRNA/enzyme is not direct in many cases, especially for enzymes
with slow turnover rates, such as Rubisco (RUB).

Metabolic Model
This section presents the metabolic model as a set of ODE’s
obtained from the mass balances for metabolites. The dynamics
of the system are then described using kinetic equations for
the regulation of fluxes. For clarity, the metabolic system
will be divided into the following subsystems, which will be
presented separately:

• Central metabolic pathways (glycolysis, pentose phosphate
etc.) in Supplementary Tables 3, 4.
• Plastid metabolism and FA pathways in Supplementary

Tables 5, 6.
• Mitochondrial metabolism in Supplementary Tables 7, 8.
• Pathways for growth, storage product accumulation and

transport in Supplementary Tables 9, 10.
• Kinetic equations for maintenance fluxes and FA oxidation

in Supplementary Table 11.
• Parameters of the model in Supplementary Table 12.

Then, a detailed diagram of the metabolic pathways is
presented in Supplementary Figure 2.

Mass balances and kinetic equations
The generic form of a metabolic model is:

dM
dt
= S · v − µ · S (S4)

. . .where M is the vector of metabolites, S is the stoichiometric
matrix of the system (determined from the topology of
Supplementary Figure 2) and µ is the growth rate. S is an m-by-n
matrix, where ‘m’ is the number of reactions and ‘n’ is the number
of metabolites. Each row of S thus indicates which metabolites are
taking part in the mth reaction. The rate of change in metabolite
is described by the product of the stoichiometry matrix and the
flux vector (v), as well as by a dilution term (µ·S) which accounts
for the increase in volume because of cellular growth (µ).

In this model, the kinetic equations for flux regulation will
have the following form:

vi = Ei · ki · f (M, p) (S5)

. . .where Ei is the amount of enzyme catalyzing reaction
‘i’ (modeled as described in Section “Gene Expression Model”
above), ki is the reaction constant for this enzyme and f(M,p)
will be a function of the state of the system (M) and constant
parameters (p). This function will use Michaelis–Menten, Hill
and mass-action kinetics to account for the various substrates, co-
factors and inhibitors involved in reaction ‘i’. A higher value for
the Hill coefficient for a reaction indicates the sensitivity at low
input becomes a threshold response, such that a minimal input is
needed to stimulate significant change in output. Such a response
seems to reflect realistic biological systems.

Central metabolism pathways
The central metabolic pathways in our model include
glycolysis and the pentose phosphate pathway (PPP) and
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these are connected to other pathways. Glycolysis is described
in a simplified way, with 5 reactions [hexokinase (HK),
phosphofructokinase (PFK), phosphoglycerate kinase (PGK),
non-phosphorylating glycerate dehydrogenase (NPG) and
pyruvate kinase (PK)]. We included the non-phosphorylating
glycerate dehydrogenase (NPG), which operates in parallel
to glycolysis and produces NADPH that can be used for FA
synthesis. However, this is not the major source of NADPH, as
most of it is produced by the PPP. Ribose-5-phosphate (R5P),
the intermediate product of the PPP, can link and integrate the
pathways through two different mechanisms. The epimerase
(EPI) reaction will direct R5P back to glycolytic intermediates,
while Rubisco (RUB will generate downstream glycolytic
intermediates in the plastids. The final product of glycolysis,
pyruvate (PYR), can be used in many pathways. It connects to
mitochondrial metabolism, but can also be transported in the
plastids for FA synthesis or can be used for amino acid and
ultimately, protein synthesis.

The structure of the model, with the seeds operating
in glycolytic mode (i.e., we don’t consider gluconeogenesis)
is in agreement with what is proposed by seed metabolic
flux estimations (Lonien and Schwender, 2009). The model
also accounts for the energy (ATP) and redox balance
(NADH and NADPH). This limits the range of operation to
realistic, physiological conditions by respecting the fundamental
thermodynamic limits inherent to the metabolic system.

It is well known that the pathways of central metabolism are
regulated at the biochemical level in most organisms, including
plants (Plaxton, 1996). We have implemented many of these well
known biochemical feedback mechanisms, as can be seen from
the various inhibition kinetics implemented in the equations
for metabolic fluxes in Supplementary Table 4. Again, all of
these mechanisms are verified against available information in
public databases5.

Plastid metabolism and FA pathways
The structure of the model for plastid metabolism is based
on measured fluxes (Lonien and Schwender, 2009), with a
contribution by Rubisco to provide carbon backbones for
FA synthesis. The synthesis, elongation and storage of FA
into oil bodies is based on a structure proposed by the
analysis of mRNA data to identify active pathways in FA
synthesis (Baud and Lepiniec, 2009). We simplified our
model to FA’s of lengths between 16 and 22C and did not
consider isomers.

Mitochondrial metabolism and energy
The structure of our model for mitochondrial metabolism
was again chosen to be coherent with flux measurements
(Lonien and Schwender, 2009), with the addition of
the glyoxylate cycle (simplified to the isocitrate lyase
reaction). Connections between the TCA cycle and other
pathways are also implemented, with a contribution of
phosphoenolpyruvate carboxylase (PEPC), malic enzyme (ME),
glutamate dehydrogenase (GDH), alanine aminotransferase
(AAT), and ATP citrate lyase (ACL), all of which are

5www.brenda-enzymes.org

reported to be significant for the overall balance of embryo
metabolism (Lonien and Schwender, 2009). Insights for
the regulation, kinetic equations and concentrations were
taken from a generic model of mitochondrial metabolism
(Nazaret et al., 2009).

Growth and storage products accumulation
Reports on flux estimations (Lonien and Schwender, 2009)
show that storage products such as proteins (SPRT), starch
(STA) and sucrose (SUC) are important sinks for metabolic
fluxes. We thus included these products in our modeling. STA
accumulation is simplified to two reactions, one for synthesis
(vstas) and one for degradation (vstad). SUC accumulation is
driven by the reversible enzyme, sucrose synthase (vsus), and
storage proteins are accumulated by a simple reaction whose rate
(vsprt) is proportional to mRNAs for storage proteins. Growth is
modeled using a logistic equation, with a maximal limit on seed
weight. This simplification was implemented for two reasons:
it precisely describes the growth curve of Arabidopsis seeds
and it allows focusing the model on storage product dynamics
instead of having to describe detailed mechanisms for growth
regulation in seeds (some of which are not clearly defined at
the genetic level).

Maintenance and FA oxidation
As we model the dynamics of seeds metabolism up to the
mature stage, where FA levels are stabilized, we have to
consider FA oxidation. We thus implemented reactions for
triacylglycerol (TAG) oxidation and subsequent processing of
ACoA in the glyoxylate pathway (simplified to the isocitrate
lyase reaction).

It is also important to consider reactions for maintenance. The
major sources of damage and loss of efficiency in metabolism
come from the mitochondrial proton leak and endogenous
oxidative stress. The mitochondrial proton leak (vleak) is modeled
as a simple reaction that consumes NADH, with estimates based
on published modeling (Nazaret et al., 2009). The endogenous
oxidative stress (vox) is modeled in a similar vein, but is
based on consumption of NADPH. Finally, we use a mixed
model for ATP consumption, with growth associated (α·µ) and
non-growth associated (β) terms. It is important to highlight
that these reactions operate in addition to energy and redox
consumption by other pathways in the model (such as FA
synthesis) and account for energy consumption by reactions
not in the model.

Parameter identification
Obviously, this model with 34 metabolic states, 40 reactions
(and their associated genes and enzyme dynamics) and around
125 parameters is under-determined and the parameters cannot
be uniquely identified. However, the model’s parameters were
first taken from published reports (especially the affinity and
inhibition constants for enzyme kinetics) when available and
the model was fine-tuned using >100 data points (with
concentrations and fluxes data) covering the major pathways in
the developing embryo. Thus, even though the parameters are
not strictly identifiable, it is assumed that the resulting model is
within physiological ranges and can produce valuable insights.
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In a previous metabolic modeling study on plant cells (Cloutier
et al., 2009), a similar problem of under-determination did not
hinder the analysis and predictive capacity of the model. An even
larger model for cell signaling (Chen et al., 2009), with hundreds
of states and parameters, was shown to be insightful, as long as it
is trained against experimental data, as our model is.

RESULTS AND DISCUSSION

Constructing and Calibrating the
Dynamic Metabolic Network Model
Ordinary Differential Equations (ODE) modeling of metabolic
networks is an established framework, with decades of
development and applications. Regarding the metabolism
of plant cells and tissues, the ODE approach has been applied
to photosynthesis (Poolman et al., 2004), sucrose metabolism
(Rohwer and Botha, 2001), and metabolism of roots and
cell cultures (Cloutier et al., 2007, 2009). Usefulness of such
models in predicting results, providing testable hypotheses and
improving experimental design for in vitro cultures has also been
demonstrated (Cloutier et al., 2009).

To build the network model for Arabidopsis seeds metabolism,
we used the resources and information from KEGG and
metabolic flux measurements of Arabidopsis seeds (Lonien and
Schwender, 2009). This network includes the major pathways
for energy production and biosynthesis of storage products in
developing embryo, with the major substrates coming from
the maternal tissue. The model is also compartmented between
cytosol, plastids and mitochondria (Figure 1B). Because the
information for these three compartments’ volumes is not
available for Arabidopsis embryo developmental stages, we
assumed the volumes of these three subcellular compartments
are equal in this model. Ideally, the model could incorporate the
actual volume information to the differential equations in each
compartment to adjust concentrations of the metabolites in each
compartment. By doing so, we could more accurately model the
reactions and make more accurate predictions. This limitation
will be addressed in the future when the respective compartment
volumes are determined and available for embryo development
in Arabidopsis. However, it should be noted that even with this
limitation regarding model assumptions, as seen in Figure 1 we
were able to obtain good agreements between model simulation
results and experimental data. This does not mean that the model
will not be improved if we provide actual column ratios for the
3 subcellular compartments of cells of the plant embryo, as we
expect that will improve the accuracy of the model. A complete
picture of the model is provided in Supplementary Figure 2.

Specifically, the model describes glycolysis, mitochondrial
metabolism, starch (STA) synthesis and degradation, the pentose-
phosphate pathway (PPP), Rubisco (RUB), synthesis of storage
proteins (SPRT), and the synthesis, elongation and storage
of FA’s into oil bodies (triacylglycerides or TAG). We also
include the contribution of the amino acids alanine (ALA)
and glutamine (GLN). The topology for the pathways is in
accordance with reports on net flux estimations (Schwender
et al., 2004; Schwender, 2008; Lonien and Schwender, 2009).

We also included reactions for the degradation of TAG and
the glyoxylate cycle for FA oxidation. The model also considers
the energy and redox balance of each reaction and this
constrains the fluxes to realistic, physiological values. Finally,
seed growth was modeled using a logistic equation (Figure 1 and
Supplementary Table 9).

To integrate gene expression values to the model, we used gene
expression profiles of seven distinct embryo developmental stages
from zygote to maturity reported in Xiang et al. (2011) study.
We considered the dynamic expression changes of the genes to
modulate the reactions of the metabolic network. This framework
is summarized, conceptually, in Figure 1A. An overview of the
model implementation and calibration is provided in the Section
“Materials and Methods,” which includes equations, parameters
and further references for model development.

To obtain a realistic model, using the gene expression profiles
of the embryo development as inputs, we calibrated the model
parameters by multiple rounds of validation and curve fitting
using the quantitative measurements of the storage products in
different developmental stages of wild-type Arabidopsis seed (see
section “Materials and Methods”). Results obtained with this
approach are shown in Figure 1C, where model simulations (full
lines) are compared to experimental data (circles).

The simulations for embryo growth rate and total mass
are in close agreement with experimental data (Figure 1C,
top row). This is important because the rate of cell division
in the seed dilutes the enzymes, metabolites and storage
products pools (Supplementary Tables 3–11) and this is a major
sink for metabolic fluxes (Schwender et al., 2004; Schwender,
2008; Lonien and Schwender, 2009). The dynamics of storage
products accumulation are also reproduced with good precision
(Figure 1C: STA, SUC, SPRT, FA, and TAG), which suggests that
the model accurately integrates the underlying genes’ expression
data (Figure 1C, squares). As regards to FA accumulation
(Figure 1C, 4th row), the genes that encode for FA synthase
are downregulated in the mature stage and this corresponds
to stable or slightly decreasing FA levels. Another important
observation reproduced by the model is the critical importance
of FA elongation and storage in increasing total FA content.
Not only does each round of FA elongation add 2-carbon,
therefore increasing the length and mass of the fatty acid chain,
it has also been established that short-chain fatty acids (SCFA)
in the forms of acyl-ACP in the plastids down-regulate the
synthesis of FA, by inhibiting the enzymes ACCase and FA
synthase (Knoche et al., 1973; Shintani and Ohlrogge, 1995)
(Supplementary Table 2). With these mechanisms implemented
in the model, we observed that the maximal rate of FA
accumulation occurs between 7 and 14 DAF, which corresponds
to the only period where FA synthase, FA elongation and
TAGs genes are expressed (Figure 1C, 4–5th rows). Total
FA concentration is stable in the mature stage (16–19 DAF).
Estimation from model simulations revealed the FA turnover
rate at 0.06 d−1 for this period. This is ≈5 times higher than
values reported for leaves (Yang and Ohlrogge, 2009), but this
is perfectly consistent with other measures, such as protein
turnover, which is also 5 times faster in seeds compared to leaves
(Huffaker and Peterson, 1974).
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Simulation for Physiological Fluxes and
Their Ratios
Many physiological ratios are measured and considered as
insightful in tracking events in embryo development. For
example, the HEX to SUC ratio is important in the transition
from storage of carbohydrates to embryo dormancy and this
ratio was measured experimentally, with a clear peak around
7–10 DAF (Baud et al., 2002). Given that the model simulates
the most important cellular states and molecules, we have used
the simulation results to calculate these physiological ratios.
Supplementary Figure 3 presents a sample of such calculations.

The ratios calculated from model simulations are in close
agreement, at least qualitatively, with many experimental reports.
Our calculation for the HEX/SUC ratio is similar to what has
been reported (Baud et al., 2002). The ratio of PK flux between
cytosol and plastids, as well as the contribution of Rubisco to FA
biosynthesis (vRUB/vFAB) are consistent with fluxes measurements
(Schwender et al., 2003; Lonien and Schwender, 2009), when it
is observed that the PK flux is higher in the plastids and that
there is a non-negligible contribution of RUB to FA synthesis.
The ratio of ATP/ADP, showing an increase during the transition
to mature embryo, is also consistent with an experimental report
(Borisjuk et al., 2004).

We considered these measurements in developing our model
and the simulations. In general, the results presented in Figure 1C
and Supplementary Figure 2 show that the model reproduces the
precise timing of metabolic events in seeds. These results suggest
that the dynamic model is able to reproduce the dynamics of the
storage products in Arabidopsis seeds.

Systematic in silico Analysis of FA
Content After Gene Perturbation and
Experimental Validation
The model contains 40 reactions. We sequentially perturbed (i.e.,
gene knockout, by reducing the gene expression values or gene
overexpression, by increasing the gene expression values) each
reaction and used the model to generate the simulated seed FA
content at the mature stage (at 20 DAF). This allows simulating
the sensitivity of seed FA contents to genetic perturbations.
Complete and detailed results for single gene perturbations,
with consideration for 1. 5-, 2. 5-, 5-, and 10-fold increases
and decreases are presented in Figure 2. Interestingly, these
simulations reproduce the recognized problem of ‘asymmetry’
in increasing the flux in a pathway, whereas it is much easier
to reduce the flux in a pathway than to increase it (Fell, 1998;
Morandini, 2009). Interestingly, 15 of the 40 genes’ modulation
profiles shown in Figure 2 have this ‘asymmetrical’ trend where
an increase in gene expression leads to moderate or no increase
in FA content, while a decrease in gene expression leads to a
significant (and often linear) decrease in FA content. On average,
the single gene knock-out (KO) or overexpression (OE) leads to
10 and 0.1% decrease in FA content, respectively. These results
suggest that the possibilities offered by modulating candidate
genes for metabolic engineering should be evaluated carefully.

Finally, the sensitivity analysis results show that genes related
to transport processes might be important for FA synthesis. The

breakdown of external sucrose by the sucrose invertase (CWI)
and the glucose transporter (GLCT) are two genes for which a
KO induces the sharpest decrease in FA content. Other transport
associated processes also show some potential to actually increase
FA content. Overexpression of alanine aminotransferase (AAT),
which incorporates amino acids from the maternal tissue,
increases FA content by 8%. Transporters for PEP and PYR on
the plastidial membrane (PEPT and PYRT in Figure 2) could
both increase FA content (9 and 7%, respectively). As these
transporters favor the flow of carbon from the cytosol to the
plastids, their overexpression changes the balance of carbon flow
toward FA synthesis in the plastids. This observation on the
sensitivity of FA content accumulation to transport processes is
consistent and in agreement with Metabolic Control Analysis of
starch accumulation in potatoes (Morandini, 2009).

To validate these predictions, we searched relevant published
work and found that 10 genes in the model have been explored
using knockout or overexpression in Arabidopsis to measure their
FA contents. Interestingly, the experimental results from these
studies are in agreement with the simulated results (Table 1).
For example, the model predicted that down-regulation of the
genes in glycolysis or plastidial pyruvate kinase leads to low FA
content in the seed. These cases have been reported previously
(Table 1). Moreover, less intuitive results are also reproduced.
For example, our model predicted that overexpression of genes
for components of the FA synthase complex does not improve
FA content. Interestingly, such cases have been reported in the
literature (Table 1). At the enzyme level, some of these steps are
known to be inhibited by their own products (Supplementary
Table 6), and an increase in enzyme amount will not necessarily
lead to significant increases in flux because of an immediate
negative feedback. We further predicted that modulations for FA
elongation or TAG formation result in significant increases in
FA content (+10–40%), which are also supported by published
work (Table 1). We realized that the key element of making
correct predictions is that the model considers the inhibition of
the FA synthase reaction by SCFA (Knoche et al., 1973). Indeed,
the mechanism of direct feedback inhibition of plastidic ACCase
by oleic acid (18:1) -acyl-carrier protein (ACP), causing reduced
fatty acid synthesis, has been described in Brassica napus (Andre
et al., 2012). Thus, removing SCFA either by increasing the FAE
reaction or from the transformation of free FA to TAG can lead
to increases in total FA.

From the model, we have selected 2 predictions and conducted
experimental validation: one for the cytosolic ACCase (ACC,
AT1G36160) (Baud et al., 2003) and the other for ribulose-5-
phosphate epimerase (EPI, AT5G61410) (Favery et al., 1998).
Cytosolic ACCase is responsible for the malonyl-CoA pool
necessary for the production of very long chain fatty acids found
in TAG and in cuticular waxes (Lü et al., 2011). Also, ribulose-
5-phosphate 3-epimerase is a key enzyme in the reductive
Calvin cycle and the oxidative pentose phosphate pathway,
which play a crucial role in cells by producing NADPH that
is required in numerous biosynthetic reactions, including fatty
acid synthesis (Favery et al., 1998). Loss of function of either
of these two genes results in defective embryo development,
confirming their importance to embryo and seed development
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FIGURE 2 | Sensitivity analysis of fatty acid to gene modulation. Each reaction in the model was perturbed by changing the gene expression (horizontal axis) and the
y-axis shows the % change in fatty acid after 20 days (blue dots). The red lines show the % change in the corresponding metabolic flux between 10 and 20 DAF (i.e.,
when FA are accumulated).

(Tzafrir et al., 2004). Interestingly, experimental results showed
that the acc mutant had lower FA and the EPI mutant (epi) had
higher FA in the heart stage of embryos (Table 1), which are
in agreement with the predictions and published reports. These
results suggest that the dynamic model can produce reliable
predictions of FA content after single gene perturbations. It
should be noted that 12 sensitive reactions in Figure 2 do not
connect directly to the FA biosynthetic pathway, highlighting
the importance of the integration of the pathways and gene
expression profiles in network modeling. Although some of the
predictions from the model have been experimentally validated,

suggesting the usefulness of the model, we like to point out
that the current model has certain limitations, because at the
present time the exact volume information for the key subcellular
compartments of cells of the plant embryo, the cytosol, plastid,
and mitochondria, have not been determined and therefore are
not available for the Arabidopsis embryo developmental stages.
Ideally, the model would incorporate the volume information
into the differential equations in each compartment to adjust
the metabolite concentrations in each compartment. By doing
so, we could more accurately model the reactions and make
more accurate predictions. This limitation will be addressed in

Frontiers in Plant Science | www.frontiersin.org 10 April 2021 | Volume 12 | Article 642938

https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles


fpls-12-642938 April 1, 2021 Time: 17:48 # 11

Cloutier et al. Modeling Arabidopsis Seed Oil Genes

TABLE 1 | Genetic engineering experiments and model predictions.

Enzyme target Modification Oil content (OC) Model prediction References

Wrinkled1 (glycolytic
enzymes)

Downregulation of HK,
PFK, PK

No FA accumulation 90% decrease Focks and Benning,
1998

Plastidial pyruvate kinase KO No FA accumulation 92% decrease Andre and Benning,
2007

ACCase 10–20-fold increase 5% increase 2.1% increase Roesler et al., 1997

Cell wall invertase Upregulation No change <1% increase Tomlinson et al., 2004

Hexokinase Upregulation No change 1.4% increase Tomlinson et al., 2004

FA synthase enzymes Overexpression of FAS
complex enzymes

No change or slight decrease in
FA

<1% increase Thelen and Ohlrogge,
2002

PDH kinase KO – results in
two–threefold increase in
PDC activity

15% increase in seed oil and
weight (no change on weight
basis)

1% increase Zou et al., 1999

Cytosolic ATP citrate lyase* Overexpression 16% increase in FA content 19% increase Rangasamy and
Ratledge, 2000

Downstream processing of
SCFA**

Expression of yeast sn-2
acetyltransferase

8–48% increase in OC (DW
basis)

18% increase Zou et al., 1997

Formation of oil bodies** Overexpression of GPD1 to
increase TAGs

40% increase in OC 23% increase Vigeolas et al., 2007

Epimerase*** KO 35% increase in TAG at heart
stage

18% increase This study

Cytosolic ACCase*** KO 29% decrease in TAG at heart
stage

27% decrease This study

*This study was performed on leaves of Arabidopsis. **Studies performed on Brassica napus. SCFA, short chain fatty acids. ***Metabolome data obtained from mutants
cultivated in our lab (see section “Materials and Methods”).

the future when the compartment volumes are available for
Arabidopsis embryo development.

CONCLUSION

Integration of gene expression, enzymes and metabolites in the
same conceptual model is critically important for improving
our understanding of dynamics and interactions in biological
systems (Fendt et al., 2010; Kotte et al., 2010). These integrative
approaches are also expected to have major implications
in metabolic engineering, drug design and synthetic biology
(Schmid and Blank, 2010). Here the metabolic network for
storage compound accumulation in Arabidopsis seeds was
investigated using a mathematical model that integrates gene
expression profiles during embryo development. The dynamic
model was then used to predict the effects of single gene
perturbations on seed FA content. We showed that the predicted
results are largely validated either from the literature or from
new experiments we conducted. These observations highlight
that the dynamic model also generates biological insights
for understanding the genetic basis for seed FA content
determination. The results suggest that our model can be used
to guide metabolic engineering for oil seed crops.

The model can be used to integrate high-throughput data such
as gene expression datasets by providing a framework for data
analysis and testable predictions. We believe that our modeling
framework could be used to further integrate quantitative and
time-course metabolomic and proteomic datasets. Thus, the
development of such modeling frameworks will be improved by

the development of experimental techniques to improve data
analysis and experimental design.

Although high-throughput technologies have generated large
omics datasets, it is still very challenging to connect and
assign ‘causal’ signals from these data to phenotypic traits and
diseases. Several factors make it difficult to dissect such ‘causal’
or ‘driving’ signals: the data are very complex, the biological
systems are also very complex and many genes in the systems are
highly interdependent/interconnected and correlated. Moreover,
phenotypic traits and diseases are often controlled by multiple
genes. Therefore, most of the current analysis of omic data
has been focused on association but not identification of the
“causal” signals. This work provides a mathematical framework
for dissecting gene networks to identify the key gene “hubs”
that play key roles in important plant traits associated with seed
oil content, providing an insight for potential application in
synthetic biology.
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