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Aligning short-read sequences is the foundational step to most genomic and transcriptomic 
analyses, but not all tools perform equally, and choosing among the growing body of 
available tools can be daunting. Here, in order to increase awareness in the research 
community, we discuss the merits of common algorithms and programs in a way that 
should be approachable to biologists with limited experience in bioinformatics. We will 
only in passing consider the effects of data cleanup, a precursor analysis to most alignment 
tools, and no consideration will be given to downstream processing of the aligned 
fragments. To compare aligners [Bowtie2, Burrows Wheeler Aligner (BWA), HISAT2, 
MUMmer4, STAR, and TopHat2], an RNA-seq dataset was used containing data from 
48 geographically distinct samples of the grapevine powdery mildew fungus Erysiphe 
necator. Based on alignment rate and gene coverage, all aligners performed well with the 
exception of TopHat2, which HISAT2 superseded. BWA perhaps had the best performance 
in these metrics, except for longer transcripts (>500 bp) for which HISAT2 and STAR 
performed well. HISAT2 was ~3-fold faster than the next fastest aligner in runtime, which 
we consider a secondary factor in most alignments. At the end, this direct comparison 
of commonly used aligners illustrates key considerations when choosing which tool to 
use for the specific sequencing data and objectives. No single tool meets all needs for 
every user, and there are many quality aligners available.

Keywords: short-read sequencing, alignment, comparison, accuracy, runtime

INTRODUCTION

Sequence aligning tools, which determine where small sequence fragments align to a larger, 
“reference” genome or transcriptome sequences are an essential part of any toolkit for modern 
whole genome and transcriptome analyses. However, the plethora of available tools (Dobin 
et  al., 2013; Li, 2013; Kim et  al., 2015) and regular addition of new tools make it difficult 
to decide which tool is best for the specific data set being analyzed. Even older tools can 
perform admirably, if not optimally, negating the mindset that “newer is better.” Therefore, 
being able to parse out the merits of existing, and future, tools is of great benefit to the wet 
lab biologist. Determining a fragment’s location in the reference allows for diverse applications, 
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ranging from agricultural benefits like identifying how abiotic 
stresses can protect a crop from a fungus (Weldon et al., 2019) 
to discovering vulnerabilities and susceptibilities in a novel 
human virus such as COVID-19 (Kim et  al., 2020).

To align sequenced reads, an aligner must first fragment 
the reference genome into smaller components. Each fragment’s 
location and sequence content are then stored in a data structure. 
The type of data structure used highly impacts an aligner’s 
overall runtime and memory usage. Indexing the reference 
genome allows for an aligner to work more efficiently by finding 
all exact matches to a sequenced read using a single lookup 
in the given data structure and not scanning the entire reference 
genome from start to finish for each read. As aligners have 
evolved over the years, the major algorithmic change that has 
evolved with them has been the refinement of the data structure 
used for indexing the reference sequence. When aligners were 
initially available for public use in the late 1990’s, the data 
structure being used to index the reference sequence was that 
of a suffix tree (Delcher et  al., 1999). Although effective for 
indexing, suffix trees are known in the computing world to 
require a large amount of memory for their creation, with 
the human genome needing roughly 45  GB of space in suffix 
tree form (Kurtz et  al., 2004). This large memory usage was 
a major drawback for early aligners as these tools would struggle 
to run on even today’s computers and would be  reserved for 
use on research servers only. Reducing memory usage was 
the major goal of future tools and resulted in the use of the 
FM-Index as the major data structure being used by nearly 
all of today’s aligners.

Most modern aligners use a Full-text index in Minute space, 
or FM-Index (Figure 1), as the genome index structure because 
it performs well in both overall runtime and memory usage 
(Ferragina and Manzini, 2000). The most important component 

of the FM-Index is its use of the Burrows-Wheeler transform 
(BWT) of the reference genome. The BWT is created by first 
building an array of suffix rotations that appear in the genome 
itself starting with the full genome as the first suffix, then the 
next suffix removes the first letter and appends it onto the 
end (i.e., the suffix rotations of the word “knickknack” are 
“knickknack$,” “nickknack$k,” “ickknack$kn,” and so on). The 
next step sorts the suffixes lexicographically, and the BWT is 
represented by the last column of this sorted suffix array. The 
BWT often contains runs in which a single character appears 
many times in a row due to the array having been sorted 
lexicographically. These runs of characters allow for compression 
of the BWT to further reduce the size of the resulting 
genome index.

Although not as common, multiple high-quality aligners 
use an uncompressed “suffix array” as a means to index fragments 
(Dobin et  al., 2013; Marçais et  al., 2018). Suffix arrays have 
been utilized since the initial introduction of genome aligners, 
but were used as a stepping-stone in the process of creating 
the original method of genome-indexing, the suffix tree 
(Figure 2). Some aligners today, such as MUMmer4 and STAR, 
have removed the extra step of creating a suffix tree and utilized 
aspects of the suffix array to aid in alignment. The generation 
of a suffix array is very similar to how the BWT suffix rotation 
array is created with the only exception being that the prefixes 
are not appended to the end of each suffix (i.e., the suffix 
array for the word “knickknack” is “knickknack,” “nickknack,” 
“ickknack,” and so on). The positions where each suffix occurs 
in the overall genome are recorded as well. The final step of 
generating the suffix array is to sort the array alphabetically, 
which allows for suffixes beginning with the same string of 
characters to appear one after the other. This allows for a fast 
lookup when finding exact matches of a sequenced read.  

FIGURE 1 | Creating an FM-index of the word “knickknack.” The first step is to generate all rotations of the reference sequence and sort them lexicographically. 
The last column is stored as the Burrows-Wheeler transform (BWT) in (A) and the corresponding suffix array in (B). A rank table is created from the BWT, which lists 
the occurrence and order of each unique character shown in (C). (D) shows the lookup table, which lists the index of the first occurrence of each character from the 
first column of the sorted matrix.

https://www.frontiersin.org/journals/plant-science
www.frontiersin.org
https://www.frontiersin.org/journals/plant-science#articles


Musich et al. Comparison of Short-Read Sequence Aligners

Frontiers in Plant Science | www.frontiersin.org 3 April 2021 | Volume 12 | Article 657240

For example, when finding the exact matches for a read “kn,” 
the algorithm will begin by finding where in the suffix array 
the fragment fits alphabetically, then record that there are two 
suffixes that begin with “kn,” “knickknack,” and “knack,” This 
results in the creation of two separate alignments. A benefit 
of using a suffix array over an FM-Index is that there is no 
extra step for having to convert the BWT back into the reference 
genome when creating alignments, which often results in suffix 
arrays having a faster lookup time. However, a major disadvantage 
to using suffix arrays is that they can require a large amount 
of memory depending on the size of the genome being used 
and may not be  ideal to run on some systems.

For the end user, there are two primary considerations when 
deciding which aligner to use: accuracy and run time.

Accuracy of a tool can be  estimated by multiple proxies. 
Unfortunately, it cannot be  measured directly for any given 
experiment due to a “chicken or the egg” class of problem. 
To know the true accuracy of an alignment, one would need 
to know where in the genome each fragment is from. However, 
the location of each fragment is the purpose of doing the 
alignment in the first place. As a result, accuracy is often 
indirectly estimated based upon our expectations for a good 
and complete alignment.

Accuracy can be  partially assessed by the percent of reads 
aligned. Most end users would prefer to extract the maximal 
information possible from the sequencing data, meaning aligning 
as many reads as possible. For high-quality sequencing with 
few errors and a high degree of accuracy in alignment, most 
sequence fragments should be  assigned to a location in the 
reference. A large number of unaligned fragments could indicate 
a low accuracy of the tool. However, this assumes that the 
reference sequence is relatively complete, otherwise reads may 

be  part of previously unsequenced locations in the genome 
or transcriptome. Unaligned reads can also result from biological 
complications outside of the control of the aligner. For example, 
“multireads” are sequences that align to multiple locations in 
the reference due to repetitive sequences, paralogs, or other 
sequence duplications. For these, the aligner is not able to 
determine which of the regions is the correct match, so it 
typically leaves the fragment out. Some aligners, such as Burrows 
Wheeler aligner (BWA) and STAR, will report a quantitative 
measure (percent and/or counts) of fragments that are multireads. 
Another biological cause of reduced alignment occurs when 
RNA transcript sequences are aligned to a reference genome, 
there could be  poor alignment due to the inability to span 
splice junctions. After considering the technical and biological 
sources of poor alignment, a high rate of unaligned reads 
should give a user pause, particularly when comparing among 
samples of a similar type aligned to the same reference.

Accuracy is also commonly assessed by the estimated gene 
coverage. For an alignment of shotgun genome sequence, a low 
coverage of the genes despite a sufficiently large number of 
reads could indicate a potential systematic error in how reads 
are aligned. An example of such an “error” would be multireads, 
as discussed above. There could also be  sufficient differences 
between the fragment and the reference, such as due to 
polymorphism, that a matching location is not identified. Mismatch 
tolerance is described in more detail below. If a transcriptome 
is already available for the species in question, and the aligner 
supports the import of gene location information for annotation 
of alignment results, such as with a General Feature Format 
(GFF) or Gene Transfer Format or General Transfer Format 
(GTF) file, determining gene coverage is relatively facile. If gene 
locations for the species are not known, and a closely related 

A

B

C

FIGURE 2 | Creating a suffix array and tree from the word “knickknack.” The overall word with its associated indexes is shown in (A). (B) shows the unsorted suffix 
array with their associated indexes. (C) shows the completed suffix tree.
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species is available, it is also possible to use tools like Exonerate 
(Slater and Birney, 2005) and BLAST+ (Camacho et  al., 2009) 
to perform pairwise alignments between the known genes and 
the aligned contigs. If the species being examined is well-studied, 
a tool like Benchmarking Universal Single-Copy Orthologs 
(BUSCO; Simão et  al., 2015) can be  used to count the number 
of core metabolic genes that exist in the resulting alignments.

Total runtime, the wall clock time a program takes to 
complete, is of secondary consideration for two reasons. First, 
in an ideal world, accuracy should be the primary consideration. 
Second, as seen in the section on Multithreading below, total 
runtime often is highly dependent on the hardware, the analysis 
is run on. However, with the growth in sequencing data sets 
over time, runtime is a non-trivial consideration that can create 
a research bottleneck. Total runtime is an interaction between 
program efficiency and the hardware upon which it is run. 
Since the hardware is often limited by budget constraints or 
institutional resources and is therefore effectively a constant 
for any given research group, it would be  useful to know the 
relative efficiencies of alignment tools.

Modern software tools usually have the ability to run multiple 
analyses at once, or multithread. This can work similarly to 
how having multiple cooks in a kitchen can increase throughput 
up to a point. There are diminishing returns, and eventually 
there can be  “too many cooks in the kitchen.” For a well-
written program that multithreads, if there are a large number 
of processor cores (“cooks”) available, the “speedup” of the 
program should be  linear with respect to the number of cores 
used (e.g., five cores causes the program to run five times as 
fast). Measuring the speedup this way (time on a certain 
number of cores divided by time on one core) can indicate 
how much faster a program could theoretically run given better 
hardware, accounting for the diminishing returns. In rare cases, 
programs can achieve “super-linear speedup,” in which the 
observed speedup is greater than the number of cores used. 
Typically, this is caused by good use of shared temporary 
memory or other resources. This would be  similar to one 
cook retrieving a single container and adjacent cooks sharing 
it without having to spend time retrieving it themselves. As 
we will see later in a comparison of tools, super-linear speedup 
is observed in some sequence aligners.

Although the method used for indexing the reference genome 
impacts an aligner’s performance, so to do the parameters 
chosen for an individual run of the tool. Aligners typically 
have differences in how tolerant they are of mismatches between 
the fragment and the reference sequence. Some tools allow 
for user specification of the degree of tolerance. Typically, 
analyses allow one or two nucleotide differences to account 
for polymorphism or minor and rare sequencing errors. Even 
within these tolerances, some fragments will deviate too far 
from the reference sequence to be aligned. Note that mismatch 
tolerance can affect both percent alignment and gene coverage. 
High stringency (low tolerance) can result in a low percent 
alignment with too much data discarded, and a high tolerance 
can result in inaccuracy. Another parameter impacting 
downstream results is the alignment mode. Most aligners have 
a pre-defined mode, which is unable to be  changed, while 

others allow the user to choose between a local or end-to-end 
alignment mode. In end-to-end mode, an entire read must 
be  aligned to the reference genome for an alignment to 
be  returned. End-to-end alignments are considered a stricter 
method of alignment compared to local alignments. In local 
mode, bases are able to be  trimmed from either the 5' or 3' 
end of a read for the best possible alignment to be  returned. 
This extra trimming step often causes the runtime for local 
alignments to be longer than an end-to-end alignment; however, 
the leniency of the alignment allows for higher alignment rates. 
Another impactful parameter for RNA-seq aligners, such as 
HISAT2, STAR, and TopHat2, is the option of inputting a 
transcriptome alongside the reference to aid in an aligner’s 
ability to identify potential splice sites when aligning RNA 
reads. Other aligners were created to mainly handle alignment 
of DNA reads to a reference genome, but can map RNA reads 
by allowing for large gaps in the resulting alignments. In this 
assessment, all aligners were run without the use of a 
transcriptome to compare performance more equitably.

In order to increase awareness among researchers of the 
differences between alignment programs, and to give researchers 
a framework for evaluating those differences, we  compare a 
number of commonly used alignment programs in reference 
to the above considerations. Knowing how to choose the best 
tool for a particular research problem can improve the quality 
of downstream analyses.

MATERIALS AND METHODS

Sequence Generation
As a reference data set, 48 samples of geographically diverse 
Erysiphe necator, or grapevine powdery mildew, were isolated 
and sequenced. RNA was isolated from the fungal samples by 
using clear nail polish on the infected leaves to separate the 
fungal tissue from the leaves followed by RNA extraction 
(Cadle-Davidson et  al., 2009). Samples were sequenced in one 
single-end run of an Illumina GA HiSeq with five base-pair 
barcodes provided for each isolate. The pooled library of reads 
was run through the barcode splitter of the FASTX-toolkit 
(v0.0.13; Hannon, 2010) to create a separate file of reads for 
each of the 48 isolates. Each sample was run through a quality 
control and cleanup pipeline consisting of FastQC v0.11.7 
(Andrews, 2018) and the FASTX-Toolkit.

Alignment of Short-Reads
For all aligners, the reference genome of the C-strain of E. 
necator (Jones et  al., 2014) was indexed to reduce any effects 
on runtime due to differences in indexing methods. All 48 
samples were then aligned to the E. necator reference genome 
using the default settings of the following tools: Bowtie2 v2.3.5.1 
(Langmead and Salzberg, 2012), BWA v0.7.17-r1188 (Li, 2013), 
Hierarchical Indexing for Spliced Alignment of Transcripts 
v2.1.0 (HISAT2; Kim et  al., 2015), MUMmer4 v4.0.0beta2 
(Marçais et  al., 2018), Spliced Transcripts Alignment to a 
Reference v2.5.4b (STAR; Dobin et  al., 2013), and TopHat2 
v2.1.1 (Kim et  al., 2013).
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Alignment Metrics
Where available, internal reports of the percent of aligned 
reads were used. For BWA and MUMmer4, samtools v1.6 (Li 
et  al., 2009) was used to generate a BAM file from which 
aligned reads could be counted. Multireads were handled using 
the default method for each aligner. To identify the transcriptome 
coverage of the alignments, the Cufflinks v2.2.1 (Trapnell et al., 
2010) package was used to combine alignments across all 
samples into FASTA files using the cufflinks and cuffmerge 
tools. BLAST+ v2.5.0+ (Camacho et  al., 2009) was then used 
to make a database of the compiled alignment files. A blastn 
search was performed with the reference transcriptome (Jones 
et al., 2014) as the query sequences. The result of each BLAST+ 
run was a report of the single-best alignment per E. necator 
transcript if it was found in the pre-built aligner’s database. 
Transcriptome coverage for a given aligner was calculated by 
dividing the total number of alignments found by the total 
number of transcripts in the transcriptome.

Sequences from the reference transcriptome that did not 
have BLAST alignments were collected in a FASTA file and 
submitted to EggNOG-mapper v2 (Huerta-Cepas et  al., 2017). 
The proportion of missing genes, which were reported to belong 
to each Clusters of Orthologous Groups of proteins (COG) 
category assigned by EggNOG-mapper (Tatusov et  al., 2000) 
was calculated.

Analysis of Speed and Parallelization
Alignments were run on a dedicated dual Xeon E5-2643 (six 
cores and 12 threads for each processor) with 512  GB of 
RAM and timed as CPU time (user  +  system). Only one 
analysis was run at a time. The final runtime for each sample 
was normalized by the number of reads in that sample, as 
samples with higher read counts take longer to process than 
those with lower read counts. Runtime per read was averaged 
across all samples.

The fraction of code that can be  parallelized (Fpar) was 
estimated from the speedup (S) of runtime from 1 processor 
to n processors using a rearrangement of Amdahl’s law 
[Fpar  =  (1/S−1)/(1/n−1)]. The Fpar values for 2, 3, and 5 
processors were averaged, and the maximum theoretical speedup 
calculated by Amdahl’s law for infinite processors as 1/(1−Fpar).

RESULTS

To compare some commonly used aligners, an RNA-seq dataset 
of E. necator was used. Although aligners may show different 
results with another species, E. necator was selected here due 
to extensive knowledge on the species through years of research. 
Each sample was run through a quality control and cleanup 
pipeline, and then aligned to the reference genome. One of 
the alignment tools tested, Bowtie2, has two distinct alignment 
modes (End-to-End and Local), so both modes were tested 
to examine if one was better than the other. Additionally, 
TopHat2 is no longer supported and has been replaced with 
HISAT2 but is included for reference.

For each of the 48 samples, the alignment rate was tracked 
for all aligners used, which represents the percentage of sequenced 
reads that were successfully mapped to the reference genome. 
TopHat2 returned the lowest alignment rates by far, demonstrating 
the significant improvements in alignment quality in this newer 
generation of tools. Bowtie2  in End-to-End alignment mode 
and HISAT2 had similar alignment rates (averages  =  66%; 
Figure  3). Bowtie2 run in Local alignment mode and BWA 
achieved the highest alignment rates (averages  =  87%), and 
MUMmer4 and STAR were intermediate (averages  =  78%; 
Figure  1).

Running each of the aligners using five cores, the slowest 
tool by far was TopHat2 with an average runtime of 221.07 ms 
per read, 5x slower than the next slowest aligner. This again 
clearly demonstrates the significant improvements in alignment 

FIGURE 3 | Alignment rate distributions for each of the seven aligners tested across 48 RNA-seq samples. Aligners with the same character above the boxplots 
were not significantly different based on Tukey’s HSD with 95% confidence level.
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speed. The fastest aligner tested was HISAT2, which recorded 
a runtime of 8.28  ms per read on average (Figure  4).

Additionally, aligners were assessed on how well they were 
able to be  parallelized by using multiple computational cores. 
We define speed-up as the time required using one core divided 
by the time required on X cores. Most aligners tested achieved 
linear speedup, such as Bowtie2 in Local mode (slope = 0.999), 
BWA (slope = 0.833), HISAT2 (slope = 0.876), and MUMmer4 
(slope  =  0.981). Bowtie2  in End-to-End mode showed slight 
super-linear speedup (slope = 1.059). Both STAR and TopHat2 
had logarithmic speedup curves. Using Amdahl’s Law for 
calculations, the maximum theoretical speedup for STAR and 
TopHat2 were found to be  6.17 and 3.10, respectively.

The results from each aligner were then analyzed to determine 
how much of the overall E. necator transcriptome was covered 
based on the alignment results for all 48 samples. Because 
each of the samples came from a geographically distinct area, 
representing the genetic diversity of the species, combining 
the results for all 48 samples was performed with cufflinks 
and cuffmerge to remove the bias of any sample not expressing 
a particular gene. In this sense, we  analyzed the maximal 
transcriptome coverage an aligner can achieve given 48 replicates. 
To further analyze whether some aligners were better at mapping 
longer or shorter transcripts, the transcriptome coverage was 
calculated at various alignment length cutoffs (Figure 5). Overall, 
all aligners except TopHat2achieved ~90% or greater 
transcriptome coverage using alignments that were at least 100 
bases long. BWA had the highest recorded coverage at this 
cutoff at 97.8% followed closely by Bowtie2  in both Local 
(97.1%) and End-to-End mode (95.6%). As the alignment length 
cutoff value was increased, the coverage values for most aligners 
converged to the same values. However, both HISAT2 and 
STAR were able to achieve higher coverage values for alignments 
>1,000 bases signifying that these two tools are better at mapping 
larger transcripts than the other aligners tested.

Aligners were further checked using eggNOG-mapper v2 
(Huerta-Cepas et  al., 2017) for any bias as to the types of 
genes, which were unable to be  mapped to the reference 
genome. Overall, all aligners tested had similar distributions 
between COG categories with categories “L” (“Replication, 
Recombination, and Repair”) and “S” (“Function Unknown”) 
being overrepresented in each (Table  1). The lowest number 
of unmapped genes was 106 from BWA with ~20% of these 
genes belonging to the “Replication, Recombination, and Repair” 
category and ~12% belonging to “Function Unknown.” The 
highest number of unmapped reads belonged to TopHat2 with 
a total number of 1,570 unmapped genes resulting in ~12% 
belonging to “Replication, Recombination, and Repair” and 
~29% belonging to “Function Unknown.” Interestingly, as the 
number of unmapped genes increased between aligners, the 
percentage of genes belonging to “Replication, Recombination, 
and Repair” steadily decreased and the percentage of genes 
belonging to “Function Unknown” steadily increased.

DISCUSSION

Based upon transcriptome coverage and alignment lengths, 
most commonly used tools work well. Although TopHat2 is 
consistently at the bottom ranking, it was included as a control 
as it has been superseded by HISAT2. For its generation of 
aligners, TopHat2 was an excellent tool. As we  have seen, 
newer tools have made significant improvements, and nearly 
all have a high degree of completeness over long lengths.

An additional concern is the spanning of splice junctions 
when one data source (reference or aligned sequences) is 
genomic and the other transcriptomic. In experimentation such 
as RNASeq (Wang et  al., 2009; Hwang et  al., 2018; Stark et  al., 
2019), transcriptomic sequence is aligned to a genomic reference. 
As fragmentation previous to sequencing is usually random 

FIGURE 4 | Runtime per read distributions for each of the seven aligners tested across 48 RNA-seq samples. Aligners with the same character above the boxplots 
were not significantly different based on Tukey’s HSD with 95% confidence level.
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in  location, many of the transcript sequence fragments will 
span a splice site. Unrecognized, this effectively creates a large 
gap inside the fragment with respect to the reference, which 
will cause the fragment to fail to align. Some aligners are 
designed to recognize splice junctions effectively, such as HISAT2, 
STAR, and TopHat2. Quantifying and comparing the capability 
of these tools to identify splice sites was beyond the scope 
of this analysis because the measures of accuracy will vary 
by experimental application.

Another concept to keep in mind when choosing an aligner 
is the type of downstream analysis required for the given 
research project. Nearly all aligners have the ability to output 
alignments in commonly used file formats, such as SAM/BAM 
files. In general, this means that most downstream analysis 
tools are compatible with the aligner’s output. However, some 
aligners, such as MUMmer4  in our case, output the data in 
an incorrect format. In our findings, each of the MUMmer4 
alignment files were missing the required “@SQ” header lines 
(one for each contig in the reference genome), which meant 
that the outputted files were not able to be used for downstream 
analysis without some manipulation. To avoid problems like 
this, it is important to do the necessary research beforehand 
to ensure that the chosen aligner is compatible with the 
downstream analysis tool of choice.

It should also be  noted that aligner performance can vary 
significantly depending on the composition of the organism’s 

genome or transcriptome. Larger genomes and data sets 
obviously will require longer runtimes, as the search space 
has increased. Depending on the aligner, runtimes may not 
increase in a linear manner, either. The degree of duplication 
in the genome can also complicate analysis for aligners, 
impacting both speed and accuracy. For example, in a genome 
with evolutionarily recent duplication, a given fragment may 
align to multiple loci. As a result, aligners may locate the 
fragment to multiple locations (declaring it a multiread), 
choose one location over others, and throw out the read as 
unable to be  mapped, or take some other action. Similar 
outcomes could happen with a fragment that spans a common 
repetitive element. We have not examined the effects of genome 
complexity, including differences in the handling of multireads, 
on aligner performance. This would make an excellent area 
for future research and trials.

In practice, the choice of aligner often comes down to a 
trade-off between speed and completeness. As shown in Figure 6, 
there are significant differences in this arena. Aligners to the 
lower right of the graph would have the optimal mix of high 
speed (short runtime) and high completeness. Unfortunately, 
such an aligner does not exist to-date. If completeness is 
primary and time is not of a concern, such as a facility with 
excellent computational resources, an aligner such as BWA 
would work well. In fact, BWA still has a runtime per read 
in the “middle of the pack.”

FIGURE 5 | Transcriptome coverage based on a minimum alignment length cutoff. This figure shows the transcriptome coverage for each aligner calculated from the 
BLAST+ alignment results. The y-axis shows the transcriptome coverage calculated for varying alignment length cutoffs ranging from 100 to 2,500 base pairs (x-axis). 
Coverage for an aligner was calculated taking the total number of alignments returned by BLAST+ with length greater than or equal to the cutoff value and dividing by 
the total number of transcripts in the Erysiphe necator reference transcriptome. Each line is a different aligner except for the “Reference” plot, which represents the 
percent of transcripts from the reference transcriptome that follow the alignment length cutoffs. This line represents the theoretical maximum for each cutoff value.
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FIGURE 6 | Average runtime per read vs. average alignment rate for modern aligners. TopHat2 was also used but the results were excluded from this figure as it 
was found to be an outlier. The x-axis shows the average percentage of reads successfully mapped to the E. necator reference genome from all 48 samples.  
The y-axis shows the average runtime per read from all 48 samples.

TABLE 1 | Distribution of unmapped transcripts from each aligner into EggNOG functional annotation categories.

BWA Bowtie E2E STAR TopHat2

n = 106 (%) n = 242 (%) n = 532 (%) n = 1,570 (%)

A. RNA processing and modification 1.9 4.1 2.4 3.4
B. Chromatin structure and dynamics 0 0 1.3 1.5
C. Energy production and conversion 0.9 1.2 0.6 1.0
D. Cell cycle control, cell division, chromosome  
partitioning 0 0.8 1.5 2.4
E. Amino acid transport and metabolism 0.9 0.4 0.6 1.9
F. Nucleotide transport and metabolism 0.9 0.4 0.6 0.8
G. Carbohydrate transport and metabolism 0 0 0.2 0.9
H. Coenzyme transport and metabolism 0 0.4 1.1 1.3
I. Lipid transport and metabolism 0.9 0.8 0.8 1.0
J. Translation, ribosomal structure, and biogenesis 1.9 1.6 1.7 2.4
K. Transcription 0 1.2 2.4 2.0
L. Replication, recombination, and repair 20.8 15.3 15.8 12.4
M. Cell wall/membrane/envelope biogenesis 0.9 0.8 0.6 0.4
N. Cell motility 0 0 0 0.1
O. Post-translational modification, protein turnover, and 
chaperones

2.8
2.1 1.3 3.1

P. Inorganic ion transport and metabolism 0 0.8 0.8 1.1
Q. Secondary metabolites biosynthesis, transport, and 
catabolism 0.9 0.4 0.4 0.6
R. General function prediction only 0 0 0 0
S. Function unknown 12.3 17.4 26.5 29.2
T. Signal transduction mechanisms 1.9 2.5 1.7 2.0
U. Intracellular trafficking, secretion, and vesicular transport 0 1.2 2.4 2.5
V. Defense mechanisms 0 0 0.4 0.3
W. Extracellular structures 0 0 0 0
X. Mobilome: prophages, transposons 0 0 0 0
Y. Nuclear structure 0 0 0 0
Z. Cytoskeleton 1.9 1.2 0.8 1.6
Uncategorized 10.4 8.3 10.5 9.7
No results 39.6 33.1 27.8 22.2
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If speed is the primary concern, however, a tool such as 
HISAT2 still has a good degree of completeness. An example 
of this case would be  a rapid diagnostic test, such as pulsed 
sequence analysis (Stranneheim et  al., 2014), in which rapid 
alignments are completed to identify possible causes of an 
Inborn Error of Metabolism in a critical care patient. In 
these experiments, fragments are aligned in periods (pulses) 
as they are generated by the sequencer for a first pass 
identification of possible nonsynonymous mutations. Other 
concerns are also important in this specific example, such 
as ability to correctly identify genetic variation from the 
alignment. This measurement of accuracy is outside the scope 
of this paper, but is of importance in a number of 
experimental conditions.

Although a large number of sequence aligning tools exist, 
most modern tools have similar key metrics and perform well 
for a wide variety of purposes. When resources are limited 
or specific features are required, the choices are often themselves 
more limited, and one must be more careful. As small fragment 
sequencing rates increase, and more fragments are generated 
by sequencing machines, time may become the more critical 
concern, too. As with the underlying sequencing technologies, 
alignment tool choice is a moving target. Perhaps in the future, 
databases and summaries of performance against gold standard 
data sets may be  developed for specific applications. Until 
then, users have many fine and well established tools, and 
few bad choices. We hope that the above analysis and discussion 
helps the research community to systematically identify the 
alignment program that best meets their needs.
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