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Long non-coding RNAs (lncRNAs) play an important role in the response of plants
to drought stress. The previous studies have reported that overexpression of LEA3
and VOC could enhance drought tolerance and improve the oil content in Brassica
napus and Arabidopsis thaliana, and most of the efforts have been invested in the
gene function analysis, there is little understanding of how genes that involved in these
important pathways are regulated. In the present study, the transcriptomic results of
LEA3 and VOC over-expressed (OE) lines were compared with the RNAi lines, mutant
lines and control lines under long-term and short-term drought treatment, a series of
differentially expressed lncRNAs were identified, and their regulation patterns in mRNA
were also investigated in above mentioned materials. The regulation of the target genes
of differentially expressed lncRNAs on plant biological functions was studied. It was
revealed that the mutant lines had less drought-response related lncRNAs than that
of the OE lines. Functional analysis demonstrated that multiple genes were involved
in the carbon-fixing and chlorophyll metabolism, such as CDR1, CHLM, and CH1,
were regulated by the upregulated lncRNA in OE lines. In LEA-OE, AT4G13180 that
promotes the fatty acid synthesis was regulated by five lncRNAs that were upregulated
under both long-term and short-term drought treatments. The key genes, including of
SHM1, GOX2, and GS2, in the methylglyoxal synthesis pathway were all regulated by a
number of down-regulated lncRNAs in OE lines, thereby reducing the content of such
harmful compounds produced under stress in plants. This study identified a series of
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lncRNAs related to the pathways that affect photosynthesis, chlorophyll synthesis, fatty
acid synthesis, degradation, and other important effects on drought resistance and oil
content. The present study provided a series of lncRNAs for further improvement of crop
varieties, especially drought resistant and oil content traits.

Keywords: fatty acid synthesis, chlorophyll synthesis, lncRNAs, VOC, LEA3

BACKGROUND

Drought is one of the most common abiotic stresses that plants
face, and which is a leading cause of crop failure globally (Lesk
et al., 2016). In recent years, various studies have focussed on the
biology of drought tolerance and laid some foundations on the
mechanism underlying the drought resistance of plants. Some
important genes and pathways that related to drought stress
have been identified, such as the dehydration response element
binding proteins (DREBs) (Agarwal et al., 2006) and abscisic acid
signal transduction system (Cai et al., 2017). Consequently, these
multiple genes involved in a complex regulatory networks related
to drought tolerance have posed challenges in the selection of
drought tolerance traits in plant breeding. Late embryogenesis
abundant group 3 (LEA3) genes are part of a category that
could function in the protection of membranes and proteins.
Vicinal oxygen chelate (VOC) proteins are members of an enzyme
superfamily with a common mechanistic attribute enabled by
conserved active site residues. In our previous study, we found
that overexpression of LEA3 and VOC genes could increase the
drought resistance and oil content in Arabidopsis and B. napus
(Liang et al., 2019).

Long non-coding RNA (lncRNA) refers to the RNA that is
longer than 200 nucleotides and is not capable of translation
into protein. Some IncRNAs can take part in the regulation of
response to abiotic stresses with genes (Liu et al., 2013). A large
number of lncRNAs have been identified in multiple species
with the rapid development of high-throughput sequencing
technology, and some of them could be classified as polyadenylic
acid and non-polyadenylic acid (Liu et al., 2012, 2013). The
lncRNA plays an important role in response to abiotic stress
in plants. Previous studies have shown that the regulatory
mechanism of lncRNA is very complex. For example, lncRNA
could regulate the expression of protein-coding genes in cis
or trans format and plays a regulatory role in modification
of histones (Wang et al., 2011; Kung et al., 2013). In cassava,
124 lncRNAs under drought treatment that exhibited significant
effects on carbohydrate metabolism, the Calvin cycle, light
response, and light signalling, have been identified (Ding
et al., 2019). Xiao et al. (2019) have identified two lncRNAs
(LNC_001148 and LNC_000160) that related to drought
resistance of tetraploid cassava, which mediate drought tolerance
by regulating the stomatal density (Xiao et al., 2019). Drought-
responsive lncRNA has been discovered to play a role as a

Abbreviations: lncRNAs, Long non-coding RNAs; OE, over-expressed; DREBs,
dehydration response element binding proteins; CNCI, coding-non-coding index;
CPC, coding potential calculator; CPAT, coding potential assessment tool; JS,
Jensen-Shannon; WTLL, wild type long-term treatment samples; WTLS, wild type
short-term treatment samples.

transcription regulator in tomato, and it has a certain regulatory
effect on tolerance-related genes such as stimuli, signalling, and
response to transporter activity (Eom et al., 2019). A recent study
in Arabidopsis thaliana also identified an important drought-
induced lncRNA (lncRNA-DRIR) which had the key role in
regulating plant tolerance to drought and salt stress (Qin et al.,
2017). In addition, a large number of lncRNAs related to stress
have been identified in corn, grape, Tibetan wild barley and
pepper (Fei et al., 2019; Pang et al., 2019; Qiu et al., 2019;
Wang et al., 2019).

B. napus (AACC, 2n = 38) is an allopolyploid species with
a triplicated genome structure and many duplicated genes
(Chalhoub et al., 2014). Rapeseed is the third largest oil seed crop
in the world, and many areas where it is planted are affected by
drought. Thus, it is important to further study the exact roles
of genes involved in oil accumulation and response to drought
stress conditions.

LEA genes are part of a category that could function
in the protection of membranes and proteins. Some studies
have suggested that LEA-type proteins could act as water-
binding molecules, playing important roles in macromolecule
and membrane stabilisation and in ion sequestration (Wang et al.,
2003; Chakrabortee et al., 2012). These structural characteristics
are related to the prediction of their function in response to
desiccation stress (Chakrabortee et al., 2007; Candat et al., 2014).
VOC proteins are members of an enzyme superfamily with a
common mechanistic attribute enabled by conserved active site
residues. Glyoxalase I (GLYI) is a major member of the VOC
family. It is a metalloenzyme that participates in the glyoxalase
system, which has been reported to be a major pathway for the
detoxification of methylglyoxal (MG) in living organisms. GLYI
can use one molecule of glutathione (GSH) to convert MG to
S-D-lactoylglutathione and functions in abiotic stress response
(Singla-Pareek et al., 2003; Mustafiz et al., 2014).

In our previous study, it was revealed that the LEA and
VOC proteins were highly expressed in B. napus plants that
had high oil content by proteomics analysis (Gan et al., 2013).
We also found that most of the BnLEA and BnVOC genes had
higher expression levels under drought stress in B. napus (Liang
et al., 2016, 2017). The overexpression (OE) of different copies
of the drought response genes LEA3 and VOC enhanced both
drought tolerance and oil content in B. napus and Arabidopsis.
In contrast, oil content and drought tolerance were decreased in
the AtLEA3 mutant (atlea3) and AtVOC-RNAi of Arabidopsis
and in both BnLEA-RNAi and BnVOC-RNAi B. napus RNAi
lines. Hybrids between two lines with increased or reduced
expression (LEA3-OE with VOC-OE, atlea3 with AtVOC-RNAi)
showed corresponding stronger trends in drought tolerance
(Liang et al., 2019).
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All these results showed that LEA3 and VOC genes can
play an important role in drought response (not only AtLEA
and AtVOC genes, but also BnLEA and BnVOC genes). And
different transgenic plants lines which can be used for further
study, including the OE lines, RNAi lines, knock-out mutants
and hybrids. In the previous study, we have demonstrated the
differential expression patterns of protein-coding genes and their
corresponding effects in important pathways (Liang et al., 2019).
In the present study, the expression pattern of lncRNA in
each sample, and their effect on the regulation of target genes
on plant drought resistance and key pathways related to lipid
synthesis were analysed in order to investigate the role of LEA
and VOC genes in long-term and short-term drought stress.
2744 known lncRNAs and 1113 new lncRNAs in 56 samples
were identified, and a large number of genes, especially in
the metabolism of carbon and chlorophyll, that are regulated
by lncRNA were observed. Among which, some single genes
are regulated by multiple lncRNAs, such as CRD1 are trans-
regulated by AT1G07993, AT1G09513, AT5G15845, AT2G08665,
AT1G05207, AT3G08795, AT5G02095, and AT2G23672. The
current study revealed that lncRNA plays an important role in
the regulation of abiotic stress and enhances oil accumulation in
Arabidopsis.

MATERIALS AND METHODS

Data Sources
The RNA-seq data of 40 samples from leaf and silique tissues
of multi genotypes of Arabidopsis in the present study were
from our previous study, including the overexpression of AtLEA,
AtVOC, RNAi of AtVOC, and AtLEA mutant (Liang et al., 2019).
Detailed sample information is listed in Table 1. Based on these
data, we explored the expression levels of known and newly
predicted lncRNA, and the expression patterns of lncRNA in
transgenic, overexpression, mutation, and RNAi-treated samples
under long-term drought treatment and short-term drought
treatment conditions were studied, as well as the regulation of the
expression of protein-coding genes.

Data Processing
After removing sequencing adaptors and low-quality sequences
using Cutadapt (Martin, 2011), the RNA-seq clean data of
each sample was aligned to the Arabidopsis reference genome
using HiSAT2 (Kim et al., 2015). RNA-seq alignment results of
each sample were further assembled and merged by StringTie
(Pertea et al., 2015).

Identification of lncRNAs
To obtain qualified lncRNA candidates, we performed a
preliminary filtering of transcripts and predicted the coding
potential of the screened transcripts. Four principles were
employed in the filtering step (Jia et al., 2020): (1) Transcript
length and exon number should be above 200 bp and 2,
respectively. (2) Transcripts should be covered by at least five
reads in all samples. (3) Transcripts aligned to known mRNAs
and other non-coding RNAs (such as rRNA, tRNA, snoRNA,

TABLE 1 | RNA-seq analysis codes for the drought treatments combining the
genotype and sample tissues.

Code Genotype Drought
treatment

Sample tissue

AtLEALL Over expression of AtLEA Long-term Leaves

AtVOCLL Over expression of AtVOC Long-term Leaves

mLEALL Mutant of AtLEA Long-term Leaves

AtVOCRNAiLL RNAi of AtVOC Long-term Leaves

WTLL Wild type Long-term Leaves

AtLEALS Over expression of AtLEA Short-term Leaves

AtVOCLS Over expression of AtVOC Short-term Leaves

mLEALS Mutant of AtLEA Short-term Leaves

AtVOCRNAiLS RNAi of AtVOC Short-term Leaves

WTLS Wild type Short-term Leaves

AtLEASL Over expression of AtLEA Long-term Silique

AtVOCSL Over expression of AtVOC Long-term Silique

mLEASL Mutant of AtLEA Long-term Silique

AtVOCRNAiSL RNAi of AtVOC Long-term Silique

WTSL Wild type Long-term Silique

AtLEASS Over expression of AtLEA Short-term Silique

AtVOCSS Over expression of AtVOC Short-term Silique

mLEASS Mutant of AtLEA Short-term Silique

AtVOCRNAiSS RNAi of AtVOC Short-term Silique

WTSS Wild type Short-term Silique

snRNA) of this species should be discarded. (4) The potential
lncRNA, intronic lncRNA, and anti-sense lncRNA were identified
according to class_code information (“u,” “i,” “x”). Lacking
coding ability, the candidate lncRNA transcripts were further
measured on coding potential using four methods. The coding-
non-coding index (CNCI) (Sun et al., 2013), coding potential
calculator (CPC) (Kong et al., 2007), and coding potential
assessment tool (CPAT) (Wang et al., 2013) were utilised to
calculate the encoding and non-coding capabilities of transcripts.
In addition, the protein domains in HMM library were searched
in each candidate sequence using pfamscan1 tool to screen out
sequences with known protein domains.

Joint Analysis of lncRNA and mRNA
The DESeq (Anders and Huber, 2010) was used for differential
expression analysis, and genes with | log2 ratio| ≥ 1 and
q < 0.05 as a cut-off for significant differential expression were
selected. The lncRNA mainly binds to regulatory regions of
protein-coding genes and regulates gene expression in cis or
trans formations. For differentially expressed lncRNAs, cis and
trans regulation analyses were performed, and their function
was indirectly predicted by the target genes. Cis regulation
refers to the function of lncRNA that is related to the protein-
encoding genes adjacent to it at the genomic locus. Therefore,
the prediction method of the target gene for cis regulation is to
screen out protein-encoding genes adjacent to lncRNA (upstream
and downstream 50 Kb) as target genes. The trans-regulated
genes were recognised according to the correlation coefficient
of lncRNA and mRNA expression values (pearson correlation

1https://www.ebi.ac.uk/Tools/pfa/pfamscan/
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coefficient ≥ 0.9 or pearson correlation coefficient ≤ −0.9).
Heatmaps of the differentially expressed lncRNA and mRNAs
were plotted with the Complexheatmap package (Gu et al., 2016).
The qPCR were performed based by the methods in previous
study (Liang et al., 2019).

Function Analysis of Differentially
Expressed lncRNA Target Genes
The target genes were analysed for enriched GO (Harris et al.,
2004) and KEGG categories (Kanehisa and Goto, 2000) by
applying hypergeometric tests. An adjusted P-value of 0.05 was
used as a threshold for significant enrichment.

RESULTS

The Identification of lncRNAs and Their
Expression Patterns
A total of 2,744 known lncRNAs were identified in 40 samples,
1,751, 2,344, 2,203, and 1,631 novel lncRNAs were identified
by using CNCI, CPC, and CPAT software, and pfam database,
respectively. Among these lncRNAs, 1113 new lncRNAs were
shared in the results of all four methods. Compared to lncRNA,
the mRNAs presented a larger exon number and a longer gene
length (Figures 1, 2A,B).

The FPKM of transcripts for mRNA and lncRNA in
Arabidopsis were calculated in order to explore the expression
patterns of identified lncRNAs, and a lower expression level
of lncRNA (Wilcoxon rank sum test P < 0.001) than protein-
coding genes were observed (Figure 2D). To quantitatively
evaluate the expression specificity of each transcript, an entropy-
based metric relying on the Jensen-Shannon (JS) distance was
employed to calculate the expression-specific score for each

FIGURE 1 | Numbers of novel lncRNAs in 56 samples (details in Table 1).
Novel lncRNAs were identified by using CNCI, CPC, and CPAT software, and
compared with the pfam database, respectively.

transcript. For each transcript, the maximum JS score of each
RNA was considered to be tissue-specific. A large proportion
of lncRNA exhibited a higher maximal JS score (Figure 2C),
indicating that the identified lncRNA carries a stronger tissue-
specificity of expression.

Expression Level of lncRNA in Siliques
and Leaves Under Long-Term Drought
Treatment
For leaf samples, the RNA sequencing data of AtLEALL,
AtVOCLL, AtVOCRNAiLL, mLEALL, AtLEALS, AtVOCLS,
AtVOCRNAiLS, and mLEALS were analysed. Compared with
WTLS, 209 and 5 differentially expressed lncRNAs in AtLEALS
and mLEALS were detected, respectively. Compared with WTLL,
161 and 38 differentially expressed lncRNAs for AtLEALL
and mLEALL under long-term treatment conditions were also
detected (Figures 3A,B, 4A). The present results indicated that
the AtLEA over-expressed lines could induce more changes of
lncRNA expression levels than mutant lines under both long-
term and short-term drought treatment conditions.

For leaf samples focussing on VOC, 19 and 2 differentially
expressed lncRNAs were identified from AtVOCLS and
AtVOCRNAiLS under short-term drought treatment
conditions compared with WTLS, respectively. Of these,
only one lncRNA was shared. Under long-term drought
treatment, 82 and 48 differentially expressed lncRNAs from
AtVOCLL and AtVOCRNAiLL were identified compared
with WTLL, respectively. Of which, 16 lncRNAs were shared
(Figures 3E,F, 4C). These results indicated that the changes
of target genes of lncRNAs that effected by VOC was mainly
occurred from long-term drought treatment.

For siliques, the sequencing sample data of AtLEASL,
AtVOCRNAiSL, AtVOCSL, mLEASL, ATLEASS,
AtVOCRNAiSS, AtVOCSS, and mLEASS were further analysed.
For the LEA gene of siliques under short-term treatment, 55
and 51 differentially expressed lncRNAs in samples ATLEASS
and mLEASS were detected compared with WTSS, respectively.
50 and 6 differentially expressed lncRNAs for AtLEASL and
mLEASL were detected under long-term treatment conditions
(Figures 3C,D, 4B). The results indicated that more differentially
expressed lncRNA were produced in the mutant lines of LEA
under short-term drought treatments.

In silique samples focussing on the VOC gene under short-
term treatment 22 and 8 differentially expressed lncRNAs for
samples AtVOCRNAiSS and AtVOCSS were detected compared
with WTSS, respectively. 175 and 342 differentially expressed
lncRNAs in AtVOCRNAiSL and AtVOCSL under long-term
treatment conditions were detected (Figures 3G,H, 4D).

Effects of lncRNA Expression Level on
Lipid Metabolism and Photosynthetic
Carbon Sequestration
It would be enhanced the biosynthesis and attenuated
degradation of fatty acid (FA) in the LEA overexpression
lines as revealed in our previous study (Liang et al., 2019).
KEGG pathway analysis showed that a number of key enzyme
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FIGURE 2 | Comparison of IncRNA and mRNA. (A) Exon numbers of IncRNA and mRNA. (B) Length of IncRNA and mRNA. (C) JS score distribution of IncRNA and
mRNA. (D) FPKM distribution of IncRNA and mRNA.

genes that involved in FA synthesis and degradation pathways
were differentially expressed in these LEA-overexpressing
plants. Interestingly, based on lncRNA target gene prediction
results, we also discovered that several genes that differentially
expressed in the FA synthesis and degradation pathways were
regulated by lncRNAs (Figure 5A). These lncRNAs were
also differentially expressed in LEA-overexpressing plants.
For example, AT4G13180 [NAD (P) -binding Rossmann-
fold superfamily protein] was regulated by five differentially
expressed lncRNAs.

VOC genes were actively involved in FA degradation and FA
elongation, and multiple genes related to FA degradation were
downregulated in VOC over-expressed samples (Liang et al.,
2019). The lncRNA analysis revealed that only few FA-related
genes were regulated by lncRNA in VOC over-expressed samples
(Figure 5B). Ten differentially expressed lncRNAs exhibited a
regulatory function on AT4G13180. Moreover, the regulation
patterns of these lncRNAs on AT4G13180 were not consistent.
The lncRNAs AT1G09627, AT3G24518, and AT2G35945 were
downregulated in AtVOCSL, and lncRNA MSTRG.35793 was
upregulated in AtVOCSL.

The KEGG pathway analysis of the lncRNA target genes
also showed that the genes involved in carbon fixation and
chlorophyll metabolism of photosynthetic organisms could be
regulated by multiple lncRNAs. Most of the lncRNAs that
regulate these genes were upregulated in LEA-overexpressing
samples (Figure 5C). However, the expression level of lncRNAs in
samples did not exhibit a significant difference under short-term
drought conditions. In long-term drought conditions, lncRNAs
in AtLEA overexpressing samples tended to play a regulatory
role (Figure 5C) to assist the plants to obtain a stronger
photosynthetic capacity and thus stronger drought resistance.

Metabolism of glyoxylic acid and dicarboxylic acid as
well as plant hormone signal transduction, was vigorous in
the leaves of transgenic rapeseed VOC gene overexpression
samples. Additionally, the results of lncRNA target genes
analysis indicated that the extensively downregulated lncRNAs
were involved in the regulation of genes involved in the
metabolism of glyoxylate, dicarboxylic acid, and transduction of
plant hormone signals (Figure 5D). In the short-term drought
treatment,AGT,GOX1,GOX2, and PMDH2 genes were regulated
by several upregulated lncRNAs, which further revealed that
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FIGURE 3 | Numbers of differentially expressed lncRNAs in samples. (A,E) Leaves samples in long-term drought; (B,F) leaves samples in short-term drought; (C,G)
silique samples in long-term drought; (D,H) silique samples in short-term drought. For leaf samples, by using the wild type long-term treatment sample (WTLL) and
wild type short-term treatment sample (WTLS) as controls (the first letter “L” represents leaf samples, the second letters “L” and “S” represent long-term and
short-term drought treatments, respectively, the first letter “m” represents mutants). For siliques, using WTSL and WTSS (the first letter “S” represents the silique
sample, and the second letter “L” and “S” indicate long-term and short-term drought treatments, respectively, the first letter “m” indicates mutants) as controls.

glyoxylate metabolism and oxygen-related metabolic processes
were affected by VOC genes (Figure 5D).

GO Enrichment of Target Genes of
Differentially Expressed lncRNAs
GO analysis was performed on the target genes of differentially
expressed lncRNAs. In the silique of LEA-overexpressing plants,
genes regulated by upregulated lncRNA under short-term or
long-term drought treatment were significantly enriched in
transferase activity, transferring acyl groups, and acyl groups
converted into alkyl groups on transfer (Figures 6C,D).
Moreover, under short-term drought treatment, downregulated
lncRNA also affected the genes that related to the regulation of
endosperm development, lipid transport, and lipid localisation in
LEA-overexpressing plants. In contrast, lncRNA of the mutant
plants under long-term treatment did not exhibit a significant
effect on the functions of these genes, but under short-term
treatment, a downregulating effect on genes with functions such
as regulation of endosperm development was observed.

In leaves, overexpression of LEA affected multiple genes that
related to photosynthesis and stress resistance (Figures 6A,B).
Under short-term and long-term treatment conditions, the

target genes of up-regulated lncRNA in the chloroplast envelope,
chloroplast, photosynthetic membrane and chloroplast were
enriched. Moreover, additional functions such as response
to stress and oxygen-containing compounds were also
regulated by lncRNA during short-term treatment. These
results suggested that a number of genes related to stress
resistance are rapidly regulated by lncRNA in Arabidopsis
in early stage of treatment under the condition of LEA
overexpression, while stress responses that are based on the
lncRNA regulation are fewer in the mutant plants under
short-term drought treatment.

Compared with LEA, the overexpression of VOC genes
induced more lncRNAs in leaves (especially upregulated lncRNA)
to participate in the regulation of photosynthesis and stress-
related genes (Figures 6E,F). Under short-term treatment, the
target genes in AtVOC over-expressing plants were mainly
participated in the regulation of photosynthesis. Notably, in
AtVOCRNAi plants, short-term treatment did not stimulate
the regulation of stress and photosynthesis by lncRNA, but
was consistent with AtVOCLS under long-term conditions
(Figures 6G,H).

AtVOC over-expressing plants produced upregulated lncRNA
mostly under long-term drought treatment, which significantly
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FIGURE 4 | Heatmaps of differentially expressed lncRNAs in samples. (A) Leaves of LEA relative samples; (B) siliques of LEA relative samples; (C) leaves of VOC
relative samples; (D) siliques of VOC relative samples.

regulated the carbohydrate biosynthetic process, response to
salicylic acid, and other functions. For AtVOCRNAi-treated
plants, regardless of short-term or long-term drought treatment,
down-regulated lncRNA were produced in response to some
of the above functions, indicating that the suppression of the
VOC gene had a negative effect on short-term stress and long-
term adaptation of plants, which was not conducive to plant
resistance to stress.

Specific Expression Pattern of lncRNA
Trans-Regulatory Target Genes
The trans-regulatory target genes of the differentially expressed
lncRNAs were predicted by the absolute values of correlation
coefficient between lncRNA and mRNA expression values.
A heatmap was used to show the expression pattern of
differentially expressed lncRNAs and its target genes (Figure 7).
The figure indicates that the expression pattern of these target
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FIGURE 5 | Key genes expression in crucial pathways. (A,B) Pathways of FA metabolism; (C) porphyrin and chlorophyll metabolism; (D) glyoxylate and
dicarboxylate metabolism.

genes were line-specific. The trans-regulatory target genes were
almost all high expressed in WTLS, mLEALS, AtVOCRNAiLS,
and WTSS (Figures 7A,C,D). Meanwhile, as Figure 7 shows,
the expression level of lncRNAs were lower than its trans-
regulatory target genes.

DISCUSSION

The stomata of LEA and VOC-OE transgenetic lines were
regularly closed under drought conditions, which could maintain
their normal shape and function, while the leaf surface of the

wide type were possessed more wrinkles and tended to dry
up under drought stress. Previous studies have shown that a
number of drought marker genes, including RD29A, SnRK2.6,
and RbohD, were highly expressed in the OE line (Liang et al.,
2019), However, it was mainly focussed on the changes in the
expression of coding genes and essential pathways, such as ABA
signalling and photosynthesis pathways. In the present study, we
focussed on the changes of lncRNA expression and the effects
of these differentially expressed lncRNAs on the regulation of
coding genes against drought. The previous study showed that
VOC genes were able to affect late silique development under
drought conditions (Liang et al., 2019). The present results
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FIGURE 6 | GO enrichment of differentially expressed lncRNAs in samples. (A,E) Leaves samples in long-term drought; (B,F) leaves samples in short-term drought;
(C,G) silique samples in long-term drought; (D,H) silique samples in short-term drought.

further suggest that lncRNA is more likely to participate in the
regulation of VOC genes during late silique development. At
the same time, the present results shown that compared to the
lncRNA, the mRNAs had a larger exon number and a longer gene
length (Figures 1, 2A,B), which concurs with a previous study
(Lagarde et al., 2017). An expression difference between mRNA
and lncRNA is also consistent with previous reports (Deng et al.,
2018). The identified lncRNA carries a stronger tissue-specificity
of expression (Figure 2C), which is consistent with previous
findings that the expression pattern is heterogeneous between
lncRNA and mRNA (Chen et al., 2018).

Studies on various plants, such as rice and cotton have shown
that lncRNAs are essential to the resistance of plants to drought
stress (Chen et al., 2018; Deng et al., 2018). Predicting the
function of lncRNA target genes could accelerate the study of
lncRNAs. The predicated possible target genes of differentially
expressed lncRNAs revealed that some target genes were
significantly enriched in different pathways. Photosynthesis is
fundamental in the synthesis of carbohydrates, which is a critical
raw material for plants to further synthesise fatty acids. The
photosynthesis-related genes analysis results indicated that the
carbon fixation and chlorophyll metabolism of photosynthetic
organisms were upregulated in LEA overexpression lines, and
LEA was able to activate plants to improve photosynthesis
capacity under drought stress (Liang et al., 2019). Furthermore,
under adverse environments, lncRNA participates in regulating
photosynthetic pathways, which are essential for plants to resist
stress (Scherer et al., 1984; Colom and Vazzana, 2003; Xu et al.,
2019; Zeng et al., 2019). When the genes are far away from
lncRNAs, regulation occurs through trans-action, and then the
expression levels of target genes were changed. These trans-
action lncRNAs can guide ribonucleoprotein (RNP) complexes

to specific genome locations or recruit chromatin-modifying
enzymes to target genes (Wu et al., 2020). This study revealed
that, a large number of up-regulated lncRNAs were involved
in trans-regulation of target genes involved in photosynthesis
and chlorophyll synthesis pathways in LEA-overexpressing
plants, among which, some genes were trans-regulated by
multiple lncRNAs. CRD1 and CHLM are essential genes in
the process of chlorophyll synthesis (Kobayashi and Masuda,
2016; Herbst et al., 2018; Zubo et al., 2018), the present
study revealed that the CRD1 was trans-regulated by eight
lncRNAs including AT1G07993, AT1G09513, AT5G15845,
AT2G08665, AT1G05207, AT3G08795, AT5G02095, and
AT2G23672; and the CHLM was trans-regulated by six lncRNAs
including AT1G07693, AT1G05207, AT5G07885, AT1G09927,
AT5G02095, and AT2G23672. In Cucumis, the CHLM was
regulated by LINC-chc01G00070-1 when the plant response
to allopolyploidization, indicating that CHLM is involved in
the lncRNA-mediated regulatory mechanisms (Wang et al.,
2020). The fact that a large number of upregulated lncRNAs
were involved in the regulation of these genes, further reveals
that lncRNA regulation of the photosynthesis and chlorophyll
synthesis pathways is a key factor in trigging the stress response
in plants. Pearson correlation analysis also showed that these
lncRNAs were positively correlated with CRD1 and CHLM.
In addition, CRD1 and CHLM were significantly upregulated
in LEA-overexpressing lines. The maintenance of chlorophyll
synthesis in leaves may assist plants to enhance photosynthesis in
arid environments, thereby further promoting the accumulation
of FA. The lncRNA in LEA-OE and VOC-OE strains exhibited
a positive regulatory effect on photosynthetic efficiency, which
could further enhance the drought resistance and promote
lipid accumulation.
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FIGURE 7 | Heatmaps of IncRNAs and target mRNAs. (A) Leaves of LEA relative samples; (B) siliques of LEA relative samples; (C) leaves of VOC relative samples;
(D) siliques of VOC relative samples.

In the leaves of VOC-overexpressing plants, lncRNA also
showed very interesting results in the regulation of methylglyoxal
(MG). MG is a highly cytotoxic and mutagenic compound.
Under normal growth conditions, the basal level of MG
in plants is low, and it acts as an important signalling
molecule. However, when the plant is subjected to abiotic
stress, MG can accumulate, and acts as a toxic molecule under
this situations, inhibiting different developmental processes,
including seed germination, photosynthesis, and root growth
(Hoque et al., 2016; Li et al., 2017), a large number of down-
regulated lncRNAs in VOC-OE were involved in the regulation
of the MG synthesis pathway were observed. The key genes,

including SHM1, GOX2, and GS2, involved in the methylglyoxal
synthesis pathway, were all regulated by multiple down-
regulated lncRNAs, which were positively correlated with
the expression levels of SHM1, GOX2, and GS2. Through
such regulation, the accumulation of MG was reduced. In
another study, the GOX2 was trans-regulated by lncRNA
MSTRG.14375 under infection of downy mildew in Chinese
cabbage (Zhang et al., 2021). That study shows that GOX2
is the target of lncRNA regulation in response to stress.
These results indicated that when VOC is overexpressed in
Arabidopsis, lncRNAs produced under drought stress were
able to regulate the glyoxylate enzyme system to a certain
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extent, and thus could be a factor in the response to
drought stress.

Previous studies (Liang et al., 2019) have demonstrated that
the oil content of LEA-OE and VOC-OE lines has increased.
Under drought stress conditions, LEA-OE would drive seeds to
form a stable and thick cell membrane to protect lipid synthesis
in plants. In the siliques of the VOC and LEA overexpression
lines, lncRNAs were not intensively involved in the regulation
of the fatty acid synthesis pathway. However, but a few genes
were still regulated by multiple differentially expressed lncRNAs,
for example in LEA-OE, AT4G13180 was regulated by seven
lncRNAs, of which five were upregulated, both under long-
term and short-term drought treatments, and this promoted
fatty acid synthesis.

CONCLUSION

In summary, the changes in lncRNA caused by the expression
of LEA and VOC genes may be related to the drought tolerance
and oil content of Arabidopsis thaliana, and the lines that
overexpressed these two genes showed strong drought resistance
and oil production. LEA and VOC increase photosynthetic
efficiency and reduce reactive oxygen species under drought
stress. For future breeding purposes, one of the regulatory
methods to achieve this goal is to regulate the key genes
involved in these two pathways through up-regulation and down-
regulation of the related lncRNAs. Consequently, these drought-
responsive lncRNAs not only played a role in the drought
stress, but also promote oil accumulation, which requires further
investigation. In short, this study provides a novel perspective
for the study of the relationship between oil accumulation and
drought resistance from the regulatory relationship between
lncRNA and mRNA, offering a new approach to further promote
the breeding of oil crops.
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