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Counting the number of wheat ears in images under natural light is an important way to
evaluate the crop yield, thus, it is of great significance to modern intelligent agriculture.
However, the distribution of wheat ears is dense, so the occlusion and overlap problem
appears in almost every wheat image. It is difficult for traditional image processing
methods to solve occlusion problem due to the deficiency of high-level semantic
features, while existing deep learning based counting methods did not solve the
occlusion efficiently. This article proposes an improved EfficientDet-D0 object detection
model for wheat ear counting, and focuses on solving occlusion. First, the transfer
learning method is employed in the pre-training of the model backbone network to
extract the high-level semantic features of wheat ears. Secondly, an image augmentation
method Random-Cutout is proposed, in which some rectangles are selected and erased
according to the number and size of the wheat ears in the images to simulate occlusion
in real wheat images. Finally, convolutional block attention module (CBAM) is adopted
into the EfficientDet-D0 model after the backbone, which makes the model refine the
features, pay more attention to the wheat ears and suppress other useless background
information. Extensive experiments are done by feeding the features to detection layer,
showing that the counting accuracy of the improved EfficientDet-D0 model reaches
94%, which is about 2% higher than the original model, and false detection rate is
5.8%, which is the lowest among comparative methods.

Keywords: wheat ear counting, transfer learning, image augmentation, attention module, deep learning

INTRODUCTION

The number of wheat ears is used as the essential information to study wheat yield (Prystupa et al.,
2004; Peltonen-Sainio et al., 2007; Ferrante et al., 2017). Accurate monitoring of the number of
wheat ears is necessary for growers to predict wheat harvest and growth trends. The counting of
wheat ears is usually done manually, which is an extremely time-consuming work (Liu et al., 2016).
In large-scale planting scenarios, the accuracy of manual counting will increase with the increase
of the number of wheats. Therefore, it is indispensable to develop an efficient and automatic wheat
ear counting method.

Traditionally, automatic counting methods based on image processing have been successfully
used in practical applications, such as plant leaf counting and fruit counting (Giuffrida et al., 2015;
Mussadiq et al., 2015; Maldonado and Barbosa, 2016; Stein et al., 2016; Aich and Stavness, 2017;
Barré et al., 2017; Dobrescu et al., 2017). These methods fall into two categories. In the first class of
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conventional methods, the color of the target objects is extracted
and set as positive samples. The background color is set
as negative samples, and then traditional machine learning
classification methods, such as Support Vector Machine (SVM)
are used to separate the target and background in the images. But
in the actual wheat ear counting task, the varieties and maturity
of wheat will be different (Figure 1), which lies in the fact that the
preset positive sample color cannot represent wheat ears under
all conditions. Methods in the second category used threshold
segmentation algorithms, such as Watershed Algorithm (Bleau
and Leon, 2000). Although this type of method reduces the
dependence on color information, the segmentation threshold is
determined by experience, which makes the algorithm have no
generalization ability and low robustness.

The previous wheat ear counting methods were mainly
realized by manual counting and traditional image processing
methods, which has great room for improvement in precision
and generalization ability. In contrast, for counting complex
background and dense object distribution, deep learning has
inherent advantages that can overcome some of the shortcomings
of traditional methods. There are two ways to implement
deep learning based wheat ear counting algorithm: semantic
segmentation and object detection. The process of counting
using the semantic segmentation method is reproduced below.
Above all, the ears of wheat are labeled pixel by pixel in
the original images, and the regions containing the ears are
positive samples and other regions are negative samples. After
the image is annotated, the fully convolution network such as
Unet (Ronneberger et al., 2015), FCN (Long et al., 2015), etc. is
usually trained in way of encoder-decoder (Grbovic et al., 2019;
Sadeghi-Tehran et al., 2019; Misra et al., 2020; Xu X. et al., 2020).
The trained full convolutional network can segment each wheat
ear in the input images and output it in the form of a mask.
There are two difficulties with this approach. First, training the
fully convolution network requires pixel-level annotation. The
time cost of this annotation method is almost the same as that
of manually counting the number of ears in the image. Second,
the mask output by fully convolutional network is not directly
related to the number of wheat ears. Solving this problem usually
involves designing multifaceted post-processing steps. By using
object detection implementation counting, these problems can be
avoided effectively. In this way, people roughly mark the positions
of the upper left and lower right corners of the ears, and the
detection results can be directly converted to the number of
ears. Hasan et al. (2018) adopted R-CNN (Girshick et al., 2014)
and Madec et al. (2019) adopted the Faster-RCNN (Ren et al.,
2017) method to calculate the number of wheat ears. Later, more
researchers utilized object detection methods to model wheat
ear counting tasks (Mohanty et al., 2016; Xiong et al., 2019; Lu
and Cao, 2020). Therefore, wheat ear counting based on deep
learning was realized by object detection methods, which makes
the algorithm easy to be applied in practice.

With the rapid development of deep learning theory, object
detection methods based on deep learning have become a new
paradigm in machine learning in recent years. Compared with
traditional image processing technologies, Convolutional Neural
Networks (CNN) is invariant to geometric transformation,

illumination, and background differences. This feature
overcomes the deficiencies of many traditional technologies.
Since the advent of the R-CNN network in 2014, deep learning
has made rapid progress in object detection. Then YOLO
(Redmon et al., 2016), SSD (Liu et al., 2016), R-FCN (Dai et al.,
2016), etc. continuously refresh the object detection accuracy
level. In 2019, Google launched the EfficientDet family of
models and feature fusion module called BiFPN (Tan et al.,
2020). EfficientDet achieves state-of-the-art accuracy with
fewer parameters compared to the previous object detection
and semantic segmentation model. It contains a total of eight
versions from D0 to D7. The best results can always be achieved
under the constraints of the computing resources of different
devices. At the same time, BiFPN also shows the best efficiency
in multi-scale feature fusion. At present, the deep learning model
based on EfficientDet and BiFPN is being applied to a variety of
research fields, such as forest fire prevention (Xu et al., 2021),
estimation of fashion landmarks (Kim et al., 2021), detection of
garbage scattering areas (You et al., 2020), etc.

However, deep learning technology is not a universal method,
and there will be problems in wheat ear detection and counting
tasks. The species of wheat, for example, differ from other plants
in that individual wheat plants have multiple ears. Therefore,
there will be dozens of wheat ears in an image, which will cause
serious occlusion problems (Figure 1). Occlusion and overlap
will cause acute deviations in the detection and counting results
of the model. In the study of Hasan et al. (2018) and Madec et al.
(2019), counting accurately reached 86 and 91%, respectively.
However, it seems that the occlusion and overlap of wheat cannot
be effectively solved.

In this study, wheat ear counting adopts object detection
method. So, the main objective is aimed at improving the
EfficientDet-D0 model. In detecting and counting wheat ears, it
focuses on addressing the problems of occlusion and overlap in
the wheat ear images.

MATERIALS AND METHODS

In this study, the pipeline of the wheat ear counting algorithm
based on the EfficientDet-D0 model is shown in Figure 2.
The pipeline comprises four important parts: transfer learning,
Random-Cutout image augmentation, attention module, and
feature fusion module. First, the backbone network of the
Effcientdet-D0 is separately trained utilizing transfer learning.
Then Random-Cutout is used to augment the input images. After
that, the attention module will refine the feature map output
by the backbone network. Finally, feature fusion module fuses
feature maps with different resolution and semantic information,
followed by detection layer and Non-Maximum Suppression
(NMS) to obtain the final detection results.

Dataset and Platform
The data used in this study are from the public data set
called Global Wheat (David et al., 2020). Eight institutions lead
the data set in seven countries: University of Tokyo, Arvalis,
INRAE, University of Saskatchewan, ETH Zürich, University of
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FIGURE 1 | Wheat images in the Global Wheat dataset. (A) Different varieties, light, maturity (B) Examples for occlusion and overlap.

FIGURE 2 | The proposed pipeline for robust counting and detection of wheat eras.

Queensland, Nanjing Agricultural University, and Rothamsted
Research. To better gauge the performance for unseen genotypes,
environments, and observational conditions, this dataset covers

multiple regions, including Europe (France, United Kingdom,
Germany), North America (Canada), Asia (China, Japan), and
Australia. All the 3,365 images were randomly split into training
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set, validation set and test set without overlap. 2,693 (∼80%)
images were selected as the training set, 336 images (∼10%) were
used as the validation set, and the remaining 336 images (∼10%)
were used as the test set. The performance of the final model is
all obtained on the test set, and the data in the test set will never
participate in training.

In this work, all models are trained and tested on the same
device, which consists of an Intel E5-2603 V4 CPU, 1TB hard
disk, and two Titan X graphics cards. The operating environment
is Ubuntu16.0.4, tensorflow2.3.0 and Python3.7.

EfficientDet-D0 and BiFPN
The research in this article is based on DfficientDet-D0
object detection model. Its performance can surpass classic
one-stage networks such as YOLOV3 and SSD, but its
floating-point operations per second (FLPOS) is about 1/28
of homogeneous one-stage networks. Lightweight parameters
enable DfficientDet-D0 to be easily deployed to hardware in
practical applications, and the single inference time can satisfy
the real-time counting work.

EfficientDet-D0 consists of two principal parts: the backbone
network and the feature fusion module. Backbone is a model
downstream module that is stacked by multiple MBConv for
image feature extraction. Among them, the structure of MBConv
is similar to the residual block, and effective features are extracted
from the input through three steps. In the first step, MBConv
uses 1×1 convolution to increase the dimension of the input. The
second step is to extract the deep semantic features of the feature
map with increased dimension by using depthwise separable
convolution (Chollet, 2017). The third step is to integrate the
input of MBConv with the deep semantic features generated in
the second step as the final output.

A weighted feature fusion module BiFPN is proposed in the
EfficientDet series model, shown in Figure 3. Compared with

other superficial feature fusion layers such as FPN (Lin et al.,
2017) and PANet (Wang et al., 2019), the weighted connection
method is adopted inside BiFPN. All previous methods treat all
input features equally, but different input features at different
resolutions usually contribute unequally to the output features.
Through 3×3 convolution and 1×1 convolution to achieve
weighting of feature maps, the network model can learn the
importance of different feature layers. This method makes multi-
scale feature fusion more efficient. In CNN, low-level features
contain more location and detailed information, but because
less convolution layers are passed, they have less semantic
information and more noise. The high-level features are full
of semantic information, but the perception of details is poor.
BiFPN combines the two features, making the feature map have
the advantages of high-level feature maps and low-level feature
maps. In the authentic wheat ear detection task, BiFPN enables
the model to extract features at different scales. This significantly
improves the model’s multi-scale detection capabilities and
detection capabilities in complex backgrounds.

After BiFPN has processed the feature map of wheat ears, each
pixel of the feature map will be placed anchors. In EfficientDet-
D0, the number of is usually set to 9, and these have different
scales and aspect ratios. Then the classification layer model judges
whether each anchor point contains background or wheat ears
and returns the confidence. If the confidence is higher than 0.5,
the regression layer will fine-tune the upper-left and lower-right
coordinates of the anchor to make it closer to the real bounding
box. The result at this time cannot be directly applied to the
wheat ear counting. Since the detection process is based on an
anchoring mechanism, the position of the same wheat ear usually
corresponds to multiple overlapping candidate boxes. The NMS
algorithm is to delete those duplicate candidate boxes. If the
high-confidence candidate box is overlapped by some of the low-
confidence, the low-confidence candidate boxes will be deleted.

FIGURE 3 | Comparison of different feature fusion layer (A) FPN introduces a top-down pathway to fuse multi-scale features from level 3 to7 (P3-P7). (B) PANet
adds bottom-up pathway on top of FPN. (C) BiFPN with better and efficiency trade-offs.
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After NMS, the wheat ears will be independently labeled, and the
number of detection results can be counted by the computer to
complete the end-to-end wheat ear counting.

Backbone Training Using Transfer
Learning
The predictive ability of the CNN model largely depends on the
size of the data set. The more abundant the data, the better the
CNN model’s ability to extract image features. However, not every
computer vision problem can obtain sufficient data. In this case,
it is extremely difficult to train a model from scratch. Transfer
learning provides a simpler and faster method. Before starting
to train, the backbone of the CNN model is pre-trained on a
huge data set. ImageNet (Shorten and Khoshgoftaar, 2019) is
a commonly used transfer learning data set. It includes more
than 14 million common images, which can provide sufficient
materials for CNN training. The pre-trained backbone is sensitive
to the features of the image. The trained backbone is then
transferred back to the model and all parts of the model are fine-
tuned using experimental data. In this way, an excellent CNN
model is trained with a small amount of data.

However, there are domain gaps in the marginal distribution
of ImageNet datasets and wheat datasets, and the task similarity
is weak. Due to these differences, the backbone network pre-
trained on the ImageNet dataset does not have a strong
perception of the wheat ear features. Such a direct transfer
learning method cannot get the best backbone in wheat ear
detection. A serious domain shift cannot exist between learning
data and training data, so a dataset was specially constructed

for the pre-training backbone in this research. For a better
description, this data set is defined as D1, and the wheat ear
data is defined as D0. Data set D1 consists of two parts,
D0 and non-wheat data. Non-wheat data includes 2,256 rice
images, 561 oat images, and 274 drilgrass images. The appearance
of these three crops is very close to wheat. The D1 dataset
is used to train the classification task of the EffcientDet-D0
backbone with fully connected (FC) layer and classification layer
(Figure 2). The goal of classification is to distinguish whether
the image is wheat. It is not easy to accurately classify these
crops, not only does the backbone need to be sensitive to
simple features, but it also needs to have a strong perception
of high-level semantic features of wheat ears. Figure 4 shows
the output of the middle layer of the backbone and the
classification results.

Wheat Ear Counting Under Occlusion
Condition
Occlusion and overlap are the primary problems faced in wheat
ear detection and counting. To improve the detection accuracy,
these problems must be considered in the algorithm design. This
article proposes an effective solution to solve the occlusion and
overlap in wheat ear detection. First, in the image preprocessing
stage, Random-Cutout is used to augment the image so that the
model can fully learn these tricky occlusion areas. Secondly, in
the model, the adoption of the CBAM attention module can
refine the features of occluded wheat ears; therefore, it makes the
model detect the wheat ears from the cluttered background, while
reducing the interference of background and occlusion areas.

FIGURE 4 | Backbone pre-training results. (A) The first 24 features of the fifth convolution layers for backbone. (B) The classification results for backbone with full
connection layer and classification layer.
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Random-Cutout for Occlusion Image Augmentation
To broaden the diversity of samples and increase the
model’s priori knowledge of the occlusion problem, an image
augmentation method is proposed for dense object detection.
In an image of wheat ears, the occurrence of occlusion and
overlap is often related to the distribution of wheat ears. In
order to simulate the occlusion under real conditions better,
some rectangles are randomly erased. In the existing approaches,
such as Cutout (Devries and Taylor, 2017) and Random Erasing
(Zhong et al., 2020), the completely random positions of a fixed
size of the image were occluded. If these methods are applied
to wheat ear counting, a few wheat ears in the image may be
totally occluded and these areas will be processed as noise
data (Figure 5).

Random-Cutout generates occlusion area randomly to meet
the wheat ear growth distribution and avoid the negative
effects of excessive and insufficient occlusion on model training.
Depending on the distribution of real occlusion in the images, the
proposed Random-Cutout algorithm combines position and size
information to generate the simulated occlusion area. In terms
of the location, the probability of occlusion in dense areas of
wheat ears is much higher than that in sparse areas. However, it
is important to emphasize that this does not mean that occlusion
does not occur in sparse areas. Occlusion and overlap are also
commonly associated with wheat leaves and stems. In terms
of size of random occlusion, the core is to occlude wheat ears
effectively without completely losing the context information.
In the wheat ear dataset, the wheat ear scales in images with
different field of vision are greatly different, which means that
the occlusion size generated by the algorithm cannot be set to
a fixed value. When the occlusion size of a large wheat ear
is applied to the images of small scales wheat ears, a lot of
valid context information in the image will be erased directly.
Therefore, the occlusion size generated by the Random-Cutout
should be adjusted adaptively according to the size of the wheat
ears in the current image.

The flowchart of the Random-Cutout is shown in Figure 6.
First, Probability Map is generated according to the distribution
of wheat ears in the images to determine the approximate location
of the simulated occlusion. The value of each pixel is defined as
a probability value I, in which the value of the cold color area is
low, and the value of the warm color is high. Next, Center Point
Proposal is generated according to the Probability Map. At this
time, there may be hundreds or thousands of candidate center

points, and the total number of them needs to be adjusted to
a suitable value N. It is necessary to randomly select N center
points from all Center Point Proposal according to the number of
objects in the images. Finally, a rectangle of random length H and
width W is initialized from these center points and superimposed
to the original images. H and W are closely linked to the size of
wheat ears in the image. We conducted a lot of experiments to
determine the settings of the above parameters, which are shown
in Table 1.

CBAM for Refining Features of Partially Occluded
Wheat Ears
Using the visual attention mechanism in multi-object detection
model is an effective way to overcome occlusion and overlap
problems. The attention module concentrates “Resources” on
salience areas of the image and extracts global information from
these fine-grained features. Therefore, the model can quickly
filter out unwanted information and focus on the region of
interest (Laskar and Kannala, 2017).

Convolutional block attention module (Woo et al., 2018) is
one of the most effective attention modules. CBAM refines the
feature map by calculating the weight of the features in space
domain and channel domain (Figure 7). For feature map F ∈
RW × H × C, each channel can be regarded as a feature in the
images extracted by CNN. By aggregating the relations between
channels in the feature map, channel attention module can obtain
the “what” features that should be paid attention to in the images.
Channel attention module first uses global average pooling and
global max pooling operations to generate two different channel
context descriptors: Fc

avg and Fc
max, which represent average-

pooled features and max-pooled features. Then these two features
are input into a weight sharing module to generate a channel
attention vector MC ∈ RC × 1. The weight sharing module is a
multilayer perceptron (MLP) with hidden layer. The hidden layer
size is set to RC/r × 1, where, r is the scaling factor. After applying
the shared network to each descriptor, the attention feature is
generated by element-wise summation. Equation 1 shows how
channel-wise attention is generated (Woo et al., 2018):

Mc (F) = σ
(
MLP

(
AvgPool (F)

)
+MLP

(
MaxPool (F)

))
= σ

(
W1

(
W0

(
Fc

avg

))
+W1

(
W0

(
Fc

max
)))

(1)

FIGURE 5 | Erasing illustration for different methods: (A) input image, (B) cutout (erased rectangles marked in white), (C) random Erasing (erased rectangles marked
with random noise), and (D) Random-Cutout (erased rectangles marked in white).
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FIGURE 6 | The schematic layout of the Random-Cutout.

TABLE 1 | The setting of hyper-parameters in Random-Cutout in this research.

Definition of parameters Mathematical definition

I The initial probability value of each pixel point is 0.001. When wheat ears exist at this pixel point, the probability value of the
pixel point is the initial value plus the number of wheat ears multiplied by 0.003

Ii = 0.0010.003 × ni

N 1/4 of the number of wheat ears in the image N = Ntotal/4

H Random number between one quarter of the minimum length and one quarter of the maximum length of the wheat ear in
the image

∀H ∈
⋃(

1
4 × Hmin, 1

4 × Hmax

)
W Random number between one quarter of the minimum width and one quarter of the maximum width of the wheat ears in

the image
∀W ∈

⋃(
1
4 × Wmin, 1

4 × Wmax

)

where, σ represents the sigmoid function, W0 ∈

RC/r × C,W1 ∈ RC/r × C/r indicates the weight of MLP, W0,
W1 share two inputs and ReLU activate function.

After generating the attention on the channel, the spatial
attention can be generated through the pooling operation.
Compared with channel-wise attention, spatial-wise attention is
constructed more explicitly. The purpose of the spatial attention
module is to obtain the prominent region in the image, that
is, “where” the image needs to be paid attention to. The spatial
attention module first uses max pooling and average pooling
along the direction of the feature map channel to obtain two
spatial descriptors: Fs

avg and Fs
max. In order to have a larger

spatial receptive field for the two descriptors, a larger pool filter
is usually used in this step, e.g., 7 × 7, 15 × 15. After that, spatial
attention module concatenates two spatial descriptors and uses a
convolution layer to generate spatial-wise attention, Equation 2
shows how spatial-wise attention is generated (Woo et al., 2018):

Ms (F) = σ
(
f 7 × 7 (

[AvgPool (F) ;MaxPool (F)]
))

= σ
(

f 7 × 7
([

Fs
avg; F

s
max

]))
(2)

where, σ represents the sigmoid function. f 7 × 7 represents a
convolution with a convolution kernel size of 7 × 7.
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FIGURE 7 | The process of CBAM module generating channel attention and spatial attention.

After generating channel-wise attention and spatial-wise
attention, the feature map can be refined twice by element-wise
multiplication, this process can be described as Equation 3:

F· = Mc (F)⊗ F

F·· = Ms
(
F·
)
⊗ F· (3)

where, F· and F·· represent the first and second refinement
results of the feature map, respectively, ⊗ represent element-
wise multiplication.

The wheat ears are distributed in a messy background,
therefore, CBAM play an extraordinary role. In this
study, five CBAM are added between the EffcientDet-D0
backbone and the feature fusion layer BiFPN (Figure 2).
Five feature maps of different scales outputted by the
backbone network will be used as the training input in
the attention modules, so that the model can effectively
get the features of different spatial information and
semantic information.

FIGURE 8 | The effect of learning rate on loss.

Criteria for Performance Evaluation
Evaluation indicators are objective evaluation criteria for the
results of the algorithm. In different tasks, the evaluation
indicators are different. In this study, counting accuracy rate (P),
false detection rate (O), and frames per second (FPS) are used
as performance indicators. Counting accuracy rate is the ratio
between the correct number of wheat ears and the actual number
of wheat ears, while false detection rate is the ratio of the number
of wheat ears detected incorrectly to the total number detected.
Equation 4 gives the definition of these two evaluation criteria.

P =
Ncor

Nreal
, O =

Nerr

Nnum
(4)

where, Ncor is the number of wheat ears that the model
detects correctly, and Nerr is the number of errors detected by
model. Nreal represents the actual number of wheat ears in the test
image. Nnum represents the total number detected by the model.

frames per second is an index to evaluate the inference speed
of the model, which indicates how many images the model can
process per second. Usually only when the FPS reaches 24 or
more, this model is possible to achieve real-time detection. FPS

FIGURE 9 | Loss function curve.
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is defined as shown in Equation 5:

FPS =
1
T

(5)

where, T denotes the time used by the model to infer the image.

Hyper-Parameter Configuration and
Learning Rate Optimization
In order to ensure reasonableness, the same hyper-parameters
are set in the comparison experiments. The stochastic gradient

descent (SGD) method is used to optimize the training of the loss
function. Batch size and epoch are set to 12 and 300, respectively.
The learning efficiency will be reduced by 50% every 30 iteration.
At the same time, to prevent over-fitting, an early stopping
strategy is set. When the loss of the verification dataset does not
reduce or rise in 5 iterations, then the training will stop early.

Learning rate controls the speed of gradient descent during
CNN training (Equation 6). If the learning rate is set too small,
the convergence process of the model will be slow. If the learning
rate is set too large, the gradient will oscillate repeatedly near the

FIGURE 10 | Detection results of the two networks. (A) EfficientDet-D0 (Some obvious missed detections are highlighted by yellow arrows). (B) The improved
EfficientDet-D0.
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FIGURE 11 | The results of the two networks on the overlap. (A) EfficientDet-D0. (B) The improved EfficientDet-D0.

minimum or even fail to converge.

θi̇+1 = θi − α
∂

∂θi
L (θi) (6)

where, θi represents the parameters that need to be updated
during the i-th iteration, α represents the learning rate, and L
represents the loss function.

In this study, we compared the influence of different levels of
learning rate on the final loss value of the model (Figure 8) and
found that the learning rate is optimal under the order of 10e-4.

It should be noted that the loss function (L) consists of
two parts, classification loss function (Lclass) and regression
loss function (Lreg), as shown in Equation 7. The purpose of
optimizing Lclass is to allow the network to distinguish wheat ears
and background, and the purpose of optimizing Lreg is to enable
the network to locate these wheat ears accurately.

L = Lclass + Lreg (7)

RESULTS AND ANALYSIS

In this section, comparative experiments are first done to
show that the modifications, such as transfer learning, image
augmentation and CBAM, works in performance promotion.
Then comparative experiments are done to show the superiority
of the proposed algorithm.

Performance Comparison With
EfficientDet-D0
In the comparison experiments, we first compared the improved
EfficientDet-D0 with the original one. Figure 9 shows the
loss function curve of the model in four cases during
the training process. To make the difference obvious, the
curves in the figure are smoothed. Regardless of whether
the improved model is under transfer learning conditions,
the loss value is greatly reduced. It can be seen that the

transfer learning method also played a role in the experiment.
The loss of the model with and without transfer learning
is reduced by 0.101 and 0.122, respectively. In terms of
detection ability, our improved model has been significantly
improved. The detection results of EfficientDet-D0 show that
there are many omissions in the intensive area, but the
number of missed wheat ears with our model is significantly
reduced (Figure 10).

At the same time, it is found that the improved EfficientDet-
D0 model has dramatically reduced the impact of occlusion
on the detection results. Before the improvement, the model
distinguished multiple adjacent wheat ears into one, which was
most serious in the dense area of wheat ears. The proposed
method greatly overcomes this drawback. We selected several
severely occluded images in the data set and tested them on two
models, respectively; the results are shown in Figure 11. The
results show whether occlusion between the wheat leaves and ears
or overlap between wheat ears, the proposed network has been
dramatically improved (Table 2).

To visualize the difference of the improved EfficientDet-D0
and the original one, the Class Activation Mapping (CAM) (Zhou
et al., 2016) is used to show the difference in network feature
extraction (Figure 12). The thermodynamic features of different
colors reveal the “attractiveness” of the regional network. Among
them, the red area represents the most significant influence on
the network. As the color changes from red to yellow, and finally
to blue, it means that the influence gradually decreases.

TABLE 2 | The missed detection rate of the two models under types of occlusion.

Types of occlusions EfficientDet-D0 (%) Proposed (%)

Overlap between wheat ears and wheat
ears (265 images)

13.8 8.7

Leaves cover wheat ears (112 images) 5.2 3.3

Wheat ears were not fully photographed
(81 images)

2.1 0.9
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TABLE 3 | Peformance comparison of different CNN methods.

Method Transfer learning Backbone O (Average ± STD) (%) P (Average ± STD) (%) FPS

YOLOv3 × Darknet-53 7.3 ± 0.57 90.3 ± 0.46 23

SSD × VGG-16 8.6 ± 0.86 88.1 ± 0.14 22

Faster-RCNN × Resnet-50 6.3 ± 0.21 91.1 ± 0.53 16

EfficientDet-D1 × EfficientNet-B1 6.5 ± 0.55 91.6 ± 0.45 27

EfficientDet-D0 × EfficientNet-B0 6.7 ± 0.46 90.8 ± 0.87 35

Proposed × EfficientNet-B0 6.3 ± 0.33 92.9 ± 0.07 30

EfficientDet-D1
√

EfficientNet-B1 6.1 ± 0.14 93.1 ± 0.35 27

EfficientDet-D0
√

EfficientNet-B0 6.4 ± 0.77 92.5 ± 0.28 35

Proposed
√

EfficientNet-B0 5.8 ± 0.12 94.2 ± 0.19 30

The bold font represents the best result in the experiment.

FIGURE 12 | The CAM of Test images using two networks. (A) Test images. (B) The CAM of test images with EfficientDet-D0. (C) The CAM of test images with the
improved EfficientDet-D0.
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Performance Comparison of Different
CNN Methods
By displaying some results in Figure 10, it can be observed that
both original EfficientDet-D0 and the improved one has high
ability to detect wheat ears under different lighting, background,
and scales, which shows the advantages of CNN in such problems.
Therefore, in order to evaluate the improved model more
comprehensively, we compared it with other CNNs. In previous
counting studies, models such as Faster-RCNN, YOLOV3, SSD
are often used (Xu C. et al., 2020). We have compared the
proposed method with these models and the results are shown in
Table 3. According to the results, although the YOLOV3 and SSD
models can achieve real-time detection in forwarding inference,
it has a high false detection rate and a little effect on dense multi-
object detection tasks. It cannot complete the task of detecting
and counting wheat ears well. Faster-RCNN is a classic two-stage
neural network. The counting accuracy rate of Faster-RCNN is
0.3% higher than that of Efficientdt-D0, and the false rate is 0.4%
lower. But its accuracy is still about 1.3% lower than our model
and its inference time is the longest.

We also did some experiments to compare the higher
version of EfficientDet-D0 (i.e., EfficientDet-D1). The accuracy
of the EfficientDet-D1 increased by 0.7% compared with
the EfficientDate-D0 model and the improved EfficientDet-D0
increased by 1.6% (Table 3).Since EfficientDet-D1 is a general-
purpose object detection model that improves accuracy by
expanding the size of the backbone and feature fusion modules to
extract better feature expressions, this results in a decrease in the
effective inference speed of EfficientDet-D1 by 22%. In contrast,
the improved EfficentDet-D0 model was designed specifically for
wheat ear detection to improve accuracy by reducing occlusion
interference. CBAM reduced the inference speed by about 15%,
but this was the tradeoff with the improvement in accuracy.
In terms of false detection rate, the improved EfficientDet-
D0 is 0.3% lower than EfficientDet-D1 and 0.6% lower than
EfficientDet-D0. Although the accuracy increases, the error rate
of the improved model does not decrease significantly. The
reason is to ensure that as many ears as possible are detected in
the post-processing process, the confidence threshold is usually
set to a small value, which will cause some proposed regions that
do not contain ears to be leaked.

From the results in section “Performance Comparison With
EfficientDet-D0” and section “Performance Comparison of
Different CNN Methods,” it can be seen that transfer learning is
an effective strategy in wheat ear detection. In transfer learning,
the data do not need to be finely labeled, and only the categories
they belong to are roughly labeled. After using transfer learning,
the false detection rate of EfficientDet-D1, EfficientDet-D0 and
the improved EfficientDet-D0 was reduced by 0.4%, 0.3% and
0.5%, while the counting accuracy rate was increased by 1.5, 1.7,
and 1.3%, respectively.

CONCLUSION

In this article, we proposed a novel wheat ear counting
algorithm. Importantly, we focus on the occlusion and overlap

problems that exist under the actual growth conditions of
wheat ears. Farmers and breeders take images of wheat
under a certain area in the wheat field and our proposed
algorithm can automatically calculate the number of wheat
ears in that area, which is helpful to evaluate and predict the
level of wheat yield.

The main contributions come from the three key procedures
of the proposed method. First, the transfer learning method is
employed to extract the high-level semantic features of wheat
ears. Secondly, an image augmentation method Random-Cutout
is proposed to simulate occlusion in real wheat images. Finally,
convolutional block attention module (CBAM) is adopted into
the EfficientDet-D0 model to refine the features and pay more
attention to the wheat ears.

Extensive experiments show that the counting accuracy
of the proposed algorithm reaches 94% and false detection
rate is 5.8%. The performance evaluation shows that
the proposed method is invariant to illumination and
scale changes. Simultaneously, the proposed method had
high accuracy and strong robustness for occlusion and
overlap problem. We firmly believe that human beings will
benefit from automatic wheat ear counting by machines,
thereby reducing manual counting errors. Moreover, it
greatly reduces the labor cost. The proposed model can
be used as a post-processing method to plan the wheat
harvesting and storage.

The methods used in this research can achieve accurate
counting of wheat ears, but the research will never stop here.
In the future, we will envisage using this method in more crop
counting work such as apple counting, etc. Moreover, we will
apply the Random-Cutout image augmentation method to more
fields, not limited to agriculture, to prove its robustness to solve
the occlusion problem.
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