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INTRODUCTION

Continued increases in genetic gain demonstrate the success of established public and private plant
breeding programs. Nevertheless, in the last two decades, a growing body of modern technologies
has been developed and now awaits efficient integration into traditional breeding pipelines. This
integration offers attractive benefits, yet comes with the challenges of making modifications in
established and operational systems, a recent example of which is rice breeding (Collard et al.,
2019). Newly available technologies, genomics rapid cycling (Crossa et al., 2017), high throughput
phenotyping (HTP, phenomics) (Montesinos-López et al., 2017) and historical descriptions of
environmental relatedness (enviromics) (Costa-Neto et al., 2020a,b; Resende et al., 2020; Rogers
et al., 2021) are crucial to improving conventional breeding schemes and increasing genetic gain.
Integrating these new technologies into routine breeding pipelines will support the delivery of
cultivars with robust yields in the face of the expected unfavorable future environmental conditions
caused by climate change and the consequently increased occurrence of biotic and abiotic stresses.
Here, we briefly describe the use of these technologies and their implementation to provide
cost-effective and time-saving approaches to plant breeding. We also give an overview of the
interconnections between these techniques. Finally, we envision future perspectives to implement
a more interconnected breeding approach that takes advantage of the so-called modern plant
breeding triangle: integrating genomics, phenomics, and enviromics.

Why Genomics for Improving Breeding?
One of themost popular uses of genomics in breeding is the prediction of breeding values. Genomic
selection (GS) reduces cycle time, increases the accuracy of estimated breeding values and improves
selection accuracy. For instance, in maize, the effectiveness of GS has been proven for the case of
bi-parental populations (Massman et al., 2013; Beyene et al., 2015; Vivek et al., 2017), as well as
in multi-parental populations (Zhang et al., 2017). Its use has also been documented in species
with long generation times such as trees (Grattapaglia et al., 2018) and dairy cattle breeding, where
the reduction of the breeding cycle has increased the response to selection in comparison with the
progeny testing system (García-Ruiz et al., 2016).

Genomic selection has been implemented in many crops, including wheat, chickpea, cassava
and rice (Roorkiwal et al., 2016; Crossa et al., 2017; Wolfe et al., 2017; Huang et al., 2019), and
the number of programs that are moving from “conventional” to GS is growing. Results in wheat
show that genomic predictions used early in the breeding cycle led to a substantial increase in
performance in later generations (Bonnett et al., 2021 this issue).
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Defining Foundational Core Parents for Genomic

Selection-Assisted Breeding
In genomic selection, the optimization of the training set
composition is an important topic because training and testing
sets should be genetically related in such a way that the genetic
diversity present in the testing set could be covered and captured
by the diversity in the training set. Breeding programs must start
forming initial foundational core parents (training populations)
that represent the genetic diversity found in the current progeny
and conform to the testing population(s) to the greatest extent
possible (Hickey et al., 2012). These foundational parents should
be extensively phenotyped in different target populations of
environments and genotyped with high-density marker systems.
These training sets of foundation parents will be able to produce a
model with a high accuracy for current highly selected progenies
(Zhang et al., 2017).

Why Detailed Phenomics and the Use of
Multi-Trait Analysis to Improve Breeding?
The most important limitation to determining accurate
phenotypes has been the time and cost required to measure traits
in the field. Field phenomics aims to study all plant phenotypes
under a range of environmental conditions. Modern phenomics
methods are able to use hyperspectral/multispectral cameras
to provide hundreds of reflectance data points at discrete
narrow bands in many environments and at many stages of
crop development. Phenotyping technology can now be used to
quickly and accurately obtain data on agronomic traits based
on advancements in plant phenotyping technologies (Atkinson
et al., 2018). Therefore, the main goal of a high-throughput
phenotype (HTP) is to reduce the cost of data per plot and
to increase the prediction accuracy early in the crop-growing
season with the use of highly heritable secondary phenotypes,
closely related to the selection phenotypes. The cost of processing
HTP data can be minimized by using open-source software, such
as FieldImageR (Matias et al., 2020).

There is evidence that multi-trait analyses improve prediction
accuracies when the genetic and residual correlations are
considered in the modeling process. New genomic models that
take the multiple traits and the multiple environments into
consideration, along with trait× environment, trait × genotype,
and trait × genotype × environment interactions, offer a huge
potential for the exploitation of correlations between different
variables and for the differentiation between effects. Integrating
current GBLUP multi-trait models with models that consider
the environmental information with the two- and three-way
interaction terms provides a powerful, unified, whole genome
prediction model.

The Bayesian multi-trait and multi-environment model
(BMTME) (Montesinos-López et al., 2016, 2019a) allows for
general covariance matrices for traits and environments that
capture the correlations among traits and environments better.
This unified model could be implemented to select genotypes
with traits measured in one environment and to predict in other,
untested environments. It could also be applied to predict traits
that are costly or difficult to measure in all environments.

It is crucial to obtain large and inter-operable phenomics
datasets from field phenotyping. This should be used to
characterize the foundational core parents in the different
environments and incorporate them into the visual data collected
in the different environments. These data, along with pedigree
and genomic information, can be used to fit Bayesian linear
mixed models to compute BLUPs of the genetic values of the
material in the training set. Breeding programs should collect
multi-trait data on the multi-environment used for foundational
core parents and exploit possible correlations among traits that
will eventually increase prediction accuracy. The genomics and
phenomics of themulti-trait foundation core parents are essential
for use alongside enviromics data.

Why Enviromics to Improve
Multi-Environment Trials for
Genomics-Assisted Plant Breeding?
The phenotypic variation observed across diverse environments
is a product of genetic and environmental variation. Thus,
enviromics acts as a central bottleneck for the application of
modern genomics-assisted prediction tools, especially for use
across multiple environments. Novel approaches have integrated
field trial data with DNA sequences using different sources of
enviromics, such as linear and nonlinear reaction-norm models
(e.g., Jarquín et al., 2014; Morais-Júnior et al., 2018; Millet et al.,
2019; Monteverde et al., 2019; Costa-Neto et al., 2020a), crop
growth model (CGM) outputs (Heslot et al., 2014; Rincent et al.,
2017, 2019), CGM integrated with GS (Cooper et al., 2016;
Messina et al., 2018; Robert et al., 2020) and historical weather
records to predict cultivars in years to come (de los Campos et al.,
2020).

For example, the strategy proposed by de los Campos et al.
(2020) assesses genomic× environment (G× E) patterns learned
from field trials and predicts the expected performance of a
cultivar in an environment but also evaluates the expected
distribution of a cultivar performance over other possible
weather conditions, while accounting for uncertainty in model
parameters. This is a new method for the analysis of multi-
environment trials and can speed up the assessment of grain yield
adaptability and stability.

Another recent example is the approach that can increase
the resolution in multi-environment prediction for stability
by taking advantage of large-scale enviromics with different
kernel methods (Costa-Neto et al., 2020a). The environmental
relatedness among field trials can be shaped using linear
covariances (as proposed by Jarquín et al., 2014) and non-
linear methods (Gaussian kernel, deep learning, and deep kernel)
(Cuevas et al., 2016, 2017, 2018, 2019; Montesinos-López et al.,
2018a,b, 2019b,c). The use of non-linear kernels has led to
higher accuracy gains in the prediction of novel genotypes
under known conditions, but mostly in the prediction of novel
environment conditions (untested environments). This approach
was expanded to take account of several environmental structures
across different crop development stages (Costa-Neto et al.,
2020b). For the latter, the authors observed an increased ability
to explain G × E in terms of genotype-specific reaction norms
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for key environmental factors or key development stages. This
increased ability to explain G × E was important to achieve
higher accuracy gains in comparison with models without
enviromic information.

In a recent research article, Rogers et al. (2021) emphasized
the importance of incorporating high throughput environmental
data into genomic prediction models in order to carry out
predictions in new environments characterized with the same
environmental characteristics. The author concluded that,
among other factors, G × E interactions and environmental
covariates should be incorporated into prediction models to
improve prediction accuracy.

Interconnection in Modern Plant Breeding
Progress toward the modernization of the statistical and
quantitative genetic models for the analysis of plant breeding in
multi-environment trials has become clearer as the availability
of genomics, phenomics, and environments information has
increased (see, among others, Vargas et al., 1998; Crossa et al.,
2010; Burgueño et al., 2012; Heslot et al., 2014; Jarquín et al.,
2014; Montesinos-López et al., 2017; Millet et al., 2019; Costa-
Neto et al., 2020a; de los Campos et al., 2020; Robert et al.,
2020). Thus, we see that all the elements described above
offer a clear potential for the acceleration of genetic gains in
plant breeding. However, an efficient data-based integration is
required to achieve greater opportunity, particularly in terms of
increasing prediction accuracy. Some of the major links between

genomics, phenomics, and enviromics are outlined below, and
their potential impacts are summarized in Figure 1.

Linking Genomics and Phenomics
Linking massive data sets from genomics and phenomics has
complexities that require statistical models to deal with a
very large number of correlated predictors. Montesinos-López
et al. (2017) proposed linking genomics and phenomics with
Bayesian functional regression models that consider all available
reflectance bands (250 bands or wavelength), genomic or
pedigree information, the main effects of lines and environments,
as well as the effects of interaction. They observed that the
models with wavelength × environment interaction terms were
the most accurate for the prediction of performance in three
different environments and at various crop development time
points. The functional regression models are parsimonious
and computationally efficient because the mathematical basis
functions allow the selection of only 21 beta coefficients (rather
than using all 250). Recently, Lopez-Cruz et al. (2020) proposed
a method to predict the genetic merit of cultivars from
high-dimensional HTP data by integrating high-dimensional
regressions into the standard selection index methodology.

Linking Multi-Trait and Multi-Environment
Data
Multi-trait multi-environment data (MTME) take advantage of
large-scale correlations among different traits evaluated across

FIGURE 1 | The modern plant-breeding triangle incorporates genomics, phenomics, and enviromics. Connections between each of these elements can be beneficial

for the acceleration of genetic gains.
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diverse environments to train accurate GS models. Because of
this, the use of GS in MTME data is a promising approach
to reduce field phenotyping efforts. For example, Ibba et al.
(2020) evaluated the prediction performance of 13 quality traits
in wheat using two multi-trait models and five data sets based
on field evaluations over two consecutive years. In the second
year (testing), lines were predicted using the quality information
obtained in the first year (training). For most of the quality traits,
they found moderate to high prediction accuracies, suggesting
that the use of GS at earlier stages could be recommendable.
Overall, the results indicate that the BayesianMTMEmodel helps
capture the correlation among traits and the correlation among
years, thus increasing prediction accuracy. Finally, we envision
perspectives of modelingMTME-based reaction norms involving
other omics, such as phenomics and enviromics. The latter can
enhance the MTME analysis in terms of creating more biological
models of crop growth, development, and yield components (e.g.,
Robert et al., 2020).

Interplay Genomics and Enviromics
Since the 1960s, several researchers have suggested the use of
environmental information to explain the differences in cultivars
due to G× E interactions (e.g., Perkins and Jinks, 1968; Freeman
and Perkins, 1971; Wood, 1976; Vargas et al., 1998; Crossa et al.,
1999). The use of genomics with enviromics is the basis for the
prediction of cultivars across diverse growing conditions (e.g.,
Jarquín et al., 2014; Messina et al., 2018; Millet et al., 2019), which
is useful for the prediction of global warming.

However, the efforts to implement environmental covariates
into genomic selection models usually focus on a few
environmental covariates such as temperature, precipitation,
and sun radiation defined over specific developmental stages of
the crop. With the use of large-scale envirotyping data, it is
possible to design a global-scale envirotyping network of field
trials to train GS models and perform “enviromic assembly” to
predict a wider number of growing conditions from historical
climate and soil data (R package EnvRtype, Costa-Neto et al.,
2020b). In addition, research is underway for the study of model
Enviromic + Genomic prediction (E-GP) to link genotype-
phenotype variations, as well as to explain phenotypic variations
across environments. As a predictive breeding tool, E-GP can
contribute to the study of G × E structures, in which, as an
exploratory tool, E-GP can contribute to the optimization of
experimental networks of field trials and lead to more efficient
training sets for GS (e.g., Rincent et al., 2017). In addition, for the
early stages of selection, genomics and enviromics can be used
to design optimized phenotyping trials and predict the breeding
values of the selection candidate (Morais-Júnior et al., 2018) or
single cross-hybrid prediction (Costa-Neto et al., 2020a).

Through enviromic assembly, it is possible to establish
relatedness among field trials and thus use only the most
representative set of experiments for training GS models.
Another perspective of E-GP is the use of large-scale

environmental data in training models involving genotype-
specific reaction norms (e.g., Ly et al., 2018; Millet et al.,
2019) and phenotypic landscapes implemented by genomics
with crop growth models (CGM) (e.g., Messina et al., 2018;
Bustos-Korts et al., 2019; Robert et al., 2020). The possible
use of image-based responses related to main environmental
stresses, such as heat and drought-stress, can also boost
the implementation of genomic-assisted platforms for
predictive purposes and are capable of better representing the
plant-environment interplay.

Future Perspectives
In order to meet the well-documented challenges of food
and nutrition security, there is a pressing need to use new
technologies to accelerate the progress of plant breeding.
These methods can be incorporated into conventional
phenotypic breeding programs or help redesign established
phenotypic breeding pipelines to enable a gradual shift toward
a more data-driven perspective. The benefits of phenomics
and enviromics together in benchmark genomic pipelines
offer the potential to deliver larger increases in accuracy
and efficiency of breeding pipelines when we select better-
adapted genotypes in a cost-effective manner, as well as in a
reduced timeframe. Genomics, phenomics, multi-trait, and
enviromics analyses are interconnected, and their use can
be optimized based on resources and program structure.
Together, they offer a pathway for conventional phenotypic
breeding to envision a diverse set of opportunities to accelerate
genetic gains.
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